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ABSTRACT  

Initially, human machine interface (HMI) was understood as the hardware and 
software through which human and machine could communicate. Gradually, is 
being recognized that many human factors such as usability, emotion, user’s 
physical and cognitive characteristics, domain knowledge, contribute as much to the 
effectiveness and efficiency of HMIs as robust, reliable and sophisticated 
algorithms do. Clearly, both the human centered factors and the technical factors 
have direct or indirect relations with the effectiveness of the HMI.  Nevertheless, 
the degree of influence of these factors on the effectiveness of human machine 
interaction is not well understood. Most of the work in the human machine 
interaction area is focused on creating and refining techniques and algorithms, 
application-driven efforts, or heuristic procedures, but there is a lack of basic or 
foundational work. In this work, we present a novel development of an accessible 
interface for the control of a robotic arm based on natural, effortless hand gestures 
designed for students with mobility impairments, and we provide a systematic 
framework to measure the effectiveness of this interface. 
  
Keywords: human machine interfaces, hand gestures recognition, assistive 
technologies, robotics, intelligent wheelchairs. 

INTRODUCTION  

Physical access to classrooms, laboratories and learning resources is crucial for 
students with disabilities. Active participation once present, however, is also vital, 



encompassing interaction with teachers, other students, and engagement with course 
materials and equipment (Salend, 1998). In order for students with mobility 
impairments to gain educational experiences comparable to those of able-bodied 
students they must perform comparable tasks (Warger, 1998). Actively exploring 
and interacting with scientific concepts and practices grants a more thorough 
educational experience as a whole. This need for active learning, however, creates 
serious hurdles for students with disabilities. 

Robotic assembly tasks and navigation planning and control are the most 
common tasks in automation and production labs. Able-bodied students are 
expected to personally control robots in assembly tasks, and analyze and design 
robot manipulations, in both undergraduate academic courses and high school 
science classes. In order to perform independent graduate or postgraduate research, 
or to pursue an engineering career, such as automation engineer, manufacturing 
engineer, or controls engineer, students with disabilities must be able to 
independently operate a robot in real-time. 

There has been extensive research on the use of sensors that allow people with 
disabilities to interact with machines. Sensors allow the control of devices by eye-
blinking, gaze, breathing, EEG and EMG signals, posture and gestures, lip reading 
and tongue movements. There are two main problems with these interfaces: (a) they 
are non-adaptive. Most of these methods leverage the strength of a single limb or 
body part that functions relatively well (Kim et al, 2006). Different solutions are 
needed, however, in cases of progressive illness where limb control skills decay 
gradually with time, or when the user is rehabilitating and hence has improving 
motor skills. In fact, technology permitting a single modality of interaction is 
appropriate only when the user’s condition is stable. As most paralyzed people 
experience a change in their condition throughout their lives, a new paradigm is 
needed; (b) their design does not follow an analytic methodology.  

The term “effective interface” in the context of human-robot interaction is 
relatively new and so far there is no universally accepted definition for this term. 
Most of the existing definitions are unstructured and only focus on one aspect of 
effectiveness, for example Olsen and Goodrich (Olsen and Goodrich, 2003) only 
focus on effectiveness as a function of task effort. In this proposal, the PI identifies 
a set of factors that influence the effectiveness of the interface, and attempts to 
organize then in a comprehensive and coherent framework. In order to evaluate the 
effectiveness of a given interface for robotic control, first performance measures 
need to be defined. 

METHODOLOGY 

STUDY THE FACTORS THAT INFLUENCE THE EFFECTIVENESS OF 

INTERACTION MODALITIES FOR ROBOTIC CONTROL 

This section addresses foundational problems of the human-machine interaction 
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area – how to define the effectiveness of a modality (or interface) used for 
interaction, and how to measure it? In order to evaluate the effectiveness of hand 
gestures over standard interface techniques for robotic control, performance 
measures must be defined.  Interface effectiveness can be defined as a function (1), 
which is optimum when the interface used is the best among the options available. 
Different users may prefer a different interface according to their physical abilities 
(joystick, keyboard, hand gestures, sip-n-puff, EEG and EMG based signals, tongue 
control, etc). 
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where: 

e(I) = is the effectiveness for a given interface  

f  is some inverse function of e, including the following: 
T = task completion time 
U = user skills, expertise and knowledge domain 
M = the number of discrete user expressions (physical or physiologic) 
required to complete a single operation. 
E  = number of user errors while completing the task. 
L = learning rate (based on learning curve) 
I = is an interface modality 

Γ = the set of all feasible interface modalities (e.g. joystick, keyboard, 

hand gestures) 
  

The function e defines the relationship between the interface and its 
effectiveness. For example, an interface that is easy to learn will improve 
task efficiency. The common measure of efficiency is the time to complete a 
task (T). Benchmark robotic tasks will be used in the user studies so that the 
results are comparable across different interfaces.  

