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A self-orientation system for a directional antenna is capable of determining the best ori-
entation to receive the strongest wireless signal. In the event of two antennas being
deployed randomly or deployed in a dense space where the effects of multipath and
other wireless interference exist, efficient search algorithms are required to find the best
orientation. Therefore, this paper presents four heuristic optimization techniques for the
self-orientation of directional antennas in such events: Pattern Search method, Downhill
Simplex method, DIRECT method, and Genetic Algorithm. The modification of each tech-
nique for this orientation problem is described, and the performance of each algorithm
using different test cases with real world experiments is also described. From our study,
we show that the Pattern Search method is the most suitable optimization technique for
the self-orientation of directional antennas in long-distance point-to-point broadband
networks.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Recently, numerous research groups have started to fo-
cus on Directional Wireless Networks (DWNs) due to their
superior ability to bridge a network over a very long dis-
tance [1–4]. With advantages of greater distances, much
of this research have been conducted regarding the prob-
lem of area coverage in a DWN [2–4]. Not only that, direc-
tional antennas have also been beneficial in greatly
reducing communication interferences from other elec-
tronics devices [5–7].

Although directional antennas have countless advanta-
ges as mentioned above, there are also the research chal-
lenges of how to determine the best orientation for the
receiver or the transmitter since a directional antenna
has a limited Field of View (FoV) [8]. If the two antennas
being used for a point-to-point broadband network are de-
ployed with predefined and known locations, it would not
be difficult to determine the necessary orientations for the
best connection as it is usually when the two antennas are
facing each other. However, this way guarantees the best
connection only when the antennas are operating in an
open space where there is a direct Line-of-Sight (LoS) be-
tween the two antennas and there is no interference pres-
ent [9]. In contrast, if two antennas are located in a dense
space with no LoS, determining the orientation of the
antennas becomes complicated as there may be other
unpredictable orientations that can provide the best
connection.

It is for this reason that we present four optimization
techniques in this paper: Pattern Search method, Downhill
Simplex method (Nelder–Mead method), DIRECT method,
and Genetic Algorithm. Since these techniques do not re-
quire any knowledge of the objective function gradient
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and only require sampling points in the search domain,
they are applicable in finding the best orientation in an un-
known environment. Moreover, as each technique is a heu-
ristic based search method which in general is capable of
finding the global minimum, they are also applicable to a
dense space where multiple local minima might exist.

We expect contributions of this paper would be found
as follows. To the best of our knowledge, it is the first time
that heuristic optimization techniques are used to rapidly
establish a DWN. This research also presents how to mod-
ify the heuristic optimization techniques in order to apply
them to the establishment problem. In addition, we evalu-
ate the performance of these search techniques and find
the one most suitable for determining the best orientation
in an unknown environment and a dense space.
2. Related works

For a long time, the installation of a point-to-point net-
work involved the use of a human intervention to adjust an
antenna’s orientation as well as additional tools to deter-
mine its best orientation; this was done as it is relatively
low cost, and there is no need for a dedicated direction
finding receiver [10–12]. In such way, the antenna is
moved or rotated until the point of maximum signal
strength is determined, most often based on received sig-
nal strength. As a result, this job often requires a long per-
iod time to determine the best orientation, and the
network efficacy depends strongly on the skill level of
the operator. Furthermore, accuracy might decrease rap-
idly as distance to the partner radio increases.

To reduce the time and effort needed to determine the
best connection when using manual direction finding, ap-
proaches that incorporate antenna units with a GPS (Global
Positioning System) or IMU (Inertial Measurement Unit)
for mobile use have been introduced [13,14]. Also, for med-
ium access control using directional antennas in ad hoc
networks, the mobile nodes are assumed to know their
physical locations as well as the locations of their neigh-
bors through the use of GPS [15,16]. However, the antenna
units equipped with this additional equipment are gener-
ally much more expensive. In addition, as those units can
only work in outdoor environments and open spaces
where GPS signals are easily received, the location func-
tionality cannot be utilized in indoor environments where
directional antennas have the potential to increase wire-
less capacity [9].

Also, previous research in directional wireless networks
typically assumed the beam of each directional antenna
can be steered to its intended sender or receiver [17]. How-
ever, it is hard to determine the best orientation for direc-
tional antennas due to the effects of multipath and the
presence of other wireless interference.

