
36	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

THE GROWING POPULARITY of
cloud computing draws attention
to its security challenges, which are
particularly exacerbated due to re-
source sharing.1 Cloud computing’s
multitenancy and virtualization fea-
tures pose unique security and access
control challenges due to sharing of
physical resources among potential
untrusted tenants, resulting in an in-
creased risk of side-channel attacks.2

Additionally, the interference of mul-
titenancy computation can result in
unauthorized information flow. Het-
erogeneity of services in cloud com-
puting environments demands vary-
ing degrees of granularity in access
control mechanisms. Therefore, an in-
adequate or unreliable authorization
mechanism can significantly increase
the risk of unauthorized use of cloud
resources and services. In addition

to preventing such attacks, a fine-
grained authorization mechanism can
assist in implementing standard se-
curity measures. Such access control
challenges and the complexities asso-
ciated with their management call for
a sophisticated security architecture
that not only adequately captures ac-
cess management requirements but
also ensures secure interoperation
across multiple clouds.

We present a distributed access
control architecture for multitenant
and virtualized environments. The
design of this architecture is based on
the principles from security manage-
ment and software engineering. From
a security management perspective,
the goal is to meet cloud users’ access
control requirements. From a soft-
ware engineering perspective, the goal
is to generate detailed specifications
of such requirements.

Several researchers have previ-
ously addressed access control issues
for cloud computing. Daniel Nurmi
and his colleagues provided an au-
thorization system to control the ex-
ecution of virtual machines (VMs) to
ensure that only administrators and
owners could access them.3 Stefan
Berger and his colleagues promoted
an authorization model based on both
role-based access control (RBAC)
and security labels to control access
to shared data, VMs, and network
resources.4 Jose Alcaraz Calero and
his colleagues presented a centralized
authorization system that provides
a federated path-based access con-
trol mechanism.5 What distinguishes
our work is that we present an archi-
tecture that can be implemented us-
ing an XML-based formalism.6 We
also address the problems of side-
channel attacks and noninterference
in the presence of multitenancy and
resource virtualization. Accordingly,

FOCUS: CLOUD COMPUTING

A Distributed
Access Control
Architecture for
Cloud Computing
Abdulrahman A. Almutairi and Muhammad I. Sarfraz, Purdue University

Saleh Basalamah, Umm Al-Qura University

Walid G. Aref and Arif Ghafoor, Purdue University

// A novel distributed architecture incorporates principles

from security management and software engineering

to address cloud computing’s security challenges. //

	 MARCH/APRIL 2012 | IEEE SOFTWARE � 37

we present an access control architec-
ture that addresses these challenges.

Authorization
Requirements
In order to build a secure and trusted
distributed cloud computing infrastruc-
ture, the cloud architecture’s designer
must address several authorization
requirements.

Multitenancy and Virtualization
Side-channel attacks and interference
among different policy domains pose
daunting challenges in distributed
clouds. Side-channel attacks are based
on information obtained from physical
implementation (for example, via time-
or bandwidth-monitoring attacks).
Side-channel attacks arise due to lack
of authorization mechanisms for shar-
ing physical resources. The interference
among tenants exists primarily because
of covert channels with flawed access
control policies that allow unauthorized
information flow.7

Decentralized Administration
Decentralized administration is char-
acterized by the principle of local au-
tonomy, which implies that each ser-
vice model retains administrative
control over its resources. This is in
contrast to a centralized administra-
tion approach, which implies loss of
autonomy in controlling resources; it’s
not a desirable system feature when
dealing with several independent
clouds. Moreover, the need for a fine-
grained access control can enact sub-
stantial requirements in designing an
access control policy employing a large
number of authorization rules. These
rules can grow significantly with an in-
crease in the granularity of resources,
as well as with the number of users and
services supported by the cloud. A cen-
tralized design based on the integration

of all global rules can pose significant
challenges.

Secure Distributed Collaboration
To support a decentralized environ-
ment, the cloud infrastructure should
allow both horizontal and vertical

policy interoperation for service deliv-
ery. Due to the heterogeneous nature of
the cloud, resource and service policies
might use different models requiring
seamless interoperation among poli-
cies. These policies must be correctly
specified, verified, and enforced. A ser-
vice-level agreement (SLA) can provide
secure collaboration and assure that
services are provided according to pre-
established rules.

