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Today, we discuss the EM Algorithm.

This algorithm is very useful in nonlinear models, many of which are
linear in suitably defined latent data.

It’s name comes from two steps: First, an Expectation step, where
expectations are taken with respect to the latent data, given the
observed data and a particular state of the parameter vector. The
second step is a a maximization step.

In the following slides we offer an explanation behind why the method
works and illustrate its application for the probit and Gaussian
mixture models.
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EM Algorithm

First, let us define some notation. Let

y = g(y∗)

be the link between the latent data y∗ and observed data y .
Denote the density of y∗ as

f (y∗|θ)

and let
L(θ; y∗) = log f (y∗|θ).

[In the context of the probit, for example, f (y∗|θ) = φ(y∗|xβ, In).]
Finally, define

Q(θ, θt ; y) = E [L(θ; y∗)] = Ey∗|θ=θt ,Y=y [L(θ; y∗)] .
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EM Algorithm

Theorem

Whenever
Q(θ, θt ; y) > Q(θt , θt ; y)

it must be the case that

L(θ; y) > L(θt ; y).

Let’s pause to appreciate what the theorem states. If we define in an
iterative fashion, for example,

θt = argmaxθQ(θ, θt−1; y),

then the sequence of θt values obtained in this fashion lead us to higher
values of the log likelihood. So, if the expectation and maximization are
easily performed, this provides an alternative to traditional MLE.
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EM Algorithm

We will sketch a proof of this theorem. First, note that

fy |y∗(y |y∗) = I [y = g(y∗)].

That is, the distribution of y is degenerate given y∗.
Now, consider:

p(y , y∗|θ) = p(y |y∗, θ)p(y∗|θ)

= p(y |y∗)p(y∗|θ)

= f (y∗|θ)I [y = g(y∗)]
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EM Algorithm

From this joint distribution we seek to obtain f (y∗|y , θ). We note:

f (y∗|y , θ)f (y |θ) = p(y , y∗|θ).

Therefore,

f (y∗|y , θ) =
p(y , y∗|θ)

f (y |θ)

or

f (y∗|y , θ) =
f (y∗|θ)

f (y |θ)
I [y = g(y∗)].
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EM Algorithm

Therefore, the log-likelihood for θ given y∗ drawn from y∗|y , θ is

L(θ; y∗|y) = log fy∗|y ,θ(y∗|y , θ)

= log [f (y∗|θ)/f (y |θ)]

= log f (y∗|θ)− log f (y |θ)

= L(θ; y∗)− L(θ; y)

Note that the second line follows since the sampling is from y∗|y , θ.
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EM Algorithm

Now, let
H(θ, θt ; y) ≡ Q(θ, θt ; y)− L(θ; y).

It follows that

H(θ, θt ; y) = Q(θ, θt ; y)− L(θ; y)

= Ey∗|y ,θ=θt [L(θ; y∗)]− L(θ; y)

= Ey∗|y ,θ=θt [L(θ; y∗)− L(θ; y)]

= Ey∗|y ,θ=θt [L(θ; y∗|y)]

using our notation above. By Jensen’s inequality (like our proof for the
expected log likelihood inequality), it is clear that H(θ, θt ; y) is maximized
at θ = θt .
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EM Algorithm

Thus,
H(θt , θt ; y) ≥ H(θ, θt ; y)

which is equivalent to:

Q(θt , θt ; y)− L(θt ; y) ≥ Q(θ, θt ; y)− L(θ; y)

or, after rearranging,

L(θ; y)− L(θt ; y) ≥ Q(θ, θt ; y)− Q(θt , θt ; y).

This completes the proof. That is, whenever θ is chosen such that
Q(θ, θt ; y) > Q(θt , θt ; y) it is necessarily the case that L(θ; y) > L(θt ; y).
That is, we can iterate to the maximum likelihood estimate.
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The EM Algorithm

In practice, the EM algorithm chooses:

θt+1 = argmaxθQ(θ, θt ; y).

Thus,

1 With θt+1 defined in this way, it is clear that all updates to new θ
values can not decrease the value of the log-likelihood.

2 In practice, the current value θt is treated as the “true” parameter
vector, and expectations are taken assuming θ = θt . Q, however,
remains a function of both θ and θt , and setting θt+1 = θt is not
optimal in general.

3 Two examples illustrate use of the EM algorithm.
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Probit Example

We illustrate the practical usefulness of the EM algorithm in fitting the
probit model:

y∗ = Xβ + ε, ε|X iid∼ N (0, In).

yi = I (y∗i > 0).

Step 1: E-Step
We need to get L(θ; y∗). For the probit model, this is easy since:
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Probit Example

We now need to take the expectation of L(β; y∗) over y∗|y , β = βt .
Expanding the quadratic, we get:

Q(β, βt ; y) = −n

2
log(2π)− 1

2
E (y∗′y∗|β = βt , y)

+ β′X ′E (y∗|β = βt , y)− 1

2
β′X ′Xβ.

Let
µ(βt , y) ≡ E (y∗|β = βt , y).

This completes the E-step.

Justin L. Tobias (Purdue) EM 12 / 27



Probit Example

Step 2: M-Step

Using the µ-notation, we can write

Q(β, βt ; y) = c(y∗, βt) + β′X ′µ(βt , y)− 1

2
β′X ′Xβ.

for some c that does not involve β. So

Since this is just like least-squares, we obtain:
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Probit Example
It remains for us to characterize the conditional expectation
E (y∗|β = βt , y).
Suppose y = 1. Then

Likewise,

E (y∗|β = βt , y = 0) = Xβt −
φ(Xβt)

1− Φ(Xβt)
.