To cope with such effects, several research groups have
introduced rotatable directional antennas for direction of
arrival (DoA) estimation [18–20]. Although those studies
show the feasibility of self-orientation of directional anten-
nas, they only dealt with one axis, i.e., the antenna scans to
one axis: either vertical axis or horizontal axis. In order to
maximize the advantages of using directional antennas for
a wireless connection, the orientation of the antennas
should be expressed in both the vertical and horizontal
axis [8]. In addition, their methods involve an exhaustive
scanning on all possible domains, it is very time consuming
despite the fact that they would help to find the optimal
direction.
3. Antenna orientation problem

Unlike an omni-directional antenna that has more of a
torus sensing range, a directional antenna relies on a spe-
cific orientation to receive a quality Received Signal
Strength Indication (RSSI). FoVs of a directional antenna,
on both the horizontal and vertical planes, are narrower
than those of an omni-directional antenna. Because of this,
a directional antenna can transmit a wireless signal much
further than an omni-directional antenna while consuming
the same amount of energy. For the extended range to be
beneficial, the antenna must be oriented in a specific angle
and direction.

From the concept of the FoV, its sensing model can be
viewed as a sector in a three-dimensional (3D) plane. The
3D directional sensing model is denoted by 2-tuple
ðPi;Oi
!
Þ; i 2 fR;Tg as shown in Fig. 1, where R means a recei-

ver, and T means a transmitter. In addition, P is the loca-
tion (x,y,z) of the directional antenna in a 3D plane, and
O
!

is its sensing orientation. The sensing orientation O
!

, is
composed of [/,h]T, where the horizontal / and vertical h
offset angles from the origin of the antenna. Using Friis
Transmission Formula [21], we can formulate the trans-
mitted and received power, pT and pR, between two distant
antennas by,

pR

pT
¼ k

4pOr

� �2

GTðOT
�!ÞGRðOR

�!Þ ð1Þ

where k is a wavelength, Or is a distance between two
antennas, GT is the transmitter gain in the direction OT

�!
in which it sees the receiver, and GR is the receiver gain
in the direction OR

�!
in which it sees the transmitter. There-

fore, it can be seen from Eq. (1) that when the transmitter
and the receiver are facing each other, the received power
pR will be maximized.

Now, we can assume that this sensing model would be
applied to three cases. The first case is when a direct path is
present between two antennas as depicted in Fig. 2a. In
this case, it would not be difficult to determine the neces-
sary orientations for the best connection as it is usually
when the two antennas are pointing at each other. In con-
trast, if two antennas are located in a dense space with LoS
(the second case) or no LoS (the third case) as depicted in
Fig. 2b and c, discovering the orientation of the antennas
is not trivial as there may be other unpredictable orienta-
tions that can provide the best. Actually, this results from
the likelihood of a multipath effect due to signal reflection
from surrounding objects as well as interferences from
other electronics devices [9].

In the event of two antennas being deployed randomly
where the sensing receiver does not know the transmitter’s
location or orientation, determining the direction of the re-
ceiver becomes more challenging. Given the complex and



Fig. 1. The 3D directional sensing model.
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Fig. 2. Statistical issues with signal strength measurement with direc-
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numerous issues involved in point-to-point directional
networks, there is a need for an appropriate search method
for finding the correct orientation for a directional sensing
antenna to receive the best possible signal.
4. Optimization of antenna orientation

4.1. Problem statement

Given two directional antennas with an initial random
deployment, one configured as the fixed transmitter and
the other as the rotatable receiver, sampling all possible
points in the domain by the receiver may be the most accu-
rate way to find the best orientation where the receiver ob-
tains the maximized signal strength [9].

However, this approach is time-consuming due to the
sampling of unnecessary points and would be inappropri-
ate in a case that requires the rapid establishment of a
wireless network. Thus, we set the objective of this paper
as: to quickly and accurately find the best orientation to re-
ceive the best RSSI using search/optimization. The problem
statement is then as follows:

Find : /�; h�

To minimize : f ð/; hÞ
Subject to : /L 6 / 6 /U ; hL 6 h 6 hU

ð2Þ

where /⁄ and h⁄ are optimal roll and pitch angles of the
receiving antenna. Therefore, / and h correspond to the de-
sign variables, i.e., x = [x1,x2]T = [/,h]T; / is a roll angle of
the receiving antenna subject to /L 6 / 6 /U, and h is a
pitch angle of the receiving antenna subject to hL 6 h 6 hU.
f(/,h) is an objective function, producing a current RSSI
measured at roll angle / and pitch angle h. Thus, if the
objective function is minimized, it can be said that the best
orientation, composed of /⁄ and h⁄, for maximizing the sig-
nal strength is found.

