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We study the trading behavior of investors in an entire stock market. Using an account
level dataset of all trades on the Istanbul Stock Exchange in 2005, we identify investors
with similar trading behavior as linked in an empirical investor network (EIN). Consistent
with the theory of information networks, we find that central investors earn higher returns
and trade earlier than peripheral investors with respect to information events. Overall, our
results support the view that information diffusion among the investor population influences
trading behavior and returns. (JEL G11, G14)

What determines the heterogeneous trading behavior and performance of
individual investors in the stock market? One motive for heterogeneous trading
is that investors have diverse information, allowing well-informed investors to
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outperform those who are less informed (Grossman and Stiglitz 1980; Hellwig
1980; Kyle 1985). In this paper, we focus on such diverse information as a
motive for heterogeneous trading, and study investor behavior through the lens
of information networks (Colla and Mele 2010; Ozsoylev and Walden 2011;
Han and Yang 2013). Loosely speaking, an information network describes how
diverse information signals diffuse over time among a population of investors.
Investors who are centrally placed in such a network tend to receive information
signals early, whereas investors who are in the periphery tend to receive them
later. As a result, the trading behavior and profitability of individual investors
are influenced by their position in the network, and the dynamics of aggregate
asset prices depend on the network’s general topological properties.

Identifying the underlying information network in the entire stock market is
of course a major challenge. Our first contribution in this paper is to develop
a method to proxy for the market’s information network, using observable
data. The general idea is that information links may be identified from realized
trades, since investors who are directly linked in the network will tend to trade
in the same direction in the same stock at a similar point in time, say on the
same day or even within an hour of each other. By focusing on such short time
periods, we aim to capture information that is diffused into the market over a
relatively short horizon, say about a week. Using this approach, we identify
an Empirical Investor Network (EIN), and in simulations show that the true
information network is indeed well estimated by the EIN. This approach may
also be applied to partial data. For example, in simulations we show that when
only one-third of the agents in a network are included in a reduced network
(corresponding to including about 10% of the links in the full network), the
correlation between true centrality and centrality calculated in the reduced
network is about 0.5.

We calculate the EIN using account level trading data that covers all trades
on the Istanbul Stock Exchange in 2005. We first verify that the EIN is
fairly stable over time. We test the stability by dividing our sample period
into two six-month sub-periods and define an EIN for each of these periods.
The overlap between the two EINs is strongly significantly different from the
overlap of two randomly generated networks. We also verify that some investors
systematically trade before their neighbors, and that such early trading is
positively related to centrality. Together, these results, which provide our second
contribution, support the view that the EIN captures information diffusion.

We study the relationship between investor centrality and returns, and find
substantial support for a positive relationship. In our multivariate regressions,
a one-standard deviation increase in centrality, all else equal, leads to
a 0.7%–1.8% increase in returns (over a 30-day period) depending on the
specification. These results are obtained after controlling for other variables,
such as trading volume, so the tests distinguish investors who are central in
the information network from investors who just trade a lot. Documenting the
positive relationship between centrality and returns is our third contribution.
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Finally, as a fourth contribution, we document that centrality is directly
related to acting early on information. We identify several idiosyncratic
information events that were associated with large stock price movements,
and find that central investors in the network tended to trade—in the right
direction—before peripheral investors. We also verify that when central
investors’ trades were delayed by one day, their excess performance decreased
by close to 30%, and that returns to central investors were higher in months
with a relatively large number of earnings announcements. All these results are
consistent with information diffusion, with central agents gaining early access
to information.

Our results suggest that information diffusion is an important determinant
of investors’ trading behavior and profitability. Specifically, our results have
two components: (1) that our network captures information diffusion and
(2) that the network is consistent with a decentralized diffusion mechanism,
as opposed to diffusion through mainstream media channels. However, there is
also the possibility that omitted variables, alternative trading motives, or purely
mechanical relationships between variables may generate similar results. In
several additional analyses and robustness tests, we find further support for
information diffusion over such alternative explanations.

Any alternative explanation of the first component must be consistent with
several properties: First, it should generate a network that is stable over
time. Second, it should be consistent with the trading behavior of investors
over the short time periods that the network is based upon. Third, it should
lead to a positive relationship between centrality and returns over 1-3-month
horizons. Fourth, it should lead to a positive relationship between centrality
and trading early with respect to information events in the market. Several
alternative explanations fail at least one of these properties. For example,
various style-related explanations broadly defined (e.g., correlated wealth
shocks or momentum strategies) may satisfy the first property, but typically
not the second, third, or fourth.1 Similar arguments make it implausible
that various biases (e.g, home bias) explain the results. Finally, the first,
third and fourth properties make price impact (e.g., arising because of
illiquidity) an unlikely explanation. We discuss this extensively throughout
the paper.