Credential Federation
Because a user might invoke services
across multiple clouds, access control
policies must support a mechanism to
transfer a customer’s credentials across
layers to access services and resources.
This requirement includes a provi-
sion for a decentralized single-sign-on
mechanism within the authorization
model, which can enable persistent au-
thorization for customers in terms of
their identity and entitlement across
multiple clouds.6

Constraint Specification
The collaborative nature of a cloud
computing environment requires the
specification of semantic and contex-
tual constraints to ensure adequate
protection of services and resources,

especially for mobile services. Semantic
constraints (for example, separation of
duties) and contextual constraints (such
as temporal or environmental con-
straints included in an access request)
must be evaluated when determining
access to services and resources.8 Se-

mantic and contextual constraints are
specified in the access control policy.

Designing a Distributed
Cloud Architecture
The nature of assuring resource shar-
ing across multiple clouds depends on
the collaborative environment. Figure
1 shows three types of collaborations
(federated, loosely coupled, and ad hoc)
that can fulfill the aforementioned au-
thorization requirements.

Federated Collaboration
Federated collaboration is characterized
by a high degree of mutual dependence
and trust among collaborating clouds
and supports a long-term interopera-
tion. To be secure, this collaboration
requires a global metapolicy that’s con-
sistent with local policies of the collab-
orating clouds. A policy-composition
framework (top block of Figure 1) is
necessary if a global metapolicy needs
to be generated by integrating the poli-
cies of individual clouds.8

Loosely Coupled Collaboration
In a loosely coupled collaborative en-
vironment, local policies govern in-
teractions among multiple clouds. In
contrast to a federated collaboration,

Side-channel attacks and interference
among different policy domains pose

daunting challenges in distributed clouds.

38 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: CLOUD COMPUTING

this collaboration is more fl exible and
autonomous in terms of access policies
and resource management. Two collab-
orating clouds can virtualize their re-
sources and allow autonomous sharing
of resources. The information about
the virtualized shareable resources and
services of each cloud is stored in a vir-
tual global directory service (VGDS),
which is manifested across service-level
agreement (SLAs). The middle block of
Figure 1 shows the verifi cation for con-
formance of individual clouds’ security
and privacy policies for loosely coupled
collaboration.

Ad Hoc Collaboration
In ad hoc collaboration, a user is only
aware of a few remote sharable ser-
vices. Because a priori information
about an application’s overall service
requirements might not be available to

the user or cloud at the start of a ses-
sion, a cloud might deny access to its
resources. To ensure secure interopera-
tion via discovered resources and ser-
vices in a dynamic interoperation en-
vironment where clouds can join and
leave in an ad hoc manner, appropriate
authentication and authorization mech-
anisms need to be developed.

Evaluation
Several metrics can be used to evaluate
these collaborations, including

• degree of interoperation, which
indicates the level of service and
resource sharing among multiple
clouds;

• autonomy, which refers to a cloud’s
ability to perform its local opera-
tions without any interference from
cross-cloud accesses;

• degree of privacy, which specifi es
the extent of information a cloud
provider discloses about its internal
policies and local constraints; and

• verifi cation complexity, which
quantifi es the complexity associ-
ated with verifying the correctness
of the overall constraints while inte-
grating multiple policies.

Figure 1 shows the tradeoffs among
collaboration types and these met-
rics; the collaboration metrics’ arrows
point toward higher values. For exam-
ple, ad hoc collaboration supports a
higher level of privacy than federated or
loosely coupled collaborations do.

A Distributed Cloud
Security Architecture
The proposed distributed architecture
that addresses and incorporates the

Consistent global
metapolicy

Full view of access
control policies from
individual cloud layer

Virtual global directory
service (VGDS)

(limited advertised
view of cloud policies
and virtual resources)

Policy composition
module (optimization

and mediation)

Federated
collaboration

Per-cloud
access control

policies veri�cation

Cross-cloud access
control policies

veri�cation

Establishing secure
collaboration

Access control
policies

Establishing secure
collaboration

on a per-user basis

Resource/service
discovery (updating

global director service)

Loosely coupled
collaboration

Le
ve

l o
f i

nt
er

op
er

at
io

n

Collaboration
metrics

De
gr

ee
 o

f a
ut

on
om

y

Ve
ri�

ca
tio

n
co

m
pl

ex
ity

Le
ve

l o
f p

riv
ac

y

Ad hoc
collaboration

FIGURE 1. Characterization of collaboration in a mutlicloud environment. In a distributed environment, we can build a security architecture

based on the design of these collaborations. Their comparison is based on degree of interoperation, autonomy, privacy, and veri� cation

complexity. The architecture we present in this article is based on federated and loosely coupled collaborations.