Fig. 3 shows a flow chart of the antenna orientation
problem, and in the following sections, we will describe
optimization methods for finding optimal design variables.



Fig. 3. Flow chart of antenna orientation problem.
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4.2. Optimization techniques

Due to insufficient information which arises from the
antennas random deployment, meaning they have no infor-
mation on one another’s location or orientation, generating
an objective function f(x) for predicting an optimal solution
is impossible. This eliminates the possibility of using
traditional optimization techniques such as the Steepest
Descent method and the Broydon–Fletcher–Goldfarb–
Shanno (BFGS) method, that generally require knowledge
of the objective function gradient to find the minimum
[22]. Not only that, as the receiver relies on a servomotor
based pan-tilt system to alter its orientation, a certain inter-
val angle on each horizontal and vertical direction is re-
quired. Due to these issues, the problem should be treated
as a zero-order problem as well as an integer problem mean-
ing the objective function is non-smooth.

Given the nature of this problem, we assume that the
wireless signal strength is the same within a certain inter-
val angle on each horizontal and vertical direction. This
indicates that, for instance, if the interval is 15� on the hor-
izontal direction, the strength of the wireless signal is the
same between 0� and 15� (this region is illustrated with
a bold rectangle in Fig. 1). Therefore, this assumption will
allow the orientation problem to be a type of the integer
problem and help to shorten the size of the search space
when using heuristic optimization as well.

We have decided to use four heuristic optimization
techniques which can be applied to the zero-order problem
of antennas: Pattern Search method, Downhill Simplex
method, DIRECT method, and Genetic Algorithm.

It is worth noting that the problem in this paper could
be solved by some other optimization techniques such as
Simulated Annealing (SA) and Ant-Colony Optimization
(ACO). Nevertheless, we do not include them here as they
might involve much more function evaluations than those
that will be used in this paper [23,24]. Remember that the
antenna orientation problem demands a fast convergence
for a rapid establishment of directional networks.
Table 1
The design variables represented with a binary string.

Variable Bits Lower bound Upper bound Resolution

x = [/,h]T 4 1 9 1
4.2.1. Pattern Search method
The Pattern Search method, also called the Hooke–Jee-

ves algorithm, is one of the representative direct search
methods that samples points in the design space and uses
the information it has obtained to decide, where to search
next [25]. A fundamental concept of this method is to pro-
ceed with a series of explorations and pattern based moves
to find the minimum. In the exploratory stage, the method
sequentially performs exploratory moves on a single vari-
able, holding all others constant. The method then per-
forms a pattern move by altering all variables with the
appropriate stored exploratory moves. These stages repeat
until the minimum is found or the maximum number of
function evaluations is met.

4.2.2. Downhill Simplex method
The Downhill Simplex method is an iterative search

technique for minimizing a function, developed by Jones
Nelder et al. in 1965 [26]. The method uses the concept
of a simplex, which is a polytope of n + 1 vertices in n
dimensions: a line segment in one dimension, a triangle
in two dimensions, a tetrahedron in three-dimensional
space and so forth.

The Downhill Simplex method entails a series of steps
for moving the simplex downhill: Reflection, Contraction,
Expansion, and Shrinkage. For each step, the method uses
both data known from the current simplex location as well
as data from previous moves to change the simplex size.
The steps repeat until the size is small enough to contain
the minimum.

4.2.3. DIRECT method
The DIRECT method is known as a deterministic global

optimization algorithm, developed by Jones et al. in 1993
[27,28]. The main idea of DIRECT method is to select rect-
angles likely to contain the global minimum in the design
space. The basic process is to divide potentially-optimal
rectangles into smaller rectangles and have the process re-
peat until a maximum number of function evaluations or a
minimum rectangle size is met.

