Purdue University C

AVR Simulation with the ATMEL
AVR StUdiO 4 (preliminary)

: Fle Pro ools Debug Help
Diﬂﬁd %haé 2 o (EEE MA%'%P’&“A By iEINE [AROROE DD
[Trace disabled [A O (S VAN R

Jeffrey J. Richardson
Purdue University

February 18, 2003

Jeffrey J. Richardson Page 1 2/18/2003

Purdue University C

Introduction

The AVR Studio 4 is an Integrated
Development Environment for debugging AVR
software. The AVR Studio allows chip
simulation and in-circuit emulation for the AVR
family of microcontrollers. The user interface
is specially designed to be easy to use and to
give complete information overview. The AVR
uses the same user interface for both
simulation and emulation providing a fast Figure 1. AVR Studio
learning curve.

Getting Started

The AVR Studio uses a COF obiject file for simulation. This file is created with through the C
compiler by selecting COF as the output file type. For more information on creating this file, see
the C compiler documentation. Launch the AVR Studio by either selecting it through the Start
Menu or by selecting the program icon (if available). Either method will produce the IDE shown
below in figure 2. Once the IDE is running, select File Open through either the File Pull-down
Menu or by clicking on the File Open Button.

| Bl Eroject Vew Took [efug bl
O ihed oo CEY RIA 4BIRESA IS s IBNE »BPED/HE SR
& | [rnmtms)% % o[E S v | 00w

1. File Open

Lovachoe] plagen 51500

L) i e s Ty

[] CAP UM SRL

Figure 2. The AVR IDE

Jeffrey J. Richardson Page 2 2/18/2003

Purdue University

Select the desired COF file for simulation open 21X
through the File Open window. Note this Look e [3 Display 5« @ e
window uses standard Windows navigation. B TR Cyp—— —
Either double clicking on the file or by clicking) 7_seq.c E)7seqinc [2)7_seqrom
on the file and then selecting the Open Button E7 seger [E7 seq st B 7 seq.tet
can Open the flle |7 _seq.cof ?_seg.map ?_seg.vec

" | 7 _seg.owp M?_seg.obj r;j 7_seq__.c

7_seg.eep 7_seq.pre Iﬂ 7_seq_cof.aps

1. Select the proper
* cof file

C

File: name: ||

Open I

Files of type: [Al Files("")

j Cancel |

Open As IAuto

Device Selection

Figure 3. File Open

After the source file has been opened, the device and debugging platform must be specified.
When doing simulation, select the AVR Simulator option and ensure that the proper AVR target
device is selected. Once the correct target AVR microcontroller and platform have been selected,

click on the Finish Button.

Select device and debug platform

— Select debug platform and device

Debug Platform:

Device:

ICESD
JTAG |

A

1. Select the
AVR

ATmegalh3n
ATmegalsls
ATmegal
ATmegabd
ATmegal2l
ATmega3?
ATmegalB9
ATmegalB3
ATmegal B2
ATmegalb

2. Ensure the Device
is correct

Simulator

Help | <<Eack| ﬂext»l Finish! Qancell

Figure 4. Device and Debug Platform

Jeffrey J. Richardson

Page 3

3. Click Finish

2/18/2003

Purdue University C

IDE Windows

The IDE has several windows that provide important information to the user. These windows
may be opened automatically by the software or may need to be activated by the user.
Regardless of how the windows are activated, they can be moved and resized to fit the taste of
the user. The main windows of interest are the Workspace, Source Code, Output, and Watch
windows. These can be seen below in figure 5.

1. Watch 2. Workspace 3. Output Window
Window Window Icon Icon
Icon

Avrstudio - 7_seg__.c
¢ FEle /Project Edit Wiew Tools Debug Windo

= A:ErmiEAN LG > BTROERO R D&

= _Ioix]

hame: [Value ﬂ
void main(void) =
{

-G Register 0-15
Bl Register 16-31
-5, Processor

B 10 ATmegate = init_hardwars(): s setup the hardvare

unsigned char pin_value;

while (1)
pin_value = PINA: s+ get the binary value from Porti's input pins
FORTC = seg[pin_value]; #+ use Forth value to drive the output patte
H

i

void init_hardware(void)
{

47 Input/Output Ports initialization
s Port A

PORTA=0xFF

DDRA=0x00,

~7 Port B
PORTE=0x00;
DDRE=0=00

#7 Port C
PORTC=0x00;
DDRC=0=FF:

= Proiect Fel1/o | @ 1o |

Bumt \ \

x x AY
Loaded plugin STKSO00 Name Nyalue [Type
‘ .
o | Loated partfe: cilprogram fieslatme|svr tooksRartDascriptionFies)
2| AvR Simulator Please watt whis configuring smulor... z
-
£ | AvR Simulstor ATmegale Configured OK 5
Loaded objectfile: C:lovavriPurdug|Displayi7_seg. dof
| | |
| v [Buiy Find in Files), Breakpoints /\ Tl » 4| ¢ |5 watch 1 Q\tmm Watch 3 7 (K] \ | |
1 X
ATmegalt | AVR Simulator Auto Stopped =) L\G7, Col 1 CAP NUM SCRL
Figure 5. IDE Windows
Output Source Code

Workspace Watch

Jeffrey J. Richardson Page 4 2/18/2003

Purdue University

Workspace Window

The Workspace window shown at the right holds important
information about the microcontroller. Clicking on the
expand symbols will provide detailed information about the
selected item. For instance, expanding the 1/O selection
produces detailed information about the microcontroller

ports, timers, USART, etc. These views are vital for

simulating microcontroller software. They allow the user to
monitor the values as well as introduce new information as
inputs into the system. Additional information may be
hidden from the user if the window is too narrow. Click and
drag the right side of the window to re-size it and reveal
possible hidden information. Double-clicking on the value
of one of the PIN registers allows the user to enter or set
the input value for that particular port. Likewise, the user
may click on one of the boxes under the bit position to set

an input.

Marme I Walue

-5 register 0-15

&) register 16-31

E Processor

=B 10 ATmegats

-1} AD_COMVERTER.

-1 ANALOG_COMPARATOR
=B BooT_LoaD
=B cru
-3 EEPROM
-8 EXTE

000
000
000

000
000
000

25 Tl
259 USART
pg WATCHDOG

[+

= project Eal 10 | @ infa |

£l

MHame

I Walue

1. Expand
Additional
Layers

=5 Rregister 0-15
G register 16-31

t E, Processar

vl Bl I/0 ATregals

1. Click to Expand

= project Bl 0 | 4@ 1nfo |

2. Expand to See
Additional Registers

Figure 7. Expanded Workspace

Jeffrey J. Richardson

Figure 6. Workspace

3. Double-Click to

4. Click to Set

-2 PORTD

Change Value Inputs
0x00 00000000 0=18 (0x3E)
0x00 OO0O0O0000O0 0x14 (0x34)
0x00 00000000 0=19(0x39)
0x00 00000000 0=1s (0x35)
0x00 OO0O00000O0 0x14 (0x34)
0x00 00000000 0=13(0x33)
Figure 8. Expanded Port View
2/18/2003

Page 5

Purdue University

Watch Window

The Watch Window allows the user

to monitor the variables used in the ———
software. To Add a variable to be
monitored, right-click in the window

and select Add from the menu. The

next line or box in the Watch

window is bounded by a box and

has a flashing cursor present inside

of it. Type the name of the variable
EXACTLY as it appears in the

source code. It should be noted that D

MName | Value

[Tvpe

| Loca

YRR - R

Ak [Wateh 1 5 VWatch 2 s YWatch 3

[l

| =l

local variables are only valid when
inside the function where they
reside.

1. Right Click in
the Watch
Window

ATmegalé AVR Simulstor Auto Stopped @

Ln 37, Col 1

Figure 9. The Watch Window

Marne | Yalue | Tvpe

| Loca

YEhd, « %

Display Integer as Hex
v Display Array Index as Hex (Close/open for change)

Remove all items
v Docking Yiew

Help on watchview

I 2 I\Wa‘tch 1 4 Watch 2 5 Watch 3

K3

2

ATmegald AYR Simulator

2. Select Add
From
the Menu

Auto Stopped (= Ln37, Col 1

Figure 10. Watch Window Menu

| Marne

| Walue

3. Type

‘vl‘

Variable Name
Here

YaEna) « X

Figure 11. Entering the Variable Name

Jeffrey J. Richardson

Page 6

CAP MUM SCRL

CAPNUM SCRL

2/18/2003

Purdue University

Output Window

The Output window provides feedback to the user. This includes messages about the
microcontroller, object file, etc.

