663, Homework III, (3 problems)

Problem 1

In 3 dimensions and using that $K_{j}=P_{j}^{\dagger}$ compute the unitarity constraints for scalar fields and vector fields following from positivity of the matrix elements

$$
\begin{align*}
\langle\Delta, j m| C_{k}^{*} K_{k} C_{l} P_{l}|\Delta, j m\rangle & \geq 0 \tag{0.1}\\
\langle\Delta, j m|\left(C^{k p}\right)^{*} K_{p} K_{k} C^{l q} P_{l} P_{q}|\Delta, j m\rangle & \geq 0 \tag{0.2}
\end{align*}
$$

for arbitrary constants C and $j=0,1$. For simplicity, in the case of $j=1$ just consider the first inequality. If you want, for $j=1$, consider also the condition

$$
\begin{equation*}
C_{k m_{2}}^{*} C_{l m_{1}}\left\langle\Delta, j m_{2}\right| K_{k} P_{l}\left|\Delta, j m_{1}\right\rangle \geq 0 \tag{0.3}
\end{equation*}
$$

for a better bound.
Reference: see e.g. hep-th/9712074 by S. Minwalla.

Problem 2

Consider the O.P.E. of two scalar fields ϕ around the middle point between them, that is

$$
\begin{equation*}
\phi(\vec{x}) \phi(-\vec{x})=\frac{1}{|2 x|^{2 \Delta}}+\left.\sum_{\Phi} C_{\phi \phi \Phi}|2 x|^{a}\left(1+\alpha x^{2} \partial_{y}^{2}+\ldots\right) \Phi(y)\right|_{y=0}+\ldots \tag{0.4}
\end{equation*}
$$

That is, determine the exponent a and the coefficient α by matching with the appropriate 3-point function.

Problem 3

Using the lecture notes, provide more detailed calculations showing that, if the lowest two primary operators are scalars ϕ and Φ and also $C_{\phi \phi \phi}=0$ then $\Delta_{\Phi}^{2} \leq(2 \Delta-1)(\Delta-1)$ (under the simplifying assumption that $\Delta_{\Phi} \gg \Delta$).