4.2.4. Genetic Algorithm (GA)
The GA is a model of biological evolution based on

Charles Darwin’s theory of natural selection. The GA is
essentially random search techniques and requires several
operators such as the crossover, recombination, mutation,
and selection. The details of these operators and the GA
can be found in [29,30].

GA differs from the previous three optimization tech-
niques in that it uses coding of the design variables and
not the actual variables. Thus, the design variables in Eq.
(2) are represented as a binary string as shown in Table 1.

In Table 1, all variables are discretized with

ri ¼
xU

i � xL
i

ð2bi � 1Þ
ð3Þ

where xU
i is the upper bound on variable, xL

i the lower
bound on variable, bi the number of bits to code xi and ri

is the resolution between discretized values of xi.
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This alteration means that if the sensing antenna scans
/ direction with 15� interval, subject to �60� 6 / 6 60�,
then the number of total points on this direction will be
9, and this interval results r1 ¼ 0:53; xL

1 ¼ 1; xU
1 ¼ 9, and

b1 = 4 (Note that we round the resolution r1 = 0.53 to
r1 = 1 to make this problem an integer problem.).

Our implementation of GA uses a tournament selection
method to randomly pick a small subset of chromosomes
from the mating pool; the chromosome with the lowest
cost in this subset becomes a parent. We use the uniform
crossover where the first child receives a bit from the first
parent with crossover probability Pc, and the second child
receives a bit from the second parent. To examine new
population for mutation, we randomly switch zeros and
ones with a probability of mutation.

4.3. Modifications

In order to apply the four optimization techniques to
the orientation problem in this paper, the following modi-
fications are required. Table 2 shows a summary of their
modifications, where ‘‘YES’’ indicates the method has been
modified, and ‘‘NO’’ indicates the method has not been
modified, respectively.

4.3.1. Pseudo objective function
The DIRECT method was originally designed to solve

problems subject to side constraints. For this reason, the
problem statement defined in Eq. (2) can be used in the DI-
RECT method. However, other three optimization tech-
niques were not originally designed to solve problems
subject to side constraints. The problem statement must
be in the form of unconstrained minimization so that the
side constraints in Eq. (2) are converted to the form of
inequality constraints like gi(x) 6 0. Thus, the original
problem statement is reformulated as follows:

Minimize :: WðxÞ ¼ f ðxÞ þ PðxÞ
where WðxÞ is the pseudo objective function

f ðxÞ is the original objective function
shown in Eq:ð2Þ
PðxÞ is the exterior penalty function

ð4Þ

where PðxÞ ¼ rp
P4

i¼1 max [0,gi(x)] and rp is a penalty mul-
tiplier which determines the magnitude of the penalty for
inequality constraint violations. From this modified state-
ment, it is evident that P(x) = 0 if no constraints are vio-
lated. Violation of a constraint imposes a penalty rp

proportional to the violation so that the minimization algo-
rithm tends to avoid the violations. Thus, rp should be large
enough to give a strong penalty to the pseudo objective
Table 2
Summary of modifications of four optimization techniques.

Optimization Technique Pseudo objective function Integer p

Pattern Search method YES YES
Downhill Simplex method YES YES
DIRECT method NO YES
Genetic Algorithm YES YES
function. One example is depicted in Fig. 4a, where the
Downhill Simplex method tries to move Reflection. This
selection violates the inequality constraint, hL 6 h, so the
pseudo objective function W(x) becomes 1000 due to the
imposed penalty multiplier rp, set to 1000.

4.3.2. Integer programming
These four techniques were not originally intended for

use with an integer problem. Therefore, we truncate two
design variables from every step so that the new truncated
values form integer values. This modification will be ap-
plied to all methods and is illustrated in Fig. 4b.

4.3.3. Choice of initial points
The Pattern Search method and Downhill Simplex

method are very sensitive to the initial points chosen and
can be easily trapped in a local minima. To combat this,
we chose four different initial points to make up for this
limitation and improve the accuracy of their search. The
four points, one in each quadrant of the search domain,
are depicted in Fig. 4c. Note that the Downhill Simplex
method generally requires three initial points. The objec-
tive function values at four vertices, f(x0), f(x1), f(x2), and
f(x3), are evaluated, and the lowest point is excluded from
the possible simplex. The other remaining points are
identified as highest point xh, second-highest point xs,
and lowest point xl. Then, this modified approach returns
to normal.