 MARCH/APRIL 2012 | IEEE SOFTWARE 39

aforementioned authorization require-
ments can be built using three types of
components: a virtual resource man-
ager (VRM), a distributed access con-
trol module (ACM; Figure 2), and an
SLA (Figure 3). The proposed architec-
ture (Figure 4) uses the RBAC model,
which is recognized for its support for
simplifi ed administration and scalabil-
ity.6 However, the design of this archi-
tecture is generic enough to support
other access control policies, such as
discretionary access control and multi-
level security.

VRM Design Specifi cation
The heterogeneity and granularity of
virtual resources in a cloud environ-
ment call for a VRM at each layer of
the cloud, as depicted in Figure 4. The
VRM is responsible for providing and
deploying virtual resources. Conse-
quently, it maintains a list of required
virtual resources with their confi gura-
tion, including both local and remote
resources through VGDS—the one
shown in Figure 1. SLAs provide ac-
cess to remote resources, whereas the
VRM is responsible for monitoring de-
ployed resources and might allocate or
release them to ensure SLA compliance,
including guarantees for quality of ser-
vice. To manage the scalability issue in
cloud computing in term of users and
resources, the VRM uses a distributed
architecture.3

ACM Design Specifi cation
An ACM resides at each layer to en-
force the access control policy at its res-
ident layer. As shown in Figure 2, the
main components of an ACM include

• a policy decision point,
• a policy enforcement point (PEP),

and
• a policy base.

The authorization request (Figure 2,
step 1) submitted to the PEP includes
the requesting subject, the requested

service or resource, and the type of per-
missions requested for that service or
resource (such as read or write privi-
leges). The request might also include
the credentials needed for authentica-
tion and authorization. The PEP ex-
tracts the authentication credentials
and the context information from the
authorization request and forwards
them to the credential evaluator and
context evaluator (Figure 2, step 2).
The PEP receives the decision about
granting the request (Figure 2, step 3)
and either grants or denies the user’s
authorization request.

If the request contains an authenti-
cating credential, the credential evalu-
ator assigns a user a local role based
on the user-to-role assignment rules
stored in the RBAC policy base. The
process of user-to-role assignment re-
quires input from the context evalua-
tor regarding contextual constraints. If
the request contains an authorization
credential, the credential evaluator as-
sesses if the role corresponds to a local
role. If not, the implication is that this
is a single-sign-on request and requires
role mapping by a relevant SLA. Subse-
quently, the user acquires the privileges

Context information

Credential evaluator

Access control module

Authorization
decision

Policy enforcement point

Context extractor

Policy decision
point

To virtual
resource
manager

Authorization request

Policy base

User credentials

1

3

2

Policy baseContext
information

Role mapper

Service-level agreement

Authorization
decision

Policy enforcement
point

Context extractor

Policy decision
point

Authorization
request

FIGURE 2. Access control module architecture. This component can be used to build the

proposed distributed architecture.

FIGURE 3. Service-level agreement (SLA) architecture. This component can be used to

build the proposed distributed architecture.

40 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: CLOUD COMPUTING

of the locally assigned role or of a
mapped role in a remote cloud.6

SLA Specifi cation
To allow interoperation among auto-
nomous policies manifested through
ACMs, an SLA implements a medi-
ated policy. For this purpose, an SLA
performs role mapping, specifi es isola-
tion constraints for resource sharing to
prevent side-channel attacks, and pres-
ents a virtualized view of resources at
the levels for which the SLA is negoti-
ated. In addition, an SLA usually in-
cludes quality-of-service parameters, as
well as billing and auditing functions.
Figure 3 depicts the authorization fl ow
within an SLA.