E CilevavriPurdue\Displayl?_seg__.c ‘

* [Loaded plugin STKS0O
! Loaded partfile: c:\program files\atmel\avr tools\PartDescriptionFilesiATmegal 6
E AYR Simulator Please wait while configuring simulatar. ..
E AYR Simulator ATmegalé Configured Ok
Laaded abjectfile: C:\cvawrPurdue\Displayt 7_seq.cof
4| > [Buld_» Messages {_Findin Files_»,_Breakpoints 4| | L

Simulator Options

JCOMPARAT
A0

L_INTERRU

T F

et

Figure 12. The Output Window

Before actually starting a simulation, the Frequency of the

target AVR should be set. The MegaAVR Development

Rl > Debvaas 4 board from PRLLC operates at a clock frequency of
S HAFS T 6.0MHz. This frequency happens NOT to be one of the
Run Fs selections from the pull-down menu. Therefore, the user
I gresk < BB must manually type this value into the program.
[} Reset Shift-+F r
™ Step Into F11 \
B step Over F10 1. Select the Debug Menu
{F Step Out Shift+F11 ch
*} Run To Cursor Chrl+F10
Autn Step Alt+FS Simulator Options x|
Mext Breakpaint CHrl+F9 DﬁVICE SElECtIDh Sirnulatar
@ Toggle Sreskpoint Fg i Stimuli and logging B
% Remove Breakpoints ’]ATmegaTB j 4Tmegal B
Flash Size: 16384 bytes
5> Show Mext Statement Alk-+Hrurm * Eeprom Size: 512 bytes
& Quickwakch shift+F9 —Frequency————————————— :B%E‘:[%Eiﬁ;‘ze;m% s
|s.0t1 ~] MHz | [Speed: 8MH:
Select Platform and Device. ., \
Up/Download Memaries. ., Bt loader
[avR simulator Options +0 [T N—
IApphcahnn rezet §0 j N
\ 3. Type the
Figure 13. Debug Pull-Down Menu Clock Frequency
I | Enatile extermal Meman
2‘. Select Fom— |
Simulator
Opthl’lS Figure 14. Simulator Clock Frequency
Jeffrey J. Richardson Page 7 2/18/2003

Purdue University C

Source Code Simulation
IDE Toolbar

Once the IDE has been configured and the windows are positioned to the satisfaction of the user,
the actual simulation of the source code can begin. The yellow arrow indicates the next
statement to be executed. The toolbar located in figure 14 shows a list of possible options to
execute the source code. These options include Step Into (Single Step), Step Over, Step Out,
Run to Cursor, Auto Step, and Run. In addition to the previous functions, the user can also Set
Breakpoints, Reset, and Stop Debugging.

Step Step Step Run to

Run

Break Reset Into Over Out Cursor
AutoStep

Stop

\\ \ / —
W Breakpoint

miEN G e BRGD

Figure 15. Simulator Toolbar

Next Statement

The yellow arrow shown below in figure 15 points to the next instruction to be executed. This
provides the user a visual indication of the future instruction or function to be performed.

Ec:\ cvave',Purdue’\Display',7_seg_ .c

vold main(wvoid)
un=igned char pin_walue:

q>| init_hardware(): < metup the hardware

while (1)
i

pin_walues PINA: s« get the binary walus from Porti's input pins
PORTC zeg[pin_walues]: ¢ uze Portd walue to driwve the output patte

i

void init_hardware(wvoid)

¢ Input-sOutput Ports initialization
<7 Port A

PORTA=0=FF;

DDRA=0x=00:

< Port B
PORTE=0=00;
DDRE=0=00;

< Port ©
PORTC=0=00;
DDRC=0=FF:

Figure 16. Source Code

Jeffrey J. Richardson Page 8 2/18/2003

Purdue University C

Step Into

™ Perhaps the most commonly used operation when simulating software is the Step Into
operation. The operation can also be referred to as Single Stepping. This command
allows a single instruction to be executed at a time. This includes instructions that are located
inside of a function call and thus the name Step Into. Executing a Step Into command is
accomplished by either clicking on the icon or by pressing the F11 key. Performing this
command on the sample program shown in figure 17 causes the next instruction to be performed.