4.3.4. Termination criteria
The four optimization techniques are not guaranteed to

converge, even for smooth problems.

f ðxhÞ � f ðxlÞ
1þ jf ðxlÞj 6 e or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼0
f ðxiÞ � �f
� �2

r

6 e; where �f ¼ 1
n

Xn

i¼0

f ðxiÞ: ð5Þ

Eq. (5) is the termination criteria used for the Downhill
Simplex method, where e is a specified tolerance. The first
criteria in Eq. (5) is satisfied when a decrease in f(x) over
the entire simplex is small, and the second criteria will
be satisfied when the standard deviation of f(x) over the
entire simplex is small. In addition, if the number of func-
tion evaluations q exceeds some large pre-specified num-
ber qmax, then the search process will end. For the
Pattern Search method and DIRECT method, the end of
two sequential minimizations is compared as their termi-
nation criteria, i.e. convergence is indicated if

jf ðxqÞ � f ðxq�1Þj 6 e: ð6Þ
rogramming Choice of initial points Termination criteria

YES YES
YES YES
NO YES
NO YES



Fig. 4. Modifications of the optimization techniques for the antenna orientation problem. (a) Pseudo objective function. (b) Integer programming. (c) Choice
of initial points.
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For the Pattern Search method and DIRECT method, the
maximum number of function evaluations is also included.
GA is stopped after no further improvement, meaning GA
can be stopped if chromosomes become homogeneous.
Thus, we define termination bit string affinity value bmax.

5. Experiments

5.1. Setup

To validate the performance of the optimization tech-
niques discussed in this paper, we conducted real world
experiments with directional antennas available from
PCTEL [31], shown in Fig. 5a and b. We used
MYP24015PTNF as a transmitter and MYP24010PTNF as a
receiver. Both devices are directional antennas, have 10-
dBi of gain, and use the 2.4 GHz frequency range. The first
antenna has a 30� horizontal and vertical beamwidth at 1/2
power and the latter has a 55� horizontal and vertical
beamwidth at 1/2 power. In addition, to automatically find
the maximum RSSI available, we have built a custom pan-
tilt system having two DoF (Degree-of-Freedom) using two
servomotors. This system was then incorporated into the
receiver antenna as shown in Fig. 5c.
We prepared five different situations, as shown in Fig. 6.
Fig. 6a shows the first situation where the two antennas are
deployed in an outdoor environment representative of the
first case shown in Fig. 2a. Fig. 6b shows the second situation
where the two antennas are deployed in an outdoor envi-
ronment representative of the second case shown in
Fig. 2b. Fig. 6c shows the third situation where the two
antennas are deployed in an outdoor environment represen-
tative of the third case shown in Fig. 2c. In Fig. 6a–c, all left
images show maps from Google Earth depicting our test
areas, and all right figures show pictures of the actual exper-
iments. In Fig. 6c, the arrow designated ‘‘Transmitter’’ indi-
cates the physical location of the antenna which was located
behind a building and was no LoS. In addition to outdoor
experiments, we conducted indoor experiments as they
are the fourth and fifth situations respectively as shown in
Fig. 6d and e. All left images in Fig. 6d and e show a floor plan
depicting our test areas, and all right images show pictures
of the actual experiments.

We set up the interval as 15� on each axis, subject to
each constraint, �60� 6 / 6 60� and �60� 6 h 6 60�.
Therefore, the design space becomes x1 and x2

2 {�60�,�45�,�30�,�15�,0�,15�,30�,45�,60�} and the
number of elements in each domain becomes 9. For



Fig. 5. PCTEL directional antennas [31]; (a) MYP24015PTNF, (b) MYP24010PTNF, and (c) Pan-tilt servo device that we built for this study. (a) Transmitter.
(b) Receiver. (c) Pan-tilt servo device.