Role mapping is a function that maps
a local role to a role in a remote cloud
and grants access to all the mapped
role’s permissions. The mutually agreed
upon mediated policy, which is gener-
ally a subset of the policies of the par-
ticipating ACMs, enforces access con-
trol for distributed services or resources

through this mapping. In addition, the
SLA physically isolates resources to
prevent side-channel attacks at the re-
mote cloud.2 Such isolation can pre-
vent multiple VMs from residing on the
same physical machine. Physical isola-
tion can be explicitly enforced in the
form of cardinality constraint rules in
the RBAC policy.6 By setting the cardi-
nality constraint parameter to one, we
can enforce such isolation.

RBAC Policy Specifi cation
for Proposed Architecture
We adopted an XML-based specifi ca-
tion due to its compatibility with the
emerging standards for cloud systems
and security protocols, with the ul-
timate goal being that the proposed
architecture should be interoperable
with complementary security proto-
cols for cloud systems. Figures 5a and
5b show the XML-based specifi cations
of ACMs and SLAs, respectively. (The
full details of RBAC XML declaration
appear elsewhere.6)

The ACM’s XML user sheet de-
fi nes the authenticating credentials
and the XML role sheet defi nes the
authorization credentials. The XML
user-to-role assignment sheet defi nes
user-to-role assignment rules, which
can be based on attributes associated
with users’ credentials as defi ned in
the XML user sheet. XML permis-
sion-to-role assignment sheets defi ne
permission-to-role assignment rules.
Permission-to-role constraints can be
based on attributes associated with a
role’s credential or the resource type
as defi ned in XML virtual resource
sheets (see Figure 5c). The constraints
can be semantic (for instance, separa-
tion of duty) or temporal. To represent
authorization requirements as a set of
predicates, predicate function defi ni-
tions sheets defi ne the formal notion
of predicate expression. A predicate
function defi nition sheet can include
mediated rules for intercloud resource
sharing; a predicate expression can
help evaluate sets of temporal or non-
temporal constraints.6

A permission defi ned in the XML
permission sheet comprises a specifi ed
operation on a given resource type.
Thus, a role assigned a permission de-
fi ned on a given resource type receives
access to all instances of that resource
type. XML allows access granularity
at individual levels within a resource
type to provide support for individ-
ual virtual resources—for example,
as mentioned earlier, we can specify
the physical isolation attribute of a
virtual resource at the individual re-
source level in the form of a cardinal-
ity constraint to prevent side-channel
attacks in the local cloud. Note that
depending on if the requested re-
sources are local or remote, the ACM
decides whether or not to invoke
SLA. The XML specifi cation of the
SLA depicted in Figure 5b provides a
limited view of advertised virtual re-
sources, role mapping, and cardinal-
ity constraints.

Cloud
application services (SaaS)

VRMACM

S
L
A

Type 1

Cloud
application services (SaaS)

VRMACMApp 1

Cloud
platform services (PaaS)

VRMACM

S
L
A

S
L
A

Type 1

Type 3 Type 3

Platform 1

App 2

Platform 2

Cloud
platform services (PaaS)

VRM

VRM

ACM

Type 1

Type 3 Type 3

Type 2

Type 2

Type 2

Type 2

Virtualization
infrastructure services (IaaS)

VRMACMVM2

Hypervisor 2

Physical layer 2

Virtualization
infrastructure services (IaaS)

Cloud provider 2 Cloud provider 1

Shaded SLAs correspond
to alternate architectures

involving peer-to-peer
interoperation

ACM

Hypervisor 1

VMI

Physical layer 1

FIGURE 4. Intercloud and intracloud interoperations for the distributed security architecture.

Shaded SLAs correspond to alternate architectures involving peer-to-peer interoperation.

 MARCH/APRIL 2012 | IEEE SOFTWARE 41

Ensuring Noninterference
To avoid security risk due to potential
interference as a result of multitenancy,
we must abstract policies by participat-
ing ACMs and SLAs as an information
fl ow model. Subsequently, this model
can be verifi ed to ensure the property of
noninterference.7 Such verifi cation en-
sures that each domain remains unaf-
fected by the actions of other domains.
As side-channel attacks can be man-
aged through cardinality constraints,
unauthorized information fl ow can
only occur when there’s confl ict among
cloud policies. In conjunction with the
data model, verifi cation models8 or
verifi cation tools (such as Alloy9) can
detect confl icts among policies, which
causes unauthorized information fl ow.

