662, Homework III, (2 problems)

Problem 1

Consider a real scalar field with a ϕ^{4} interaction, namely

$$
\begin{equation*}
S=\int d^{d} x\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}\right] \tag{0.1}
\end{equation*}
$$

a) Compute the bubble diagram of the figure for $d=4-\epsilon$ dimensions.

Obtain the $1 / \epsilon$ divergent term and the ϵ independent term. Define $p=p_{1}+p_{2}$ and consider the cases $p^{2}>4 m^{2}$ and $p^{2}<4 m^{2}$. The result should be in terms of elementary functions (ln, arcsin, square root).
b) Determine for what values of p^{2} the diagram has an imaginary part and compute the imaginary part explicitly from your previous result.

Problem 2

For a scalar field theory determine the superficial degree of divergence for each of the diagrams in the figure.

