Economics 690

Problem Set: Hypothesis Testing
(1) Consider a set of data $y_{1}, y_{2}, \cdots y_{T}$ giving rise to likelihood function $L(\theta)$. Suppose two competing models are of interest which impose the following restrictions on $\theta: \mathcal{M}_{1}: \theta=c_{1}$ and $\mathcal{M}_{2}: \theta=c_{2}$ for given constants c_{1} and c_{2}.

Note: \mathcal{M}_{j} can be obtained by imposing a dogmatic or point prior of the form

$$
p(\theta)=I\left(\theta=\theta_{j}\right), j=1,2 .
$$

Suppose you believe both models are equally likely a priori. That is $p\left(\mathcal{M}_{1}\right)=p\left(\mathcal{M}_{2}\right)=1 / 2$.

Show, under these assumptions, that the posterior odds of model 1 in favor of model 2,denoted K_{12}, is simply the likelihood ratio:

$$
K_{12}=\frac{p\left(y \mid \theta=c_{1}\right)}{p\left(y \mid \theta=c_{2}\right)}=\frac{L\left(c_{1}\right)}{L\left(c_{2}\right)} .
$$

(2) Using the result in (1), consider the following problem. Suppose that only one observation is available from a $N(\theta, 1)$ distribution, and let us call that single observation y.

Additionally, suppose that two models are of interest: $\mathcal{M}_{1}: \theta=-1$ and $\mathcal{M}_{2}: \theta=1$ and both models are believed to be equally likely a priori.

Derive the Bayes factor in this case as a function of y and comment on the reasonableness of this result. If $y=1$ (and these two models are the only ones under consideration), what is the posterior probability associated with \mathcal{M}_{1} ? with \mathcal{M}_{2} ?
(3) In our lecture notes on hypothesis testing, I provided an example of marginal likelihood calculation in our log wage equation. Specifically, we found that the posterior odds supporting a non-zero return to education were 6×10^{36}.

I want you to reproduce these results on your own. To do this, it will be useful to note:

- The prior hyperparameters were $\nu=6, \lambda=(2 / 3)(.2), \mu=0$ and $V_{\beta}=10 I_{2}$.
- To calculate the marginal likelihood for a given model, you need to calculate the ordinate of a Student-t density. The lecture notes related to distributions provide the functional form of the Student-t.
- With this large sample size, there are a couple of things we need to do. First, we will need to work on the log scale. That is, we will need to calculate the log of the Student-t ordinates for both models, subtract them, and then exponentiate the result to get the desired posterior odds. [Note: This is how I proceeded in the lecture notes].
- When working on the log scale note that "gammaln" will calculate the log of the gamma function in MATLAB.
- Second, calculating the inverse and determinant of

$$
\Sigma \equiv \lambda\left(I_{n}+X V_{\beta} X^{\prime}\right)
$$

can be difficult. To this end, you should make use of the linear algebra formulas:

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left[D A^{-1} B+C^{-1}\right]^{-1} D A^{-1}
$$

and

$$
|A+B C D|=|A||C|\left|C^{-1}+D A^{-1} B\right| .
$$

where A and C are nonsingular matrices, to substantially simplify these calculations.
(3b) Repeat your marginal calculations above, this time changing $V_{\beta}=10 I_{2}$ to $V_{\beta}=1.0 \times 10^{100} I_{2}$. (This would correspond to a much "flatter" prior for β.)

Note: In Matlab, you can enter 1.0×10^{100} as " 1.0 e 100 "

How do your posterior odds change and how does this relate to Bartlett's paradox?