An interesting feature of this formulation is that it considers the user’s 
knowledge and experience, since they affect the task performance, which in 
turn affects the interface’s efficiency. The algorithm used to decode the 
signals into significant robot commands is not considered in this scheme, 
since it is extrinsic to the interface adopted. For example, there are several 
algorithms used for tongue movement recognition, and even that is possible 
to measure the superiority of some algorithms over the others, the success of 
these systems does not rely as much on the algorithm refinement, as it relies 
on the particular way the interface is used. The number of discrete 
movements required for the user to operate the robot is an indication of the 
cognitive load, the complexity, and the level of performance required in the 
task. The measurement of effectiveness involves the evaluation of ( 1), the 
analytical form of which is unknown. Therefore, a set of multiple objective 
performance measures are proposed to act collectively as proxies for ( 1): 



task completion time Z1, number of movements Z2, number of errors Z3, and 
learning rate Z4.  These proxies do not include U, since use experience is 
directly related to the learning rate. The recognition accuracy of the interface 
is not included, since it impacts the task performance indirectly. The goal is 
to use a formulation that is independent of the sensing technology.  Since f is 
some inverse function of e, bringing the different objectives to minima will 
lead maximum interface effectiveness.  
 

1 2 3 4( ), ( ), ( ), ( )Min Z I Min Z I Min Z I Min Z I

I ∈ Γ
 (2) 

 
This multiobjective optimization problem may have conflicting solutions 

when all the objectives are minimized simultaneously. As with most 
multiobjective problems, this difficulty is overcome by allowing the 
decision maker (the user) to select the best I according to his preferences. 
Another method of overcome the conflicting multiobjective values is to 
adopt a goal programming approach: map the four performance measures 
into a single measure using weights wi to reflect the relative importance of 
each objective.  
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where: 
wi = the relative importance of factor Zi. 
 
The weights in ( 3) can be found empirically by letting the decision maker 

assign importance to each factor according to his/her needs and preferences. 
Alternatively, the weights can be varied, and for each unique weighting 
scheme the corresponding solution can be presented to the user for 
acceptance or rejection. The objectives Zi will be calculated by running 
simulations of a task using a virtual model of a robot (like the one in Figure 
1), which each of the interfaces considered, for example: (a) standard 
joystick, (b) voice and gestures, (c) EEG signals. Then, (3) can be computed 
and comparisons can be made among the interfaces.  
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A NEW METHOD FOR GESTURE BASED ROBOTIC CONTROL  

The concepts described in Tele-gest project (Wachs et al, 2005) to achieve a real-
time implementation of a teleoperated control using static hand gestures can be 
extended to a highly adaptable and robust recognition system for users with 
mobility impairments. The main components of such as system are described in the 
following sections and their implementation is left for future work. 

 

 

Figure 1.  User interface for robot control 

Mobility Capabilities - Hand Gesture and Face Movements: 

The framework described here will allow the user to control a robot using a wide 
variety of user customized gestures. For instance, an able-bodied user would want to 
control the robot while moving his hand in the direction of the robot’s intended 
movement. Moving his hand to the right causes the robotic arm to rotate to the right; 
moving the hand forward causes the robotic arm to move forward, and so on. While 
this mapping is perfectly natural to most users, some individuals with severe 
mobility impairments cannot move their hands in a straight line. Thus the logic used 
must be able to detect and recognize non-standard hand movements. 

Hand and Facial Gesture Recognition 

A software application is developed to enable the control of a robotic arm by hand 
and facial movements. The main hardware components (presented in Figure 2) are: 
an electric power wheelchair (EPW), a netbook running the recognition system, a 
Ladybug2 © spherical digital video camera system, and a 6-axis robotic arm. This 
video camera system has six digital cameras arranged in such a way that it can 
collect video from more than 75% of its full perimeter. The first and second 
cameras are oriented towards the hand and face, respectively. The netbook 
processes the images, recognizing the actions for wheelchair control, and provides 
visual feedback. The LCD display shows two windows: one for the hand gesture 



recognition feedback and the other for the facial movement and gesture recognition 
feedback (see Figure 3).  
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FIGURE 2. Prototype of the interface on the EPW 