For the second component, our results are not as conclusive but we do find a
couple of pieces of evidence to support a decentralized diffusion mechanism,
consistent with, for example, word-of-mouth communication and Internet
discussion boards, but not with diffusion through mainstream media channels.
First, we verify that the network is consistent with a decentralized structure.

1 Standard investment “styles” are, for example, defined in Brown and Goetzmann (1997) and Barberis and Shleifer
(2003). There is also a large literature that explains heterogeneous portfolio holdings with hedging motives
(e.g., Mayers 1973; Bodie, Merton, and Samuelson 1992; Massa and Simonov 2006; Parlour and Walden 2011;
Betermeier et al. 2012).Also, heterogeneous preferences, (e.g., different risk aversion) induce trading. We include
such trading motives in our broad definition of “investment styles.”
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The median number of connections for an investor is 159, within the range of
what is documented in the literature on social networks (e.g., Dunbar 1992;
Hampton et al. 2011; Ugander et al. 2011). More importantly, the number of
communities in the network, defined as groups of investors who are tightly
connected among themselves but only sparsely connected to other investors,
identified by a standard algorithm (Clauset, Newman, and Moore 2004) is
1,109, which is much higher than what we would expect if mainstream media
provided the main diffusion channel. Second, we study the timing of trading
activity with respect to when an information event was reported in media.
We find that most of the increased trading activity occurred before the event
was reported, again inconsistent with mainstream media as the main diffusion
channel.

We also carry out several variations of the tests to show robustness and to
rule out mechanical relations between variables as a driver of the results. We do
out-of-sample tests, constructing the centrality measure in the first six months
of the trading period, and verifying that the measure is positively related to
profits and to trading early with respect to information events in the following
six months. We vary window lengths and several other parameters, exclude
links between investors in the same brokerage house, and use alternative profit
measures, all with very similar results. Finally, to rule out explanations related
to the higher sophistication of institutional investors, we run the tests with these
investors excluded, with virtually identical results. This, for example, mitigates
the likelihood that our results are due to automated high-frequency trading
algorithms, since we would expect to mainly find such algorithms among the
institutional investor population. Thus, in total our results provide substantial
support for decentralized information diffusion among the investor population,
although we cannot completely rule out alternative explanations.

Our paper belongs to the literature on heterogeneous information, networks,
and trading in stock markets. There is extensive evidence of frequent
communication among stock market investors, and this evidence suggests that
investors exchange information about the stocks they trade. Shiller and Pound
(1989) survey 131 institutional investors in the NYSE and ask them what
prompted their most recent stock purchase or sale. The majority asserts that
it was their discussions with their peers. Ivković and Weisbenner (2007) find
similar evidence for households, while Hong, Kubik, and Stein (2004) provide
further evidence that fund managers’ portfolio choices are influenced by word-
of-mouth communication.2 Our paper is also related to the literature on the

2 Other studies provide indirect evidence that communication between investors affect their trading behavior. Feng
and Seasholes (2004) find that Chinese trades are highly correlated when divided geographically, consistent with
local communication among investors. Cohen, Frazzini, and Malloy (2008) posit that communication via shared
education networks allows fund managers to earn abnormal returns (see also Das and Sisk 2005; Fracassi 2012;
Pareek 2012). Shive (2010) develops an epidemic model of investor behavior that predicts individual investor
trading. Duffie, Malamud, and Manso (2009) develop a dynamic equilibrium search model, in which information
diffusion occurs when agents with heterogeneous information meet randomly.
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relationship between news, investor behavior, and stock returns (e.g., Tetlock
2007, 2010). Our study contributes to the literature by providing—to the best
of our knowledge—the first market-wide study of information diffusion in a
stock market, along with its effects on the entire investor population’s behavior
and trading profits.

Our study reinforces a view of the stock market as a place where information
is incorporated into asset prices through gradual decentralized diffusion.
Information networks provide an intermediate information channel, in between
the public arena, where news events and prices themselves make some
information available to all investors, and the completely local arena of private
signals and inside information. Such a view is consistent with the presence of
significant stock market movements unaccompanied by public news events,
as studied by Cutler, Poterba, and Summers (1989) and Fair (2002), and with
substantially varying stock market returns and trading volume over time, as
analyzed by Gabaix et al. (2003).

The rest of the paper is organized as follows: In the next section, we introduce
a stylized information network model to describe the connection between
investors’ network centrality, profits, and timing of trades, and to motivate the
methodology used to construct the EIN. In Section 2, we describe the data and
provide some summary statistics. In Section 3 we present our main findings on
the relationship between centrality, profits, and the timing of trades with respect
to information events. Section 4 concludes. Additional analyses are delegated
to an Internet Appendix.