ED init_hardwarei): s =etup the hardware
while {1}
éin_value = PINHA; < get the binary wvaluse from Portd's input pins
PORTC = =eg[pin_walue]: <7 uze Portd valuse to drive the output pattern on PortC

-

Figure 17. Step Into Function

In this example, the next instruction is a function call to a function named init_hardware() that will
initialize the hardware for the microcontroller. Figure 18 shows the results of executing the Step
Into command. The yellow cursor is now pointing to the first statement of the function.
Performing an additional Step executes the current statement and moves to the next statement in
the function. This process can be repeated throughout the software. Figure 19 shows the value
of the PORTA data register prior to and immediately after execution of the instruction shown in

void init_hardware{wvoid)
OxFF
000
s InputsOutput Ports i 000
< Port A
= PORTA=0xFF;
DDRA=0=00;

#+ Port B
PORTE=0=00;
DDRBE=0=00;

s Port C
PORTC=0=00;
DDRC=0=FF;

000
000
000

Figure 18. First Line in Function

E-=28 PORTC

figure 17. Figure 20 shows the cursor pointing to the

last line in the function. Executing a single step again Figure 19. PORTA Values
takes the cursor and thus the program back to the next

statement in the main function shown in figure 21.

while (1)
{
#/ hnalog Compara = pin_wvalue = PINA: e
gégézgig%;compara PORTC = =eg[pin_vwalue]:
SFIOR=0=00; ¥

i

woid init_hardware(void)

s InputsOutput Port= initialization
S0 Port A

Figure 20. Last Line of Function Figure 21. Return to Main Function

Jeffrey J. Richardson Page 9 2/18/2003

Purdue University C

Step Over

™ The Step Over command causes the simulator to give the illusion that it skipped over the
function without executing the individual statements located inside of it. For example,

revisiting the same sequence from the Step Into discussion, this time, instead of using the Step
Into command, a Step Over command will be used. Figure 22 shows the main function just prior
to the execution of the init_hardware() function. Figure 23 shows the status of the 1/O
configuration registers prior to the execution of the function. Executing the function using the
Step Over command produces the results shown in figures 24 and 25. Figure 24 shows the
status of the 1/0 configuration registers proving that all the instructions were executed from a

E{> init_hardwarei): s =etup the hardware
while {1}
éin_value = FPINA: s get the binary walue from Portd's input pins
PORTC = =eg[pin_walue]: <7 uze Portd valuse to drive the output pattern on PortC

-

Figure 22. Main Prior to Function Call

72 PORTA =22 poRTA
=0 =
..... =2 PORTA 0=00 g PORTSA 0x=FF
..... P CORA 000 -~ DDRA 000
----- =2 Pina =00 22 PINA 0x00
#-=2 PORTE #-=2 PORTE
=52 PORTC =58 PORTC
..... =8 poRTC 0x00 22 PORTC 000
..... DORC 000 -~ DDRC 0xFF
=0
..... =2 PINC 000 g PINC 0x00
#-52 PORTD -2 PORTD
Figure 23. I/O Status Prior Figure 24. 1/O Status After
init_hardwarel): S =zetup the hardware =
while {1)
{
E{> pin_walus = PINA: s get the binary values from Portd's input pins
PORTC = =eg[pin_walue]: <7 uze Portd valuse to drive the output pattern on PortC

-

Figure 25. Main After Function Call

single command. This technique is extremely useful when the user isn’t interested or concerned
with watching each and every instruction in a function being executed. This command can also
be used as a time saving technique while performing a simulation. The Step Over command can
be executed by clicking on the Step Over icon or by pressing the F10 key.