Distributed Authorization
Process and Use Cases
Three types of interoperations related to
authorization fl ow can occur at various
layers of the distributed architecture, as
illustrated in Figure 4. Type 1 depicts
a horizontal (peer-to-peer) interopera-
tion between the same levels of different

cloud providers; type 2 represents a
vertical interoperation between layers
within the same cloud; and type 3 indi-
cates a cross-layered interoperation be-
tween different clouds at different lay-
ers. Both type 1 and 3 interoperations
require SLAs among the participating
clouds. These three types of interopera-
tion also establish distributed authori-
zation mechanisms among ACMs.

For distributed authorization,
VRMs use their peer-to-peer or cross-
layered interoperations through VGDSs
in order to provide the required re-
sources. VGDSs have both the local
virtual resource IDs and the paths of
the physical resources they map to,
as well as remote virtual resource IDs
consistent with the SLAs that advertise
these resources. Therefore, a VGDS can
manifest either through peer-to-peer or
cross-layered SLAs (shown in dotted
SLA blocks at the PaaS and IaaS levels
of Figure 4). Assessment of these archi-
tectural choices is an open problem.

For interoperations among ACMs,
we envision loosely coupled collabora-
tion consistent with type 1 and type

3 interoperations because individual
clouds need to reveal only limited in-
formation about their services and
policies. Federated cloud collaboration
requires an extensive analysis prior
to generating the global metapolicy,
which can result in a high degree of
complexity and rule explosion. There-
fore, this approach isn’t scalable for
distributed collaboration. Also, gen-
erating a consistent global metapolicy
could require extensive mediation to
resolve confl icts among heterogeneous
policies.8 Similarly, ad hoc collabora-
tion doesn’t federate credentials across
clouds because it lacks SLA support.

For type 2 interoperation, federated
collaboration can be an appropriate
approach because it requires only ver-
tical integration of polices. Therefore,
the high complexity for generating a
global metapolicy within a cloud is jus-
tifi ed because the cloud provider has
access to all its local policies belonging
to the three service models. However,
the provider must address the challenge
of confl ict resolution and mediation for
generating such a metapolicy. Figure 5a

(a)

<!-- Policy De�nition>
<Policy policy_id = (xs:id)
 policy_name = (xs:name) >
 <!-- XML Credential Type De�nitions>
 <!-- XML Separation of Duty De�nitions>
 <!-- XML Temporal Constraint De�nitions>
 <!-- XML Virtual Resource Type De�nitions>
 <!-- XML Predicate Function De�nitions>
 <!-- XML Virtual Resource Type Sheet>
 <!-- XML User Sheet>
 <!-- XML Role Sheet>
 <!-- XML Permission Sheet>
 <!-- XML User-Role Assignment Sheet>
 <!-- XML Permission-Role Assignment Sheet>
</Policy>

(b) (c)

<!-- Policy De�nition>
<Policy policy_id = (xs:id)
 policy_name = (xs:name) >
 <!-- XML Temporal Constraint De�nitions>
 <!-- XML Virtual Resource Type De�nitions>
 <!-- XML Predicate Function De�nitions>
 <!-- XML Virtual Resource Type Sheet>
 <!-- XML Role Mapping Sheet>
</Policy>

<!—XML Virtual Resource Type De�nitions>
<XResTypeDef xrtd_vgds_id = (xs:id) >
 <ResTypeDef virtual_res_type_id = (xs:id)
 virtual_res_type_name = (xs:name) >
 {<!—Attribute List>
 <isolation virtual_res_type_id = (xs:id)
 virtual_res_cardinality_constraint =(xs:value)>}
 </ResTypeDef>
</XResTypeDef>

<!-- XML Virtual Resource Type Sheet>
<XRTS xrts_vgds_id = (xs:id) >
 <ResType virtual_res_type_id = (xs:idref)
 virtual_res_type_name = (xs:name) >
 {<!—Attribute>}
 </ResType>
</XRTS>

FIGURE 5. High-level XML declaration: (a) access control module, (b) mediated service-level agreement policy, and (c) virtual resource

de� nition and sharing constraint (local and remote).