1. Framework

We introduce a stylized model of information diffusion in a stock market. Our
objectives here are two-fold: (1) to describe how investor centrality is related
to profits and timing of trades in the model, and (2) to motivate our definition
of the EIN.

1.1 Trading in an information network
Let us for simplicity study a network structure according to Figure 1, in which
there are NI =21 investors in an information network. Each node (circle)
represents an agent (investor, trader), and each edge (line) represents a direct
link between two agents, i.e., that the two agents are connected. In other words,
linked agents are neighbors in the network. These connections are bidirectional,
i.e., if agent i is connected to agent j , then j is connected to i. For technical
reasons, we assume that each agent is connected to himself.

In addition to the agents in the network, we assume that there is a large
number, NU of uninformed noise traders, whose trading motives we do not
model and who randomly take on opposite sides of trades. Altogether there are
N =NI +NU traders in the model.
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Figure 1
Information network
The figure shows an information network of 21 agents in a market. Each agent is represented by a node (a filled
circle). An edge (line) between two agents represents that these are connected in the network (i.e., they are
neighbors). In addition, there is a large number of liquidity traders.

Trading occurs at discrete times, t =0,1,2,.... At each point in time, each
of the NI agents in the network receives a distinct signal about stocks in the
market, i.e., agent i receives signal st

i at time t . We denote the set of signals
agent i has received up to and including time t by I t

i . For simplicity, we
assume that only one signal in each time period, agent nt ’s signal, is valuable.
Thus, at time t , agent nt receives a signal and trades. All the other signals
at time t are worthless, the other agents in the network understand this, and
therefore do not trade. The expected profits from agent nt ’s trade is positive.
We assume that there is a noise trader willing to take the opposite position in the
trade, whereas agents in the information network only trade when they receive
information.

Now, agent nt may “share” his signal with one of his neighbors between t

and t +1. Specifically, for each of his neighbors, there is a probability of q1 that
agent nt shares his information. For example, given the network in Figure 1,
if agent 1 received the initial signal, then for each of agents 2, 3, 4, and 5,
the probability is q1 that he will share the signal with that agent. Given that
information is shared, a receiving agent—let us call him n2

t —then trades at t +1;
however, his expected trading profit is lower than that of agent 1, in line with
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the assumption that, as time passes, the expected profits from trading on the
information declines. This could, for example, be because agent nt has already
traded and some of his information is already incorporated into prices. The
signal may also be slowly diffusing into the market through other channels. We
thus have that st

nt
∈I t+1

n2
t

. In a similar manner, agent n2
t shares his signal between

t +1 and t +2, with probability q2, to each of his neighbors, who then trade at
t +2 and realize even lower expected profits than agent n2

t . At t +3, the signal
is completely incorporated into the stock market’s prices and no further profits
are possible.3

A general network of N agents can be represented by a neighborhood
(adjacency) matrix, E ∈{0,1}N×N , with Eij =1 if investors i and j are directly
connected, and Eij =0 otherwise.4 The bidirectionality of connections implies
that E is symmetric (i.e., Eij =Eji for all i and j ). Symmetric information
sharing arises naturally in the theory of information networks (e.g., Ozsoylev
and Walden 2011; Han and Yang 2013; Walden 2013), since both agents
need to share information in a relationship for information sharing to be
mutually beneficial. Intuitively, with a one-sided relationship, an agent who
only transmits information to another agent but never receives information
from that agent has no incentive to participate in the relationship.

We use the convention that the first NI agents are the ones in the information
network, and the remaining NU are the noise traders (each of which is only
connected to himself). The matrix representation of the network in Figure 1 is
given in Figure 2, where it is assumed that there are NU =29 noise traders, so
that the total number of traders is N =21+29=50. In Figure 2, the dots represent
connections, i.e., elements for which Eij =1. The upper left part of the matrix
represents the agents in the network, EI . For example, focusing on the first
row, the five first elements are nonzero, showing that agent 1 is connected
to himself, and agents 2–5, respectively. The lower right part of the matrix
(elements 22-50) is diagonal, representing the unconnected noise traders.

We are now in a position to formally define a general information network,
given an information diffusion mechanism among agents:

Definition 1. Consider a population of agents among which heterogeneous
information signals, st

i , diffuse over time. Then E defines the information
network of signals available to the population over time, if for all agents i,
j and times t,t ′, the probability that st

i ∈I t ′
j is

• zero when dE (i,j )>t ′−t ,
• greater than zero when dE (i,j )≤ t ′−t .

3 It would of course be easy to extend the model to longer sequences of information diffusion, as well as trading
in continuous time.

