Chip-to-Chip Wireless Wins SRC/SIA IC Design Challenge
Purdue, University of Minnesota, Carnegie Mellon Teams Take Top Prizes

RESEARCH TRIANGLE PARK, N.C.--(BUSINESS WIRE)--Semiconductor Research Corporation (SRC), the world’s leading university research consortium for semiconductors and related technologies, today named a team of graduate students from Purdue University as winners in the SRC/SIA IC Design Challenge. The Purdue team’s winning design was for a chip-to-chip wireless data link using a 60 GHz transceiver. More than 40 universities and 120 engineering students competed to design circuits with potential future electronic applications.

“This is a once-in-a-lifetime experience for the students and certainly affects their futures in a very positive way,” said Professor Byunghoo Jung, faculty advisor of the winning Purdue team. Professor Jung is no stranger to these contests. Four contests ago, SRC held the Copper Design Challenge, its first design contest. Professor Jung was then a graduate student and was on the winning team from University of Minnesota.

“This also is a great opportunity for the industry as SRC and SIA member companies cultivate future designers for the semiconductor business,” said SRC’s Dale Edwards, an AMD assignee and contest organizer.

The Design Challenge theme is “Performance at the Limits” and the winning design exemplifies this theme, pushing the chip-to-chip data link to 7.5Gb/s using 60GHz wireless technology. Wireless data links show many advantages compared to existing techniques such as wired or optical data links. Wired data link paths exhibit severe signal attenuation requiring complex and power hungry circuitry to overcome while optical techniques usually require difficult and costly IC fabrication technologies. Several unique circuit techniques were used in the winning design.

The Purdue team consisted of five students and one co-lead. Teams from University of Minnesota with their entry, “Ultra-low Power, Battery-less RFID Blood Monitoring System,” led by Professor Ramesh Harjani, and Carnegie Mellon University with their entry, “A Tunable Multiband RF MEMs Transceiver Front-End,” led by Professor Tamal Mukherjee, took second and third places in the competition, each having three students per team.
In addition to receiving cash awards that total $18,000, the three winning university teams along with five other finalists have qualified to compete in the final phase of the Design Challenge where they will fabricate these designs in Jazz Semiconductor’s SBC18 180nm SiGe technology. All eight teams will present posters at SRC’s TECHCON 2008. The eight finalists will vie for $50,000 in cash prizes, to be announced in December.

Thanks go to the Design Challenge sponsors who provide the awards that are made as gifts to the winning universities to be used in support of IC design education programs at their university. These include Advanced Micro Devices, Inc., Analog Devices, Inc., Cadence Design Systems, Freescale Semiconductor, Inc., IBM Corporation, Intel Corporation, Intersil Corporation, Jazz Semiconductor, LSI Corporation, Mentor Graphics Corporation, National Semiconductor Corporation, NVIDIA Corporation, Quik-Pak Division of Delphon Industries, Texas Instruments Incorporated, SRC and SIA. Special thanks go to Jazz Semiconductor for donating the fabrication support.

About SRC

Celebrating 26 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America’s highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology. For more information, visit www.src.org.

About SIA

The SIA is the leading voice for the semiconductor industry and has represented U.S. semiconductor companies since 1977 and SIA member companies comprise more than 85% of the U.S. semiconductor industry. Collectively, the chip industry employs a domestic workforce of 232,000 people. More information about the SIA can be found at www.sia-online.org
• Focus Reports

Second-Tier EDA Vendors Must Collaborate to Survive
With today’s mature chip-design flow, innovative point solutions must support multiple vendor formats and strive to work within established standards.

Future Verification Appears Uncertain
The EDA market is struggling to solve new verification challenges.

Will changes in investment patterns dampen the market rollercoaster?

Know the Key Aspects of IP Integration

DFM and DFY: Old Solutions to New Problems
The semiconductor industry’s shattered supply chain must be reintegrated, replacing clever point solutions with holistic and economical flows.

Automotive Electronics Rise To Meet Consumer Demand
With the complexity and quantity of automotive electronics steadily increasing, designers are turning to better EDA tools and programmable solutions.

Military Seeks Systematic Approach to IC Design
The EDA community is focusing on point solutions while system-level development continues to evolve.

Virtual Prototypes Form ESL Bridge
Sometimes, the best way to
understand an abstract phrase like ESL is to focus on understanding the constituent processes.

Analog-RF IP Integration Challenges SoC Designers
As market forces continue to push more analog and RF functionality into digital SoCs, designers face a host of development issues.

Latest Challenges & Trends in Chip Verification
The sophistication of verification tools and techniques has increased with design complexity.

Navigating the Silicon Jungle: FPGA or ASIC?
FPGA, structured-ASIC, and ASIC design implementations can be differentiated by tradeoff studies and an understanding of the basics behind each target platform.

Structured ASICs: A Reality Check
A virtual roundtable addresses the issues surrounding the technology

Verification Tools
Adding more tools improves the probability of silicon success

Focus Report: Electronic System-Level (ESL) Tools
A bolt-on to RTL or a new methodology?

Hardware Tools for Design
Risk reduction always comes at a cost--trial and error will determine how much.

Focus on Analysis Tools
To point or integrate, that is the question

• Visit Dot.org

• Find A Job