42 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: CLOUD COMPUTING

shows an example of a high-level meta-
policy specifi cation; further details ap-
pear elsewhere.6

Authorization Process
When a customer requests a service
or virtual resource, the request goes
to the local ACM (Figure 6, step 1). If
the ACM grants this request, it routes
the request to the local VRM (step 2).
If the requested resources reside in the
local cloud, the VRM (after consulting
the VGDS) forwards the request to the
local ACM of the lower level—for ex-
ample, from SaaS to PaaS (step 3). Ul-
timately, the request goes to the infra-
structure as a service (IaaS)-level VRM
in order to deploy the required physi-
cal resources. If the required resources
are in a remote cloud, the local VRM,
after consulting the VGDS, issues a re-
mote request to the appropriate SLA
(step 3). The SLA, after performing
its functions involving role mapping
and evaluating the policy constraints,
forwards the request to the remote
ACM (step 4). After verifying its own
constraints (including cardinality con-
straints), the ACM informs its local
VRM to allocate the desired resources
(step 5). Finally, the VRM identifi es
and confi gures the local physical re-
sources (step 6).

Use Cases
This authorization process is a generic
representation of a set of use cases. To
specify these cases, we adopt Alcaraz
Calero and colleagues’ authorization
model4 by extending it to support
multitenancy and virtualization in a
distributed environment. Figure 7 il-
lustrates two classes of scenarios cov-
ering all possible interactions within
and across multiple clouds. These sce-
narios involve the three types of in-
teroperations discussed earlier in this
article. Assuming an RBAC model,
the authorization request can be rep-
resented using a four-tuple expression
(subject, permission, interface, object
[attributes]), which can be interpreted
in the following way: the subject (as
a role) asking for a permission to be
performed over the object (virtual re-
source or service) with its attributes
(such as isolation constraint) and that
object’s interface type. We assume the
authorization request is time stamped
to accommodate temporal contextual
constraint. From an RBAC perspec-
tive, the subject is represented as a
role. In addition, users of the XML
user sheet specifi ed in Figure 5a,
which identifi es user-to-role assign-
ments, can assume their respective
roles. Along with this assignment, the

proposed four-tuple can fully specify
an authorization request.

When user X initiates the authori-
zation process to access an application
(app) at the SaaS level of its local cloud
(SaaSCP1), the corresponding ACM’s PEP
needs to authenticate the user prior to
assigning a local role (for example, Rx)
based on its credentials. If X requires a
remote resource, the participating SLA
assigns it a mapped role (say, Ry).

The local SaaS verifi es this request,
represented as Rx, execute, SaaSCP1, app, for
authorization. Consequently, one of the
following scenarios can occur.

Scenario A. Figure 7a depicts this sce-
nario. We assume the requested re-
sources are locally available, resulting
in type 2 collaboration within the lo-
cal cloud. Accordingly, the SaaS’s local
VRM identifi es virtual resources—for
example, computation instance (CompIn-
stx) and storage (Storex). Assuming that
the local policy verifi es the authoriza-
tion request, the VRM, after consult-
ing with the VGDS, requests the two
desired resources through the follow-
ing two authorization requests: Rx, ex-
ecute, PaaSCP1, CompInstx(isolation=1) and Rx,
execute, IaaSCP1, StoreX. Here, we assume X
is requesting fully isolated computation
resources to avoid side-channel attacks.

ACMVRM
2 1

ACM Resource request
S
L
A

VRM
5 4 3

3'6

Physical resourcesPhysical resources

FIGURE 6. Flow of request via the access control module and virtual resource manager across multiple clouds.

 MARCH/APRIL 2012 | IEEE SOFTWARE 43

Scenario B. Figure 7b shows four sce-
narios depicting ACM interaction
across multiple clouds at different levels:

 1. The service requested (app) by X
consists of two services, app1 and
app2 (local and remote, respectively),
causing interoperation between SaaS
ACMs in different clouds. In this
case, we assume a peer-to-peer in-
teroperation (type 1). Consequently,
the VRM in the local SaaS of CP1
forwards the request Ry, execute, SaaSCP2,
app2 to the remote SaaS’s ACM of
CP2 through the relevant SLA (de-
picted in Figure 6). Because app1 and
app2 use virtualized resources in their
local clouds, the remaining authori-
zation process within each cloud is
similar to scenario A.