4 We use the following matrix notations: A matrix is defined by the [·] operator on scalars, e.g., E =[eij ]ij . We
write (E)ij for the scalar in the ith row and j th column of the matrix E , or, if there can be no confusion, we drop
the parentheses and write Eij .

1329

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/27/5/1323/1580322 by Purdue U

niversity Libraries AD
M

N
 user on 12 August 2019



[10:49 1/4/2014 RFS-hht065.tex] Page: 1330 1323–1366

The Review of Financial Studies / v 27 n 5 2014

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

Figure 2
Neighborhood matrix
The figure shows the neighborhood matrix, E , for the network shown in Figure 1, with NI =21 agents who trade
for information purposes (the upper left part), and NU =29 noise traders (the lower right part). A dot on row i

and column j in the matrix means that agent i and j are linked (i.e., that Eij =1). All other elements are zero.

Here, dE (i,j ) denotes the distance between agents i and j in E , i.e., the length
of the shortest path between the two agents, where we use the convention that
dE (i,j )=∞ if there is no path between the two agents.

It is easy to check that given the information diffusion mechanism between
agents just described, the information network is indeed the one shown in
Figure 1.

We define the degree of investor i as the investor’s number of neighbors,
including himself, Di = |{j :Eij =1}|.

1.2 Centrality and profits
Intuitively, investor 1 in Figure 1 seems to be well-positioned to make high
profits. Although investors 2-5 have more direct neighbors, investor 1 is within
a distance of two from all the other investors, in contrast to the other agents,
and will therefore receive many valuable signals. In other words, investor 1 is
more central than the other investors and is therefore expected to have higher
trading profits (Ozsoylev and Walden 2011).

There are several measures of centrality. Common measures include degree,
eigenvector, Katz, and closeness centrality (e.g., Friedkin 1991). Eigenvector
and Katz centrality are closely related; eigenvector centrality can be viewed
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as a limit case of Katz centrality. As shown in Valente et al. (2008),
these measures of centrality are typically strongly correlated in real-world
networks.

We prefer to use eigenvector centrality as our measure for two reasons. The
first reason is computational. It is relatively easy to compute in a large-scale
network. Measures like closeness centrality, on the other hand, require keeping
track of higher order paths between nodes, which is simply not feasible given
the size of our network.5 The second reason is theoretical. Walden (2013) shows
that the information advantage (i.e., the advantage an investor has because of
his position in the network, that allows him to earn excess returns) is closely
related to eigenvector centrality, but less so to other measures, (e.g., closeness
centrality).

The intuition for why eigenvector centrality works well is simple. In an
information diffusion model, eigenvector centrality captures the fundamental
properties of what makes an agent well-positioned in the network, namely
how much information he receives and how delayed the information is. This
is easiest seen by observing that one way to calculate eigenvector centrality
is by using so-called power iterations. Specifically, eigenvector centrality is
a sum of powers of the degree matrix—in other words, basically a sum of
degrees of different orders. The higher the order, the more signals reaches an
investor, but the more delayed these signals are.Ameasure that perfectly reflects
information advantage needs to re-weight the importance of different orders
of degree somewhat, but eigenvector centrality captures the spirit of the two
fundamental properties.

Avector C where the ith element represents agent i’s (eigenvector) centrality
is constructed as follows. Let Ci denote the centrality of investor i. By letting
i’s centrality score be proportional to the sum of the scores of all the investor’s
neighbors, we derive:

Ci =
1

λ

∑

j

EijCj , or in vector form C =
1

λ
EC. (1)

The proportionality constant, λ, is an eigenvalue of E and C is the corresponding
eigenvector. The eigenvector corresponding to the largest eigenvalue is the
centrality vector.6 For large matrices, power iterations provide an efficient way
of solving (1).7

5 To calculate closeness and betweenness centrality, powers of the neighborhood matrix, Em, need to be calculated
(or some variant thereof), which is a major task if N is large. The reason is that even though E is a sparse object,
Em is much less sparse, leading to severe memory and CPU requirements. In contrast, the largest eigenvector
can be calculated efficiently, using just E .

6 The neighborhood matrix, E , has only nonnegative elements. It therefore follows from the Perron-Frobenius
theorem that it has a real maximal eigenvalue, and that the associated eigenvector has only nonnegative elements.
This is the centrality vector. The only potential issue is uniqueness, since E may not be irreducible, but this has
not caused a problem in our tests.

