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ABSTRACT

3D object recognition is becoming a key desired capability for
many computer vision systems such as autonomous vehicles,
service robots and surveillance drones to operate more effec-
tively in unstructured environments. These real-time systems
require effective classification methods that are robust to sam-
pling resolution, measurement noise, and pose configuration
of the objects. Previous research has shown that sparsity, rota-
tion and positional variance of points can lead to a significant
drop in the performance of point cloud based classification
techniques. In this regard, we propose a novel approach for
3D classification that takes sparse point clouds as input and
learns a model that is robust to rotational and positional vari-
ance as well as point sparsity. To this end, we introduce new
feature descriptors which are fed as an input to our proposed
neural network in order to learn a robust latent representation
of the 3D object. We show that such latent representations can
significantly improve the performance of object classification
and retrieval. Further, we show that our approach outperforms
PointNet and 3DmFV by 34.4% and 27.4% respectively in
classification tasks using sparse point clouds of only 16 points
under arbitrary SO(3) rotation.

Index Terms— Point cloud, Deep learning, Descriptor

1. INTRODUCTION

As commodity cameras and laser based sensors become more
affordable, point cloud based object classification is becoming
the default approach for 3D sensing. For example, autonomous
vehicles rely on point cloud maps sampled by Lidar sensors or
depth cameras for effective navigation. One challenge often
faced in such applications is that the density of sampling points
decreases significantly as the distance from vehicle embedded
sensor to the object increases. This makes it hard to recog-
nize objects that are far from such sensors due to their sparse
inherent structure [1]. As reported in the literature [2, 3, 4],
the classification accuracy of these algorithms drops radically
as the density of the point cloud decreases, and is further af-
fected when the pose configuration of the object is not known
in advance. Similarly, consider the scenario of tactile based
object recognition using a robotic hand. The time complexity

of sampling is proportional to the number of points sampled
along the manipulator’s trajectory [5]. This implies that in
addition to performance degradation, there is an additional
cost related to the amount of sampling required to make an
acceptable prediction. Thus, it is necessary to come up with
new 3D machine learning techniques that can classify objects
based on “limited” sparse point cloud data and that can operate
in real-time, whether for effective navigation (e.g. autonomous
driving case) or for user’s meaningful perception (e.g. tactile
sampling).

In this paper, we propose a new technique for 3D object
classification that is meant to perform well when recognizing
objects with only few sample points. In this regard, the main
contributions of the paper are as follows: 1) A new 3D descrip-
tor for extracting features from sparse point clouds, in order
to relax the requirements on the point cloud size or density.
This descriptor is rotational and positional invariant so that
the discriminative ability of the classifier remains same when
the object undergoes arbitrary affine transformations, and 2) a
deep neural network model to learn a latent representation that
can be used for common machine learning tasks such as 3D
classification and reconstruction.

2. RELATED WORK

2.1. 3D Object Classification

Existing approaches for point cloud classification mainly in-
clude but not limited to: 1) Directly performing classification
on point cloud data [2, 3]. 2) Projecting the point cloud data
into other dimensions that are easier for classification, such as
voxelized objects [6, 7] or 2D images taken from multiple view
angles [8, 9, 10]. 3) Learning from hand-crafted features that
can be created using point cloud data [4, 5, 11, 12]. 4) Finding
latent feature representations by reconstruction [13, 14, 15].

In addition to those main groups, other approaches such
as [3, 11] set an explicit threshold on the minimum number
of points and therefore cannot be applied to point cloud clas-
sification when the structure is too sparse. More recently, a
new family of approaches based on 2D convolutions [8, 9]
or 3D convolutions [6] have been suggested. However, they
have been found not suitable when the points are too sparse
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due to the low magnitude of correlations between neighboring
regions (most regions are void). The work done by [12] can
be extended to classify sparse point cloud and hence our work
is closely aligned with their approach.

2.2. 3D Feature Descriptors

Descriptors are feature representations that contain statistical
information about the 3D objects being represented by them.
Some well known descriptors are PFH [16], FPFH [17] and
HKS [18] to mention a few. However, most of the existing 3D
descriptors are designed to work on dense points or meshes
since the statistical information is more faithful when the ob-
served data is abundant. There is limited literature that builds
on sparse points. Among them we build on the descriptor
presented by [12], which uses a triangle parameter based de-
scriptor for classification. This is because the discriminability
of this descriptor is accurate even when the points in the point
cloud are sparse while it requires less amount of information.

2.3. Position and Orientation Invariance

Real-world objects can be found in arbitrary shapes and poses
and that is why feature descriptors should stay invariant to
rotation and position changes of those objects. In this context,
the robustness to positional and rotational changes is either
learned [2, 3, 4] or manually introduced using prior knowledge
[11]. However, [11] showed that learned robustness can de-
grade when generalized to scenarios where the rotation is not
present in the training process, leading to under-performance
when compared to scenarios where no rotation is applied. [11]
showed that this issue has been observed in most techniques
used for point cloud object classification. To address this prob-
lem, we propose to use a descriptor that is invariant to rotation
and position changes because it leverages on global and local
intrinsic structure information of the point-cloud.