Jeffrey J. Richardson Page 10 2/18/2003

Purdue University C

Step Out

W The Step Out command is executed inside a function when the user wants to return back to
the calling function without having to execute each individual step of the function. For
instance, the user may be interested in single stepping through the first several instructions inside
a function. Once through the area of interest, the user wants to return to the function from which
the current function was called in a single command. Figure 26 shows the cursor located in the

middle of the init_hardware() function. Assuming that the user has already executed the

S 00 output . DMisconnected
= TCCRO=0=00;

TCHTO=0=x00;

QCRO=0=00;

< Timer-Counter 1 initialization
< Clock source: System Clock

< Clock value: Timer 1 Stopped
< Mode: Hormal top=FFFFh

S OC1A output: Discon.

< OC1E output: Discon.

<« Hoise Canceler: Off

<7 Input Capture on Falling Edge
TCCR1A4=0=00;

TCCR1E=0=00:

Figure 26. Inside the Function

instructions of interest, executing a Step Out command finishes the remainder of the instructions
inside the function and places the cursor at the next instruction in the calling function as shown in
figure 27. This command can also be used to save time while simulating software. This
command is executed by clicking on the Step Out icon or by pressing the F11 key while holding
down the SHIFT key.

init_hardwarel): S zetup the hardware =
while (1)
ED éin_value = PINHA; < get the binary wvalue from Portd's input pins
PORTC = seg[pin_walue]: <7 uz=e Portd waluse to driwe the output pattern on FPortC

-

Figure 27. Returning to the Calling Function

Auto Step

The Auto Step function can be viewed as the PC executing a series of Step Into

commands automatically. This command can be executed by either clicking on the Auto
Step icon or by pressing the F5 key while holding down the ALT key. Once this command is
started, each statement will be executed in order. The cursor and yellow arrow will still indicate
the next statement to be executed. However, since the PC is executing single steps
continuously, the yellow arrow and cursor are also moving constantly. The views inside of the
Workspace window are also updated after each instruction is executed allowing the user to
actually see the changing values in registers. The ability to view the changing value is a very
important feature associated with this command. It must be noted that the simulator is capable of
changing the values located inside the Workspace but the user is not. The simulation must be
stopped prior to the user manipulating these values.

Jeffrey J. Richardson Page 11 2/18/2003

Purdue University C

Break

The Break function allows the user to stop a simulation that is under the control of the PC.

This command allows a user a stop or pause a simulation that is using the Auto Step
function, for example, to enter new data into the Workspace or to modify a variable located in the
Watch window. Once stopped, a simulation can be re-started by choosing any of the methods
previously described.

Reset

The Reset command will perform the same function as a Real reset on the actual hardware

would produce. The cursor and thus the next statement to be executed will be set as the
very first instruction as if the file was just opened. In addition, the values of the registers will also
be set to the reset state. The values of variables used in the software will not be affected by this
command. The variables will retain their values until a process overwrites them. A Reset can be
executed by either clicking on the Reset icon or by pressing the F5 key while holding down the
SHIFT key.

Breakpoints

Breakpoints allow the user to start a simulation free running and have the simulation stop

when a certain instruction or place in the program is reached. Breakpoints can be set by
placing the cursor at a specific line in the software and then selecting the breakpoint icon or by
pressing the F9 key. The breakpoint can be cleared by pressing the breakpoint icon again or by
pressing the F9 key (a second time) while the cursor is located on the line that the breakpoint is
located. A Red Dot indicates that the line has a breakpoint.

2. Red Dot Indicates Breakpoint - -
1. Cursor Indicates the Selected Line
while (1)
{
& — e = PINA: 77 get the binary valus from Portd's input pins
PORTC = =eg[pin_walue]: 77 uze Portd walue to drive the output pattern on PortC

+
Figure 28. Breakpoints
Run

The Run option allows the software to be simulated as quickly as possible. The downside

of this option is that none of the registers or variables will be updated (visually to the user)
while the simulation is in process. The user must manually stop the simulation by using the break
command. Alternatively, the user can set a breakpoint on a particular line of code that will stop
the simulation when encountered.

References:
Images are taken from AVR Studio 4.

AVR Studio 4 is available for free from the Atmel web site, http://www.atmel.com.

Jeffrey J. Richardson Page 12 2/18/2003

	Device Selection
	Workspace Window