7 Specifically, given an estimate of the centrality vector, Ck , an updated estimate is obtained by performing the
iteration Ck+1 = 1

‖Ck‖ ECk , where ‖Ck‖ is some suitable chosen normalization of Ck (e.g., the mean-square
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A closely related measure that we use is rescaled centrality, C/D, i.e.,
the ratio between centrality and degree. This measure may be more robust
in capturing informational advantage than pure centrality in an empirically
estimated investor network. The reason is that when there are noise traders
who trade a lot, they typically also end up with many links in the empirically
estimated investor network. This, in turn, increases their centrality, although
they do not have an informational advantage. Their rescaled centrality will
typically be low though, as it should be since these traders are not central in
the information network.

In our empirical tests, our dataset contains the full population of traders in
the market. If someone wanted to use our methodology to estimate centrality in
other datasets, however, there may be omitted agents in those datasets and
an important question is therefore how robust the centrality measure is to
omitting some agents. Specifically, given a network with N agents, assume
that a centrality measure is calculated using only a subset of the network, with
n<N of agents. How closely related is this approximated centrality measure
to true centrality among these n agents? To study this question, we simulate
a large number of networks. We then randomly exclude a fraction of agents,
and calculate a “reduced” centrality of the remaining n agents, based on the
reduced network. To see how well true centrality (based on the network with N

agents) is approximated by reduced centrality (based on the subnetwork with
n<N agents), we plot the average correlation between the two measures, while
varying n.

The results are shown in Figure 3, using a network size of N =500 agents. We
see that the average correlation (the y-axis) is a smooth function that slowly
decreases as n (the x-axis) decreases. When only one-third of agents (about
170) are “kept,” the average correlation is about 0.5. This is quite remarkable,
given that only about 10% (1/32) of the links remain in the reduced network.
Even with only 20% of the agents in the reduced network (100 agents, with
about 1/52 =4% of the original links), the average correlation is still about
0.35. We have verified that the results are scalable in the size of the network, by
varying N . We conclude that the centrality measure is quite robust to omitting
a significant fraction of agents.

The randomness and independence of excluded agents is a parsimonious
assumption. For instance, if the researcher is interested in measuring the
relative centrality of agents within a community (defined as a tightly connected
cluster of investors that have fewer connections with investors outside of the
community), excluding the network outside of the community may be even
less of an issue. On the contrary, systematically excluding central agents in

norm). If E contains relatively few non-zero elements—in other words, if the matrix is sparse—and the largest
eigenvalue is significantly larger than the second largest eigenvalue, then each iteration can be calculated quickly
and convergence to the true centrality vector is obtained in few iterations.
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Figure 3
Exclusion of investors
The figure shows the average correlation between agent centrality when approximated using only a subset
of n agents, and agent centrality in the full network. The total number of agents in the network is 500, and
each agent is on average connected to 22 other randomly chosen agents. Average correlation between true and
approximated centrality is about 0.67 when the fraction of agents is 1/2 (250 agents out of 500), about 0.5, when
the fraction is 1/3 (170 agents), and about 0.35 when the fraction is 0.2 (100 agents). Number of simulations:
10,000 for each n.

a network may potentially increase the problem. We leave the study of such
questions for future research.

1.3 Estimating the neighborhood matrix
In practice, the information network is not observable, but since agents who
are connected in the network will tend to trade in similar stocks in the same
direction at similar points in time, we can identify an empirical proxy for the
true network—an Empirical Investor Network, EIN.

A fairly straightforward approach for small networks would be to use
maximum likelihood estimation. The EIN would be identified as the network
for which the observed trades were most likely. For larger networks, however,
simpler approximations are needed. As discussed in Gomez-Rodriguez et al.
(2012), exact maximum likelihood estimation is not feasible for large networks
because the number of possible networks grows super-exponentially with
the number of nodes, making an exact approach computationally infeasible.
Gomez-Rodriguez et al. (2012) study infection contagion in a network, and the
problem of identifying a network from observed contagions. They develop an
approximation method that is computationally feasible for networks with up
to several thousand nodes. However, since our network is a couple of orders
of magnitude larger than what is computationally feasible with their method
and, furthermore, our inference problem differs from theirs, we choose an even
further simplified approach to define the EIN:

Definition 2. The EIN, E�t,M , in a stock market that operates over some finite
time period, is defined such that for each pair of investors, i, j �= i, E�t,M =1 if
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and only if agents i and j traded in the same stock in the same direction within
a time window of �t at least M times over the total time period.

The EIN can be computed efficiently even for networks with hundreds of
thousands (or even millions) of investors, as long as the �t window is not too
large. In our tests, we will vary �t between a minute and a day. Intuitively,
the EIN captures information diffusion by linking investors who trade close in
time.8 Furthermore, the EIN can be viewed as an approximation of the network
one would obtain through maximum likelihood estimation, see Proposition 1.
The proof, which is straightforward, is delegated to the Internet Appendix.