3. METHODOLOGY

Our approach for 3D object classification is two-fold. First,
we introduce a new feature descriptor in order to improve the
object discriminability. Next, we focus on a deep learning ap-
proach that can transform descriptor representation to a latent
representation, which can then facilitate object classification,
retrieval as well as reconstruction.

3.1. Proposed Descriptor

We achieve robust object classification through: 1) Rotational
and positional descriptor invariance; 2) Combination of infor-
mation from local and global scales in order to improve the
representative ability. Based on the above design criteria, we
have developed a series of descriptors shown in Figure 1.

Figure 1 (a) is a Type-A descriptor that can be constructed
only using 2 points. The surface normal is the simplest local

feature. The distance between two points is a global feature
that contains global shape information.

Figure 1 (b) is a Type-B descriptor which can be con-
structed using 3 points. This descriptor is a combination of
three Type-A descriptors but emphasizes the superimposed
positional relationship.

Figure 1 (c) is a Type-C descriptor made of connecting
vertex points to the center point, and then using the segment
distance and vertex angles as descriptor features. These pre-
computed information can slightly improve the accuracy com-
pared to Type-B descriptor according to our experiments.

Efficiency is obtained by using only K points, we can
compute C2

K non-repetitive Type-A descriptors, or compute
C3

K non-repetitive Type-B or Type-C descriptors. We generate
a fix number of descriptors and then feed these descriptors to
the input of the network proposed in section 3.2.

Optionally, scale invariant can be achieved by dividing
each side length by dmax, where dmax is the maximum side
length among all the input descriptors.

3.2. Network Architecture

We use a deep neural network for object classification. The
backbone of the network architecture is shown in Figure 2.
This architecture corresponds to a feature extraction network
to map the descriptors to latent space representations. These la-
tent features are used for both object reconstruction and object
classification. We learn both classification and reconstruction
tasks simultaneously. This is a multi-task learning architecture
that rewards the network to learn the underlying structure of
the input data. For simplicity, we omit the network structure
of classification network as it shares the same structure as the
output MLP network in [2].

Note that the rows of the input descriptor matrix can be ar-
bitrarily permuted without affecting the network output. This
is induced by a Max-Pooling layer that compresses all descrip-
tor information into a single vector. We borrow this idea of
isolating input permutations from [2].

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setting

Several experiments are conducted on ModelNet 40 dataset
[19]. All the experiments are conducted on a desktop worksta-
tion with Intel I7-9700k CPU and Nvidia RTX 2070 GPU. Our
experimental code is available at https://github.com/
MegaYEye/sparse-paper-code.

4.2. Ablation Study 1: Rotation and Sparsity Variation

We design an experiment to show the effect of SO(3) transfor-
mation on the PointNet model. For this, we both trained and
tested the PointNet model under 3 conditions: a) Point clouds

https://github.com/MegaYEye/sparse-paper-code
https://github.com/MegaYEye/sparse-paper-code


(a) (b) (c)

Fig. 1. We propose three variations of descriptors. Type-A descriptor is constructed using only 2 points with surface normal
vectors. Type-B descriptor is constructed using 3 points with surface normal vectors. Type-C descriptor also uses 3 points with
surface normal vectors with more pre-computed information.

Fig. 2. Our proposed network uses the rotational and positional invariant descriptor as the input. We show the network structure
of feature extraction network and object reconstruction network.

Table 1. The experiment shows the performance degradation
of PointNet model in (in %) when using a) No rotation b)
Only rotate around Z axis or c) Arbitrary SO(3) rotation (as
indicated in different rows) under different point cloud density
(as shown in columns)

No. of points 1024 256 64 16

No rotation applied 88.51 86.89 82.49 76.40
Rotated around Z axis 84.01 77.33 69.31 53.33

Arbitrary SO(3) rotation 79.08 72.01 56.79 35.28

with no rotation b) Only rotate around Z axis or c) Arbitrary
SO(3) rotations.

The results in Table 1 show that PointNet performs well
with dense points cloud under all 3 rotational conditions, as in-
dicated in the first column. The result also shows that PointNet
scales well when no rotation is applied, as indicated in the first
row. However, performance decays as rotation is applied to
the data. It can be observed that rotation around the Z-axis af-
fects overall performance, and this is further aggravated when
arbitrary SO(3) rotations are applied.

4.3. Classification on Sparse and Rotated Points

In this experiment, we first compare the performance of our
method to other approaches under various point density con-
figurations. The objects in the ModelNet 40 dataset undergo
arbitrary SO(3) transformations both in training and testing

sets. The experimental results are shown in Table 2. The
last row of the table shows our result. Likewise, the highest
performance is labeled in bold digits.