Fig. 6. Deployment of antennas in five different situations: (a)–(c) Real-world experiments conducted in outdoor environments; (d) and (e) Real-world
experiments conducted in indoor environments. (a) First situation. (b) Second situation. (c) Third situation. (d) Fourth situation. (e) Fifth situation.
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experiments with a fair evaluation, each algorithm was run
with four different trials from the five situations. Thus,
there are a total of twenty trials for the entire experiment.
In each trial, the orientation of the transmitter OT

!
was fixed

to roughly face the receiver, and the initial orientation of
the receiver was set randomly but was bound OT

!
and OR

!

to the operation angle (Oa = 120�).
Table 3 shows the optimization algorithm settings which

were selected according to the results of a preliminary para-
metric study carried out individually with each algorithm.
In Table 3, initial step size is used in the first exploratory
stage to perform exploratory moves for the Pattern Search
Table 3
Optimization technique settings.

Optimization technique Parameters

Pattern Search method initial step si
Downhill Simplex method a = 1.0, b = 0.
DIRECT method e = 1 � 10�2,
Genetic Algorithm population si
method. a,b,c, and d are a selection of four coefficients in
the Downhill Simplex method and correspond to Reflection
coefficient, Contraction coefficient, Expansion coefficient,
and Shrinkage coefficient, respectively.

The four optimization methods are computationally
expensive which means more objective function evalua-
tions are necessary while finding the solution. In other
words, the more objective function evaluations are taken,
the slower convergence rates are manifest. In addition, each
technique is a heuristic based search method, meaning they
do not guarantee finding a global minimum. Therefore, we
compare the performance of each algorithm using different
ze = 1, e = 1 � 10�2, qmax = 20,rp = 1000
5, c = 2.0, d = 0.5, e = 1 � 10�2, qmax = 20, rp = 1000
qmax = 20
ze = 4, mutation rate = 1%, Pc = 50%, bmax = 95%, rp = 1000
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test cases with real world experiments to test three factors:
(1) the number of function evaluations, (2) the elapsed time
from initiative to the convergence of algorithm, and (3) the
accuracy of finding the global solution.

For the function evaluation, it will be considered only in
the case that the algorithm searched a new grid. It means
that if one algorithm needs to evaluate a certain grid multi-
ple times, these multiple evaluations are counted only
once. This rule will be applied to all of the algorithms.
Due to ever-changing RSSI patterns [1,32,33], we allow a
tolerance of +1 dB for accuracy evaluation when consider-
ing whether the result produced by the method is correct
or not. Also, we gather RSSI values 20 times at each point
and average them for use as the current f(x) to reduce
the effect of ever-changing RSSI. From these evaluation fac-
tors, we can investigate which algorithm is suitable for the
rapid establishment of DWNs.

In order to identify the best orientation in advance, we
scanned all possible points from every trial, and then we
began testing with the four optimization methods. With
these procedures, if one optimization method indicates
the same location as the best in all scanned points, it can
be said that the method is validated in terms of finding
the global minimum.

5.2. Results

Contours in Fig. 7 show all scanned RSSI values at all
points in the five different situations as depicted in Fig. 6
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Fig. 8. Traces left by each method when finding the solution in outdoor env
as well as the solutions found by each algorithm. Lower
and darker value of the contours means a better RSSI in
Fig. 7. This means that the smallest value (or the darkest
spot) produced by the location of / and h indicates the best
orientation. As we expected to see in the contours, there
are mostly explicit patterns showing convex shapes
around the minimum as well as some additional distortion
to these patterns seen elsewhere. This implies that the
minimum can be found by the heuristic optimization tech-
niques introduced in this paper. Also, it is shown that when
there is only one direct path presented, there is only one
local minimum that is also the global minimum as shown
in Fig. 7a. On the other hand, when there is a multipath sig-
nal presented, there are often accompanying multiple local
minima as shown in Fig. 7b–e.

The solutions found by each algorithm are depicted in
Fig. 7. In these figures, the location of the global minimum
is marked with ‘‘w’’, locations of the solutions found by the
Pattern Search method, Downhill Simplex method, DIRECT
method, and GA are marked with ‘‘}’’, ‘‘M’’, ‘‘h’’, and ‘‘s’’,
respectively. As depicted in these figures, the solutions
found by the methods lie in and around the global mini-
mum. This validated that all methods used in this paper
were suitable and well designed for this self-orientation
problem.

The 12 sub-figures in Fig. 8 are from the first trial of the
three situations in an outdoor environment and represent
traces left by each method when finding the solution. Note
that if we sum up the number of all traces in each figure,
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Table 4
Summary of averaged results from 20 trials.