Proposition 1. Consider an information network, EI , in which each agent,
after receiving a signal, immediately trades, and then shares the signal with
probability q >0 per unit time within the next �t time interval, with each of
his neighbors. For small �t , given a realization of trades between 0 and T , the
EIN E�t,1

I is a maximum likelihood estimator of the true underlying information
network. Specifically, it is the unique maximum likelihood estimator that
minimizes the total number of links in the information network.

Thus, for small �t , the EIN is indeed a maximum likelihood estimator, and it
is also consistent with a sparse network in that it minimizes the number of links.
The intuition behind the result is that for short time windows, the likelihood
of information diffusion is relatively low and the likelihood of observing a
sequence of trades will therefore be higher if links are formed between any
two agents for which diffusion may have occurred. The EIN will therefore
be the maximum likelihood estimator. For longer windows, the EIN will be
an approximation because of the tradeoff between the increased likelihood
of observing an immediate trade when adding a link to the network, and the
decreased likelihood such a link introduces of not observing a trade in the future.
For sparse networks, we would usually expect the former effect to dominate,
and the EIN should therefore provide a good approximation for sparse networks
even with relatively longer time windows. We next show that the EIN indeed
performs well in simulations for such networks.

1.4 Performance of estimation method
In this section, we focus on the case where the threshold for a connection
is M =1, and the time period is one unit of time, so that agents who
trade within the period [t,t +1] for some t are connected, i.e., we focus on
E1,1. We simulate trades in the network in Figure 1 with N =100 agents,
over 50 trading periods, with probabilities q1 =0.25, q2 =0.5 (defined in

8 Note that our definition of EIN is different from the one taken in Adamic et al. (2010), who identify two
investors as connected if they traded with each other. Such traders are on the opposite side and will thus not be
viewed as connected in our model.
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Figure 4
Empirical Investor Network
The figure shows the empirical investor network, EIN, generated from a simulation of 50 trading periods, in a
network with N =100 traders, of which NI =21 belong to the information network and NU =79 are noise traders
as in Figure 1. We assume that probabilities of q1 =0.25, q2 =0.5 and the threshold for a connection is M =1.

Section 1.1).We choose a higher per-agent probability for information diffusion
at the second stage, since it seems natural to assume that agents are pickier
in who they share information with early on, when information is more
proprietary.

An example of a realized EIN is shown in Figure 4. We see that the general
structure of the true network is identified, although not every link is correct. For
example, in the upper left part of the EIN, which represents the agents in the
information network, there are several elements just off the diagonal that are
nonzero, representing links between agents, although no such links exist in the
true information network. This is, for example the case for agents 20 and 21,
who are incorrectly linked in the EIN. The reason is that agent 3 received a
signal that he shared with agents 20 and 21, who then traded simultaneously
and who were thereby falsely identified as directly linked, although they are in
practice only indirectly linked through their common connection with agent 3.
Similarly, erroneous links occur in the part of the matrix with uninformed
agents. These links arise when two agents happen to take the opposite position
of their informed counterparties, at similar points in time. In the informed part
of the network matrix (the first NI ×NI in the upper left corner), there are 42
agents, who are incorrectly identified as being linked. Also, there are 4 agents
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who are actually linked, but who are not estimated to be linked. Thus, in total, 46
links are misclassified, corresponding to about 10% of the total number (441)
of elements in E I . In the noise trader part of the network, there are 126 incorrect
links, scattered randomly, corresponding to about 2% of the total number of
elements (6,241). Thus, overall the number of misclassified elements is low.
The EIN also captures the true centrality of agents in the network well. The
average correlation between the centrality vector of the true network and that
of the EIN is 0.64.

We verify that the method is scalable (i.e., that the fractions of misclassified
elements does not blow up when the size of the network increases) and also
that the method works for more general network structures. To do this, we
simulate a large number of networks of N agents, where NI =0.2N agents
are in the information network, and the remaining agents are noise traders,
NU =0.8N . We randomly generate links between investors in the information
network. To keep the network sparse, a property that is known to hold for large-
scale networks in practice and in this context is consistent with the view that
investors on average are only directly connected to a small part of the rest of
the population, we choose the probability for a link to be such that the expected
number of links of each agent in the information network is

√
NI . Thus, in an

information network of size 100, each agent is on average connected to 10%
(10/100) of the rest of the population, whereas in a network of size 250,000,
each agent is on average connected to about 0.2% (500/250,000). This is of the
same order of magnitude as the network we study in Section 3.

We simulate NI paths of trading in each randomly-generated network,
and calculate the average fraction of misclassified elements over many such
networks. By varying N , we verify that the fraction of misclassified elements
in the EIN does not grow with the size of the network. For N =200, the total
fraction of misclassified links is 0.23%, and the fraction of misclassified links
in the information network (excluding the NU noise traders) is 2.0%. With
N =2,000 agents, the fraction of misclassified links is slightly lower: 0.20% of
the total links and 1.6% for the information network. Thus, the identification
method is scalable.

