
Economics 671

Problem Set #3:

Thinking about Asymptotic Approximations

The purpose of this question is to help solidify your understanding of sampling distribu-

tions and asymptotic approximations to them. We do so via a very simple case where

exact, analytic results can be obtained to characterize the sampling distribution of the OLS

estimator.

Consider a regression model with just an intercept parameter:

yi = µ+ εi,

where it is known that εi are iid draws from an Exponential distribution with mean λ,

which are then standardized to have mean zero by subtracting off λ. That is, if xi ∼
Exponential(λ) (an Exponential distribution with mean parameter λ and variance λ2)

then

p(xi) = λ−1 exp(−λ−1x), x, λ > 0, (1)

and the errors are then assumed to be generated as follows:

εi = xi − λ, i = 1, 2, . . . , n. (2)

The OLS estimator of µ is, obviously,

µ̂n = yn,

the sample average of the n observations on y. In the remainder of this question, we seek

to analytically characterize the sampling distribution of this estimator, and then compare

the finite-sample distribution of our statistic to the asymptotic normal approximation.

Here are some helpful steps along the way:

(a) Derive the moment generating function (MGF) of x, M(t) ≡ E(exp[tx]), when x ∼
Exponential(λ). (Note: A brief review of MGFs is given in Appendix B.6 of your book).

(b) Now, consider the distribution of Y ≡
∑

i xi, where xi
iid∼ Exponential(λ). Use the

moment generating function technique to show that Y ∼ Gamma(n, λ). To do this, note

that the MGF of the Gamma(n, λ) distribution is:

M(t) ≡ E(exp(tY )) = (1− λt)−n, t < λ−1.
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(c) Use the result above to derive the (exact) sampling distribution of the estimator µ̂n = yn.

Note that the gamma density is parameterized as follows:

Y ∼ Gamma(n, λ)⇒ p(y) = [Γ(n)λn]−1yn−1 exp(−y/λ), n, λ, y > 0.

(Note: A solution to part (c) as well as part (d) below will likely make use of the change-

of-variable technique. A brief review of the change of variable or transformation technique

can be found in A.B.4 and B.5 of your book. In addition, be careful with the supports of

the densities when you perform your changes of variable).

(d) Given what you established in part (c), obtain the exact sampling distribution of the

statistic: √
n(µ̂n − µ).

(e) What is the asymptotic distribution associated with the statistic

√
n(µ̂n − µ)?

(f) Now, bring all of this together using MATLAB. To do this, perform the following:

• First, fix n = 2 and set µ = 3, λ = 1 throughout.

Begin by using the results above to determine the exact distribution of the statistic when

n = 2 and, using MATLAB, plot
√
n(µ̂n − µ) when n = 2.

Now, compare this analytic result with two alternatives:

First, the normal approximation of the sampling distribution in part (e).

Second, a numerical, computer-generated approximation of the sampling distribution of the

statistic when n = 2. To do this, proceed as follows:

1. Begin a loop in MATLAB, from, say, 1 to 5,000.

2. Within an iteration of that loop, draw error vector from the de-meaned exponential

distribution. The syntax you will need to use for this in matlab is exprnd(lambda,n,1).

This will produce n draws from the exponential distribution with mean λ.

3. Given the errors in the previous step, calculate the y vector and then calculate µ̂n = yn
and wn ≡

√
n(µ̂n − µ).
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4. Store this value of wn and close the loop.

When complete, you will have 5, 000 values of the statistic wn. This collection of values is

an approximation of the sampling distribution of the estimator. To convert this collection

of wn values into a density estimate, use the m-file I have supplied, epanech2. The syntax

is

[dom ran] = epanech2(draws)

Here, dom is a set of gridpoints over which the density is calculated, ran are the ordinates

of the density at those gridpoints and draws are the data values that you pass to the m-file

(in this case, it will be your collection of 5, 000 values of wn).

You can then plot the density by typing plot(dom,ran).

Plot all three densities (i.e., the analytic density, the asymptotic approximation and the

numerical computer-generated approximation above) on the same graph and comment on

the results.

Finally, repeat this process, this time setting n = 50. Once again, plot each of the three

densities on the same graph for the n = 50 case. What do you find? How do your results

compare to the n = 1 case?