Evaluation criteria Pattern Search method Downhill Simplex method DIRECT method GA

Number of function evaluations 11.30 12.75 15.15 12.25
Elapsed time (sec) 33.82 43.58 53.49 39.25
Accuracy (tolerance of +1 dB) 18/20 (90%) 18/20 (90%) 19/20 (95%) 16/20 (80%)
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that number represents the number of function evalua-
tions. As shown in traces left by the Pattern Search method
and the Downhill Simplex method, there were always four
scanned points in each quadrant of the search domain. This
modification resulted in the choice of an initial point from
the initial four points which helped in reducing the total
number of function evaluations when finding the global
minimum. We can also see that the GA finds the minimum
by random search locations, and the other three methods
find the minimum through the use of a certain search
patterns.

The results of an average of the best objectives over the
20 trials versus the number of function evaluations
necessary are shown in Fig. 9. As shown in the figure, each
objective converges as the number of function evaluations
increases. This validates all methods are suitable to finding
an acceptable solution. The figure also shows that the GA
was the last to approach the solutions as well as had the
worst accuracy as compared to the other three methods.
This slow convergence seems to be due to its essentially
random search technique in unknown environments. The
DIRECT method approached the solutions slightly faster
than GA but ultimately was the last to find a solution.
The Pattern Search method and the Downhill Simplex
method both converged on the objective faster than the
others (See the values between the 8th and 10th function
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evaluations.), but ultimately the Pattern Search method
was the fastest by a thin margin. Thus, the Pattern Search
method outperformed all other methods when it came to
the convergence rate of finding the solution.

Fig. 10a and b graphically summarize the results over
the 20 trials on the number of function evaluations and
the measured elapsed time. As expected, these two
factors show almost the same results, i.e., the fewer
objective function evaluations were taken, the faster
elapsed times were shown. From Fig. 10, it is shown that
out of all test, the Pattern Search method took the short-
est time to find the solution, followed by the GA. The
DIRECT method took much longer in all situations. This
result shows that the DIRECT method is not suitable for
rapid deployment.

Table 4 shows a summary of the results that three eval-
uation factors were averaged over the 20 trials. As numer-
ical values in the first and second rows show, the Pattern
Search method requires the fewest function evaluations
and is the fastest method among the other three methods.
When it comes to evaluating accuracy, the DIRECT method
shows the best performance by finding the global solution
19 times of the total 20 trials. The Pattern Search method
and Downhill Simplex method found the solution 18 times
of the total 20 trials, and GA found the solution 16 times
out of the total 20 trials. Therefore, all methods show more
than 80% of accuracy when finding the solution. The DI-
RECT method shows 95% of accuracy and can be said to
have the highest accuracy from its exhaustive search and
far more function evaluations when compared to the other
three methods.
6. Conclusion

In this paper, the four heuristic optimization tech-
niques: Pattern Search method, Downhill Simplex method,
DIRECT method, and GA, were presented and applied to the
problem of finding the best orientation of directional
antennas.

From a set of experiments we conducted, acceptable
orientations were found by each of the four methods. This
validates all methods used in this paper as suitable and
well designed for the self-orientation problem. From our
performance evaluations, there was little difference in
the accuracy of the system when using the different search
methods as the solutions found by each lied in or around
the global minimum. Because of this, the comparison of
accuracy between the methods became a less important
factor in determining the best method of finding the stron-
gest wireless signal. Instead, from our comparison of the
elapsed time and the function evaluations, we found that
the Pattern Search method performs significantly better
than the DIRECT method and slightly better than the
Downhill Simplex method the GA.

Finally, we conclude from this research that the Pattern
Search method is the most suitable optimization technique
for the rapid establishment of a long-distance point-to-
point sensor network connection. We believe that the flex-
ibility this research provides is useful in many areas. For
instance, this research could be used in a disaster area
where previously established networks are destroyed, as
well as in the rapid deployment of a wireless network
needed by first responders for communication and data
gathering.

In future work, we will consider employing some other
evolutionary-based optimization algorithms that have
been recently introduced such as Particle of Swarm Opti-
mization (PSO). Also, we will use mobile robots capable
of carrying directional antennas to extend this research
to more complex environments where mobile antennas
are required for a wireless connection.
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