To summarize, the EIN is scalable, an exact maximum likelihood estimator
for short time windows, and performs well in simulations. We therefore use it
in our empirical tests.

1.5 Limitations and additional analysis
The EIN can be estimated from account level data on trades, but there are
limitations to solely relying on the EIN. We discuss these limitations and
additional analyses and tests that can be used to obtain further insight about the
role of information diffusion in the market.

Omitted variables and alternative trading motives may potentially generate
an empirically estimated network similar to the one driven by information
diffusion. However, any alternative explanation needs to satisfy several
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additional properties, in addition to generating correlated trades among
investors. First, it needs to lead to a positive relationship between centrality
and profitability in the 1–3 month horizon, which is the profit horizon we
will use in our tests. Second, it should be consistent with investors’ trading
behavior over short horizons. Specifically, we mainly use a time window of 30
minutes when constructing the EIN. Under information diffusion, central agents
systematically trade before their peripheral neighbors within this time window,
and an alternative explanation should also have this property. Third, if the EIN
represents links in an information network, it will be relatively stable over time.
By comparing EINs constructed over different time periods, such stability can
be verified. A fourth test is based on actual information events. Given a set
of information events identified in the media that moved stock prices, central
agents in the EIN should tend to trade earlier with respect to these events
than peripheral agents. Such a test provides a direct link between centrality
and information, and therefore efficiently separates information diffusion from
other explanations. These predictions and associated tests will allow us to fairly
confidently conclude that EIN captures information diffusion, although we
cannot completely rule out all alternative explanations.

The EIN does not directly identify the underlying channels of information
diffusion. Two such channels may be word-of-mouth communication between
investors and Internet discussion boards. These are examples of fairly
decentralized diffusion mechanisms. An alternative channel would be diffusion
through different mainstream media outlets, where some investors get their
information earlier than others, for example, from national news broadcasts
as opposed to local newspapers. This corresponds to a centralized diffusion
mechanism, with a few information hubs.9 We propose two approaches to gain
additional insight about the underlying channels of diffusion. First, we can
measure how centralized the EIN is, using standard methods. Three natural
measures are the median number of connections investors have, the so-called
network centralization index, and the number of local communities in the
network, defined as groups of investors who are tightly connected among
themselves but only sparsely connected to other investors. A low median
number of neighbors and network centralization index is consistent with a
decentralized network, as is a high number of communities. This, in turn,
goes against mainstream media as the main source of diffusion. The second
approach uses the information events. By studying the increased trading activity
around these events, insight about the diffusion channels can be obtained.
Specifically, if the bulk of the increase in trading activity occurs before the
event is reported in mainstream media, this goes against mainstream media as

9 Of course, these different channels have the common property that information is gradually incorporated into
agents’ trading behavior and asset prices, in line with our results. In its most general form, an information network
describes information available to agents in their trading decisions over time, as expressed in Definition 1,
regardless of the channel through which information diffusion occurs.
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the main channel of diffusion. We will use these tests to better understand the
underlying information diffusion channel.

The EIN alone will not be able to determine whether the information
being diffused is about fundamentals or about something else. As described
in Ozsoylev and Walden (2011), information diffusion can be incorporated into
a noisy rational expectations model. In such a model, asset prices are based on
fundamentals, and are semi-strong form efficient in that they reflect all public
information. However, there may also be information, not about fundamentals,
but, for example about investor sentiment and, furthermore, prices are not
necessarily efficient. Some of the information could even be that central agents
know that peripheral agents will follow suite shortly in their trades, although we
show in Section 3.3 that other types of information events are also important.

Finally, our approach is based on a rational framework with information
diffusion, in which central agents have an informational advantage, but
additional network mechanisms could also be relevant. For example, agents
could suffer from persuasion bias or other biases, imposing costs on centrality
(e.g., DeMarzo, Vayanos, and Zwiebel 2003; Han and Hirshleifer 2012; Heimer
and Simon 2012). Furthermore, it could be that agents with many links need
to invest more time in upholding these links, and therefore have less time to
invest in their own information acquisition. The latter mechanism would punish
direct links to other investors, but still reward higher-order links, again along
the lines of our main theme that centrality is valuable.

2. Description of the Data

2.1 The Istanbul Stock Exchange
The Istanbul Stock Exchange (ISE) was founded as an autonomous,
professional organization in early 1986. The ISE is the only corporation in
Turkey established to offer trading in equities, bonds and bills, revenue-sharing
certificates, private sector bonds, foreign securities, and real estate certificates,
as well as international securities. All ISE members are incorporated banks and
brokerage houses. There were 100 ISE members in 2005.