 The data flow of the system is as follows: the user performs gestures with her 
hand. Sensors on the spherical digital camera system capture face and hand views. 
The images from the six sensors are ‘stitched’ together in one large image so the 
hand and face appear in a common system of coordinates. 
 The images from the sensors are sent to the netbook, where they are processed. 
The software searches the images for known movements, hand shapes, or facial 
expressions. If one of these patterns is recognized in the image, the type of 
movement is translated into a navigational command which was predetermined in 
an earlier stage of the system’s operation. A netbook display shows a feedback 
window. The window shows the area where the hand gesture was detected. On the 
left corner of the window, a caption with the name of the command associated with 
the recognized gesture is presented. At the same time, the action given by the 
command is carried out by a robotic arm for a parts assembly task. This type of task 
was chosen since the feasibility of this approach can be evaluated easily using the 
measures expressed in (1).  
 

 

FIGURE 3. Two-view screen: left side: the hand; right side: the face. 
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 When the system is used for the first time, a calibration process sets up the 
hardware and allows the student to interactively teach the gestures that will be used 
for robotic control. The calibration routine takes only a few seconds, and can be 
evoked again at any point during the robotic control. In calibration mode the user 
determines the neutral area and the interaction area. The interaction area is 
determined by the distance from the hand to the camera, the sensor’s focal length, 
and the extent to which the hand can be moved. The focal length is fixed, while the 
distance to the camera can be modified by moving the camera further or closer to 
the user–this process takes place before the calibration.  
 The neutral area is determined automatically by detecting the user’s hand 
position. It is a rectangular area around the hand’s position with a size equal to the 
product of the minimum bounding box around the hand by a constant factor (to 
compensate for non precise hand movements, such as tremors) (see Figure 4). This 
process takes a few seconds.  
 The user teaches the gestures to the system by showing the same gesture 
multiple times when prompted. A vocabulary of 12 commands is designed for robot 
world coordinates control. The ‘forward’ and ‘back’ commands control the X-axis, 
the ‘right’ and ‘left’ commands control the Y-axis, and the ‘up’ and ‘down’ 
commands control the Z-axis of the robotic arm. The ‘roll right’ and ‘roll left’ 
commands rotate the wrist joint, and the ‘open grip’ and ‘close grip’ commands 
control the robot gripper. The ‘stop’ command stops any action the robot performs. 
The ‘home’ command resets all robot joints in the home position. Each of the 
robotic navigation commands are displayed one after the other with a delay of 30 
seconds. When the command is displayed, the user must move her hand in any 
trajectory, leaving the neutral area, and then bring the hand back to the neutral area. 
The trajectory, velocity and shape are registered by the system and stored in a 
database for further use.  
 Each of the navigational commands is presented five times, and the user is 
prompted to show a gesture each time.  Once the system has been calibrated it is 
ready be used in operation mode.  

Interaction zoneInteraction zoneInteraction zoneInteraction zone

neutraneutraneutraneutrallll zonezonezonezone

AAAA
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CCCC  

  

FIGURE 4. Performing a gesture 



In operation mode, a graphical user interface (GUI) is presented on the netbook’s 
LCD screen. The image displayed on the GUI is the camera system’s view of the 
scene. On the image, two rectangles with different colors are plotted representing 
the interaction and the neutral area. Initially, the user’s hand is placed inside the 
neutral area, so no action is carried out by the robot. If the user wants the robot to 
move, he moves his hand according to the type of action desired. Then the system 
tries to detect the hand and identify the gesture. If the gesture is recognized, the 
system displays a caption with the name of the recognized action printed on the 
screen, otherwise the ‘try again’ message is displayed.  
      The neutral area is dynamically updated according to the hand’s preferred 
resting place. This is important because subjects with mobility impairments may 
find it difficult to move their hands back to the origin of the gesture after 
performing a movement. Suppose that the user performs a gesture which involves 
moving her hand from point A to point B. The user could then move her hand back 
to the origin of the gesture, point A, or move her hand to a point C (see Figure 4). In 
either case, the hand’s final destination (point A or C) will be considered as the 
resting place (neutral area) for the hand until the next gesture is evoked. This 
requires only that points A and C be close to each other. 
 Continuous control is used to resemble joystick operation. With a joystick, the 
robotic arm continues moving in the indicated direction until the user tilts the 
handle back to the origin point or releases the handle. Analogously, in our system, 
as long as the user’s hand is outside the neutral area, robot movement occurs. As in 
the previous example, if a gesture starts at point A (inside the neutral area) and ends 
at point B (outside the neutral area), then the action requested is continuously 
carried out until the subject returns to point A or any point inside the neutral area. 
Continuous control was selected because navigational actions are continuous; 
discrete operation is more appropriate when the actions required are discrete events 
in time, such as ‘stop’ or ‘turn-on-engine’ on a car. 
 When a person with mobility impairments is able to make different hand shapes 
(hand poses), this information can be used to discriminate between non-intended 
movements and navigational gestures. For example, the hand of a user holding an 
imaginary or virtual joystick will probably show the ‘fist’ shape. The user moves 
the fist left, right, upwards or downwards. Each of these movements can be 
translated to an action, as with standard joystick operation. The pointing pose could 
also be used. A subject pointing his index finger forward and tilting his hand in one 
of the four directions could indicate his desire to move the robot tip in that direction. 
Four different hand shapes are planned to be included that will be automatically 
recognized: fist, pointing gesture, palm up and palm down.  
 Facial gestures can be used as modifiers of the hand gestures. A ‘modifier’ alters 
how an action is interpreted by the recognition system. Certain facial expressions 
indicate that the preceding hand gestures will be interpreted as navigational actions, 
or that they should not be used (unintentional gestures). Facial expressions will 
change the operation mode from ‘active’ to ‘sleep’ or the other way around. For this 
switch only one facial expression is required, the open mouth. 
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EXPERIMENTS 