 2. In scenario B.2, the local SaaS
needs to access virtual resources
managed by CP2’s PaaS and IaaS.
Assuming cross-layered SLA archi-
tecture, the local SaaS’s VRM gen-
erates the authorization request Ry,
execute, PaaSCP2, CompInstx(isolation = 1),
which is then forwarded to CP2’s
PaaS’s ACM through the SLA. The
remaining authorization process
for acquiring virtualized resources
within the remote cloud is similar to
scenario A.

 3. Scenario B.3 is identical to scenario
B.2, except the local cloud needs
virtual resources, which are main-
tained by a remote IaaS. Accord-
ingly, the local PaaS’s VRM gener-
ates the authorization request Ry,
execute, IaaSCP2, VMx(isolation = 1) and for-
wards it to the remote IaaS’s ACM
through a cross-layered SLA.

 4. In scenario B.4, an intermediate
cloud must process the authoriza-
tion request with further rerout-
ing to a remote cloud (CP3) where
the physical infrastructure is lo-
cated.1 In this case, SaaS, PaaS,
and IaaS belong to distinct clouds.
The authorization requests Ry, ex-
ecute, PaaSCP2,CompInstX(isolation = 1) and

Rz, execute, IaaSCP3,VMX(isolation = 1) are
generated in succession to the cor-
responding ACMs after the VRMs
invoke the SLAs.

These use cases represent high-level
design requirements for the proposed
architecture and cover all possible au-
thorization fl ow processes that can be
used to design and develop the distrib-
uted architecture. Currently, develop-
ment for a prototype of this architec-
ture is underway; it uses the Microsoft
Azure platform to develop a health
surveillance and rapid response infra-
structure with the capability of col-
lecting and analyzing real-time epi-
demic data from various hospitals.
This cloud computing environment
consists of compute clusters, reliable
data storage, and software services.
The stakeholders include researchers,
physicians, and government public
health management personnel in the
chain of reporting. The services pro-
vided to stakeholders include visual
analytics, statistical data analysis, and
scenario simulations.10

T he architecture we present
in this article represents a
precise but comprehensive

authorization design for access man-
agement. Using an XML-based decla-
ration of the access control policy for
this architecture is a step toward its
implementation. However, we must
address several open challenges in or-
der to implement a fully secure and
trusted cloud environment. These
include design of an authentication
mechanism, cryptography and key
management, mediation for confl ict
resolution of heterogeneous policies,
software design for virtualized re-
sources, integrating information fl ow
verifi cation tools to ensure noninter-
ference, and architectural choices for
SLAs. We plan to address these chal-
lenges in our future work.

Acknowledgments
The research in this article is partially funded
by the US National Science Foundation under
grant IIS-0964639.

References
 1. H. Takabi, J.B.D. Joshi, and G.-J. Ahn,

“Security and Privacy Challenges in Cloud
Computing Environments,” IEEE Security &
Privacy, vol. 8, no. 6, 2010, pp. 24–31.

 2. T. Ristenpart et al., “Hey, You, Get off of
My Cloud: Exploring Information Leakage
in Third-Party Compute Clouds,” Proc. 16th
ACM Conf. Computer and Communications
Security (CCS 09), ACM, 2009, pp. 199–212.

CP1 CP3

SaaS

Type 2

X

PaaS

Type 2

(a)

IaaS

CP2 CP1

SaaS

Type 2

X

PaaS

Type 2

(b)

IaaS

SaaS

Type 2

PaaS

Type 2

IaaS

Type 2

Type 2

SaaS

PaaS

IaaS
Type 3

SLA

Type 3

SLA

Type 3

SLA

Type 1

SLA

FIGURE 7. Scenario-based policy interoperation. (a) Secure interoperation within a local

cloud to acquire resources that are locally available. (b) Secure interoperation involving SLAs

at different levels to acquire resources among multiple clouds.

44 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: CLOUD COMPUTING

 3. D. Nurmi et al., “The Eucalyptus Open-
Source Cloud-Computing System,” Proc. 9th
IEEE/ACM Int’l Symp. Cluster Computing
and the Grid (CCGRID 09), IEEE CS, 2009,
pp. 124–131.

 4. S. Berger et al., “Security for the Cloud
Infrastructure: Trusted Virtual Data Center
Implementation,” IBM J. Research and Devel-
opment, vol. 53, no. 4, 2009, pp. 560–571.

 5. J.M. Alcaraz Calero et al., “Toward a Mul-
titenancy Authorization System for Cloud
Services,” IEEE Security & Privacy, vol. 8,
no. 6, 2010, pp. 48–55.