PointNet was tested under two conditions. Vanilla
PointNet1 trained with 1024 points with random input dropout
[3]. PointNet2 is also PointNet but trained and tested using
the same number of points. We see that PointNet1 fail to
generalize sufficiently well to sparse point clouds.

From the same table, we can see that 3DmFV [4] can
perform better than PointNet when the input points are sparse,
but it also decays when the point cloud becomes largely sparse
when arbitrary SO(3) rotations are also applied.

We also compared our algorithm with RI-CONV [11],
which relies on rotational-invariant descriptors. However, this
approach is constrained to operate over a minimum number of
points per region, which makes it unsuitable for sparse points
classification.

The above comparisons show that our approach can out-
perform others by a large margin when points are sparse. Con-
versely, our approach does not perform the best for class predic-
tion when using dense point clouds. We believe this is mainly
due to 2 reasons. 1) Part of relative positional information
between points is discarded, as each descriptor is constructed
using 3 points rather than all points. 2) When the point cloud
is dense, there is almost an infinite number of descriptors that
can be constructed (e.g. 1 × 109 possible descriptors when
using 1024 points) and the subset of descriptors chosen by our
method may be sub-optimal to represent the object of interest



Table 2. Comparison of classification performance on both
dense and sparse points. Our algorithm shows the advantage
when points become sparse

Dense Sparse

Num of points 1024 512 256 128 64 32 16 8
PointNet1 73.09 72.67 64.48 39.93 21.08 9.79 2.65 2.07
PointNet2 79.08 75.14 72.01 72.64 56.79 48.34 35.28 23.91

PointNet++ 84.76 83.87 83.31 78.60 N/A N/A N/A N/A
3DmFV 86.63 85.69 84.70 82.32 76.56 63.45 42.26 23.68

RI-CONV 86.5 84.4 80.8 76.0 N/A N/A N/A N/A
Ours 85.98 85.53 85.12 83.26 81.32 79.13 69.69 48.14

4.4. Learned Representation on Shape Similarity

Our learned representation can be used as a metric for com-
paring shape similarity. The following experiments conducted
show that this metric is valid even when the point cloud is
sparse.

The experiment below shows the performance of learned
shape similarity metric using only 16 points. The model was
trained and tested with the respective training and testing
dataset. The top 5 similar objects are found within the test
dataset using the nearest neighborhood algorithm with the L2

metric. The retrieval results of our approach is shown in Figure
3 (a). The comparison with PointNet is shown in Figure 3 (b).

(a) (b)

Fig. 3. Results of the retrieval operation of our approach (a)
vs PointNet model retrieval results (b) using only 16 points.

We used retrieval MAP (mean averaged precision) as a
metric for a quantitative comparison of our approach to Point-
Net. Our approach achieves 59.97% and 56.67% in top-5 and
top-10 retrieval results respectively. while PointNet achieved
34.80% and 35.04% correspondingly. We believe that the
boost in peformance is from a better discriminative ability of
our descriptor and a better similarity metric learned by object
reconstruction.

4.5. Object Reconstruction Using Sparse Points

In this section, we show object reconstruction results. We
used networks trained by 4096 descriptors generated by 16
points. Note a voxel is placed only when the output (binary

Sigmoid function) is larger than 0.2 (instead of 0.5, as the
normal Sigmoid case) because we found the network output
becomes less "confident" as the input points become sparse.
We demonstrate the reconstruction result in Figure 4. While
the reconstruction result resembles the original object, some
reconstruction artifacts can still be seen. These includes clut-
tered points and inaccurate shape details. We believe this is
mainly due to limited descriptive information from the sparse
points dataset.

Fig. 4. Object shape reconstruction using only 16 points. Even
though the input information is very scarce, reasonable recon-
struction results can still be achieved.

4.6. Ablation Study 2: Classification and Reconstruction

We compare several variations of our approach quantitatively
through an experiment using 16 points only. We found that
all our proposed descriptors can outperform the others using
raw triangle parameters [12], which only achieves 32.57%.
Classification results increase as more information added to
the descriptor. Accuracies of 60.08%, 65.92%, and 67.26% are
achieved when using type A/B/C descriptors respectively, and
the classification accuracy is boosted to 69.69% when being
trained together with object reconstruction. The later scenario
corresponds to the highest accuracy we achieved.

5. CONCLUSIONS

In this paper, we proposed a 3D classifier that is designed for
sparse point cloud classification challenges. A novel 3D de-
scriptor is proposed to improve the discriminability on sparse
points datasets. Our descriptor is used in combination with
deep neural network for learning a latent representation, which
then facilitates object classification, retrieval and reconstruc-
tion. Our results show that our approach performs better than
the state of the art on sparse points with arbitrary SO(3) rota-
tions.
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