A combination of qualitative and quantitative assessments and usability experiments 
will be used to measure the effectiveness of the interface with students with 
physical impairments. The repeated measures design approach, in which 
participants will serve as their own controls in rating the usability of the vision 
based interface, will be adopted. In the control condition, the subjects will perform 
an assembly task (Towers of Hanoi) with the robotic arm using a conventional 
isometric joystick to control the robot. The task will consist of moving the disks 
from one of the rods onto another rod, on top of other disks that may already be 
present on that rod. This task requires several manipulation tasks such as sliding, 
grasp, move, and release. These operations are very common in automation labs and 
thus this exercise provides a good case scenario for this system as a pedagogic tool. 
In the experimental condition, the students complete the assembly task using the 
interface.  To control for extraneous variables such as practice effects across the 
two scenarios, the subjects will repeat the assembly task three times for each 
condition (standard joystick, hand gestures). The order of the control (conventional 
joystick) and experimental conditions will be counterbalanced for participants.   
 Performance measures: Six measures will be used to assess the user performance 
for the control and experimental conditions: four quantitative and two qualitative 
measures. 
Quantitative measures:  
 1) Usability: User ratings of functionality, ease of use and additional human-
centered measures for the vision interface and the conventional joystick will be 
collected using the Likert 5 point scale (1 = very hard, 5 = very easy). The subjects 
will rate several features for each of the two control cases, reflecting the level of 
suitability to the user. The questions will assess easiness of use and learn of the 
interface, memorability, comfort, intuitiveness, safety and precision. 
 2)  Task completion time: The time required to complete the task from beginning 
to end will be recorded for each task. 
 3) Number of mistakes: The number of times that the robot gripper collided with 
an obstacle, released the object too early or imprecisely, or did not grasp the object 
at all. 
 4) Recognition accuracy: The number of gestures that were recognized correctly 
during the assembly task. For this ground truth annotations of the images used by 
the system are necessary. 
 Paired sample T-tests will be used to examine whether there is a significant 
difference in the user performance between the experimental condition and the 
conventional control (standard joystick). 
  Qualitative measures: After students complete the assembly task using the 
different control strategies, they will be interviewed individually to obtain feedback 
about their experiences using vision based interface compared to a conventional 
joystick. The interview questions will focus mostly on determining which features 
of the hand gesture interface were the most important and to identify which 



additional features would be particularly important. These responses will be 
tabulated and analyzed qualitatively to assess the perceived benefits and challenges 
of using each interface from the users’ perspective. This information will be used to 
improve future versions. 

CONCLUSIONS 

The research presented in this paper is an attempt to offer a new methodology to 
assess effectiveness in interface design for human-machine interface and to 
implement a hand gesture based interface for robotic control. The main target 
population to use the propose system are students with physically and mobility 
impairments.  The motivation for this choice is to develop an infrastructure to allow 
students with motor impairments to independently operate a robot, a fundamental 
piece of laboratory equipment in secondary and postsecondary automation classes. 
Two fundamental problems are analyzed in this paper: – how to define effective 
human robot interaction and how to measure it? We offer an analytic framework 
based on maximization of multi-objectives to enhance the interface design. Finally, 
we suggest a procedure including quantitative and qualitative measures for the 
assessment and evaluation of the hand gesture based interface described. The 
implementation of the system is left for future work. 
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