 6. R. Bhatti, E. Bertino, and A. Ghafoor, “X-
Federate: A Policy Engineering Framework
for Federated Access Management,” IEEE
Trans. Software Eng., vol. 32, no. 5, 2006, pp.
330–346.

 7. J. Rushby, Noninterference, Transitivity,
and Channel-Control Security Policies, tech.
report CSL-92-02, Computer Science Lab, SRI
Int’l, 1992.

 8. B. Shafi q et al., “Secure Interoperation in a
Multidomain Environment Employing RBAC

Policies,” IEEE Trans. Knowledge and Data
Eng., vol. 17, no. 11, 2005, pp. 1557–1577.

 9. D. Jackson, I. Schechter, and I. Shlyakhter,
“ALCOA: The Alloy Constraint Analyzer,”
Proc. 22nd Int’l Conf. Software Eng., ACM,
2000, pp. 730–733.

 10. S. Afzal, R. Maciejewski, and D.S. Ebert,
“Visual Analytics Decision Support Environ-
ment for Epidemic Modeling and Response

Evaluation,” IEEE Conf. Visual Analytics
Science and Technology (VAST 11), IEEE CS,
2011, pp. 191–200.

ABDULRAHMAN A. ALMUTAIRI is a PhD student in the School of
Electrical and Computer Engineering at Purdue University. His research
interests include information security and privacy and cloud computing
systems. Almutairi has an MS in electrical and computer engineering
from Purdue University. He is a student member of IEEE. Contact him at
aalmutai@purdue.edu.

MUHAMMAD I. SARFRAZ is a student at Purdue University. His
research interests include distributed access control and information
security and privacy. Sarfraz has a BSC in computer science from the
King Fahd University of Petroleum and Minerals. He is a student mem-
ber of IEEE. Contact him at msarfraz@purdue.edu.

SALEH BASALAMAH is an assistant professor at Umm Al-Qura
University. His research interests include computer vision, multimedia,
and information security. Saleh has a PhD in bioengineering from Impe-
rial College London. He’s a member of IEEE and ACM. Contact him at
smbasalamah@uqu.edu.sa.

WALID G. AREF is a professor of computer science at Purdue
University. His research interests include extending the functionality of
database systems in support of emerging applications, query process-
ing, indexing, data mining, and geographic information systems. Aref
has a PhD in computer science from the University of Maryland at
College Park. He is a member of ACM, a senior member of IEEE, and
current chair of the ACM Special Interest Group on Spatial Information.
Contact him at aref@cs.purdue.edu.

ARIF GHAFOOR is a professor at the School of Electrical and Com-
puter Engineering at Purdue University. His research interests include
information security and distributed multimedia systems. Ghafoor has
a PhD in electrical engineering from Columbia University. He is an IEEE
Fellow. Contact him at ghafoor@purdue.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

SUBMISSION DETAILS: Rates are
$110.00 per column inch. Send copy
to: Marian Anderson, IEEE Software,
10662 Los Vaqueros Circle, Los Alami-
tos, CA 90720-1314; (714) 816-2139;
fax (714) 821-4010. Email: mander-
son@computer.org.

APPLICATION PERFORMANCE
ENGINEER - Full time, 40hrs/wk,
M-F. Salary: $74,734.00/YR. Over-
see application performance with
focus on utilizing Solaris, Sybase,
LDAP support, Middleware (TIBCO/
MQ). Implementing application
and infrastructure monitoring us-
ing ITRS. Source code control and
user administration. Install, config-
ure and manage policy implemen-
tations, and administer high avail-
ability capability to applications
using Veritas cluster. Function as
integrator between business needs
and technology solutions. Environ:
C, C ++, UNIX, Shell Scripting, Per-
force, VERITAS, ITRS, Interscope
Wily, Perl, Python. Educ: Bachelor’s
Degree or foreign acad equiv in CS/
Eng. Job location in Cranbury, NJ
and other unanticipated locations
w/in US. Travel to unanticipated
client locations and relocation pos-
sible. Send resume to Recruitment
and Employment Office, QUAD-
RANT 4 CONSULTING, INC., Attn:
Job Ref#: INT17153, P.O. Box 56625,
Atlanta, GA 30303.

Classified Advertising