So, generally,

µ(βt , y) = Xβt +
φ(Xβt)

Φ(Xβt)[1− Φ(Xβt)]
[y − Φ(Xβt)] .
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Probit Example

Putting all the pieces together, application of the EM algorithm to the
probit proceeds as follows:

1 Pick a starting value, say β0.

2 Calculate µ(β0, y) using the formula on the last slide.

3 Regress µ(β0, y) on X to obtain β1.

4 Repeat the process to obtain β2, β3, etc.

5 Iterate until the difference in log likelihoods (or β) is negligable.

Justin L. Tobias (Purdue) EM 15 / 27



Mixtures Example

Our second example relates to the use of Gaussian mixtures.

Mixture models are rapidly increasing in popularity, for a number of
reasons. The most common reasons people use mixtures in practice are:

1 Added flexibility - with enough mixture components, you can
approximate any well-behaved density with an arbitrary degree of
accuracy.

2 The population of interest is known to be comprised of a discrete set
of subgroups.
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Mixtures Example
To fix ideas, we consider the simplest case of a two-component Gaussian
mixture:

We can define a latent component indicator variable zi as follows:

zi =

{
1 if person i is “drawn from” the first component
0 if person i is “drawn from” the second component

It follows that

p(yi |zi , θ) = φ(yi ;µ1, σ
2
1)ziφ(yi ;µ2, σ

2
2)1−zi

and we define
Pr(zi = 1|θ) = π.

(So, after integrating out z , we have the same likelihood).
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Mixtures Example

Note
p(zi |yi , θ) ∝ πzi (1− π)1−zi

[
φzi1iφ

1−zi
2i

]
where φji ≡ φ(yi ;µj , σ

2
j ), j = 1, 2, so that

Pr(zi = 1|yi , θ) ∝ πφ1i

and
Pr(zi = 0|yi , θ) ∝ (1− π)φ2i
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Mixtures Example

Scaling these quantities up to make the conditional density proper, we
obtain:

and

Pr(zi = 0|yi , θ) =
(1− π)φ2i

πφ1i + (1− π)φ2i

Hence,

E (zi |yi , θ = θt) ≡ τi (θt , yi ) =
π(t)φ

(t)
1i

π(t)φ
(t)
1i + (1− π(t))φ(t)2i

.
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Mixtures Example
The (log) joint density of observed and latent data is:

log p(y , z |θ) =
∑
i

zi [log φ1i + log π] +
∑
i

(1− zi ) [log φ2i + log(1− π)] .

Therefore,

Q(θ, θt ; y) =
∑
i

τi (θt , yi ) [log φ1i + log π] + [1− τi (θy , yi )] [log φ2i + log(1− π)] .

This concludes the E-step. As for the M-step, consider the FOC for π:∑
i

[
(1/πt+1)τi (θt , yi )− [1− τi (θt , yi )]

1

1− πt+1

]
= 0.

This yields, after some algebra:

πt+1 =
1

n

n∑
i=1

τi (θt , yi ).
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Mixtures Example

Next, consider µ1. (A result for µ2 will follow analogously). The relevant
term in Q is:∑

i

τi

[
−1

2
log(2π)− 1

2
log[σ21]− 1

2σ21
(yi − µ1)2

]
.

Differentiating with respect to µ1 gives the FOC:∑
i

τi (θt , yi )(yi − µ1,t+1) = 0

yielding
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Mixtures Example

Finally, consider σ21. (A result for σ22 will follow analogously). The FOC
from Q is:

−1

2

1

σ21,t+1

∑
i

τi +
1

2σ41,t+1

∑
i

τi (yi − µ1,t+1)2 = 0.

Yielding

σ21,t+1 =

∑
i τi (θt , yi )(yi − µ1,t+1)2∑

i τi (θt , yi )
.
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Mixtures Example
If covariates are included in the model so that, for example,

φ1i = φ(yi ; xiβ1, σ
2
1)

then
1 τi is defined in the same way, making the above replacements for φ1i

and φ2i

2

β1,t+1 = (X ′TX )−1X ′Ty ,

where
T = diag{τi (θt , yi )}.

3

σ21,t+1 =

∑
i τi (yi − xiβ1,t+1)2∑

i τi
.
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Mixtures Example

Though we have illustrated things here for the case of two
components, this generalizes easily to the arbitrary case with k
components.

Essentially, the results we obtained for each component are simply
repeated for the additional mixture components.

This also generalizes in a straightforward way to the case of
multivariate data in which case σi is replaced by Σi .
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The next slide illustrates results from a generated data experiment.

We generate n = 10, 000 observations from a Lognormal(1,.1) distribution.

We then plot the true density function against a two-component Gaussian
mixture approximation.

The mixture is fit via the EM algorithm.
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Lognormal Density
Mixture Estimate

Figure: 2 Component Mixture: .661φ(x ; 2.47, .357) + .339φ(x ; 3.60, 1.00)
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Lognormal Density
Mixture Estimate

Figure: 5 Component Mixture: .217φ(x ; 1.95, .138) + .406φ(x ; 2.60, .238) +
.328φ(x ; 3.43, .453) + .014φ(x ; 5.01, .086) + .035φ(5.02, 1.44)
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