The ISE is an order-driven, multiple-price, continuous auction market with
no dedicated market makers or specialists. A computerized system matches
buy and sell orders on a price and time priority basis. The buyers and sellers
enter the orders through their workstations located at the ISE building, or at the
member’s headquarters. It is a blind order system with ISE members identified
upon matching trades. The system enables members to execute several types of
orders such as “limit,” “limit value,” “fill or kill,” “special limit,” and “good till
date” type orders. Members can enter buy and sell orders with various validity
periods of up to one trading day. Unmatched orders without a specific validity
period are cancelled at the end of the trading session.

The stock trading activities are carried out on workdays in two separate
sessions, 9:30–12:00 for the first session and 14:00–16:30 for the second
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session. Settlement of securities traded in the ISE is realized by the ISE
Settlement and Custody Bank Inc. (Takasbank), which is the sole and exclusive
central depository in Turkey. Turkey has a liberal foreign exchange regime with
a fully convertible currency. In 2005, the value of one Turkish Lira (TL) varied
between 0.7 and 0.8 USD. Since August 1989, the Turkish stock and bond
markets have been open to foreign investors without any restrictions on the
repatriation of capital and profits. At the start of our sample period, the vast
majority (94.7%) of the institutional investors in our sample were foreigners.

The ISE ranks 19th across the world with market capitalization of USD 201
billion in 2005 (Source: World Development Indicators). The average daily
trading volume ranged between approximately USD 300 and 700 million. The
turnover ratio of the ISE was 155% in 2005, which was comparable to the
turnover ratio of 129% for the U.S.

2.2 The data
Our dataset contains all the trades on the ISE over a 12 month period, January 1–
December 31, 2005. During this period, 303 stocks were actively traded. In the
data, each trader is identified by a unique account number, and for each trade the
following information is available: time of trade, stock ticker, number of shares
traded, price, account number of purchaser and seller, purchaser and seller types
(private, institutional or brokerage house trading on its on own account), and
whether the trade was a short sale. In total, there were 580,142 active accounts
during the time period. Of these, 489 were classified as institutional accounts
and the remaining 579,653 were classified as individual accounts. On average,
about 200,000 trades were executed per trading day.

2.3 The Empirical Investor Network
We calculate the EIN for the market, using the threshold M =3, and varying
the length of the time window, �t , between 1 minute and 30 minutes. We
subsequently extend the time window to a whole day, and also vary M between
1 and 10. By using a window length of no more than one day, we separate
information-driven “fast” trading from other types of trading, such as portfolio
rebalancing, momentum investing, style investing, etc., which we typically
think of as occurring over lower trading frequencies. For example, momentum
strategies are typically implemented over a three-month to one-year horizon,
and the impact of value and size strategies are rarely studied over shorter than
monthly horizons. In contrast, the EIN is constructed to capture information
diffusion effects at horizons of about a week, taking higher-order effects into
account (i.e., degrees of order higher than one). For computational reasons, we
use shorter time windows for several analyses.10

10 This is justified since it turns out that the structure of the EIN is very similar across different length, as are our
main results. This is not surprising since two investors who are directly linked when a window length of �T is
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Table 1
Summary statistics for EIN

Time window, �T 1 min 5 min 15 min 30 min

Number of links 161M 402M 731M 1.03B
Average number of links 277 693 1,260 1,781
Median number of links 14 43 97 159
Fraction of links 0.05% 0.12% 0.22% 0.31%
Maximum number of links 116,720 171,823 219,123 251,943

The table shows summary statistics for the Empirical Investor Network (EIN) calculated by using actual trades
from Istanbul Stock Exchange over a 12-month period, January 1–December 31, 2005. Two agents are linked
when they trade in the same stock in the same direction within 1-, 5-, 15-, or 30-minute window. Fraction of
links is equal to average number of links divided by the number of potential links, which is equal to 580,142
during the time period. The threshold M =3 is used.

In Table 1, we provide summary statistics for the EIN, using window lengths
between 1 minute and 30 minutes. Overall, the network is very sparse. Even
with the 30-minute window, investors are on average only connected to a small
fraction, 0.3% (1,781/580,142), of the investor population. This may still seem
like a large number. With a narrow interpretation of network connectedness
representing communication between investors in a social network, one may
expect the number of links to be in the low hundreds, not in the thousands.
For example, Ugander et al. (2011) find that the average Facebook user in the
U.S. had 214 “friends,” and about one per mil of these users have 5,000 friends
(the maximum number allowed by Facebook), as of May 2011. Hampton et al.
(2011) report a similar number. They survey 2,255 American adults on their
use of social networking web sites, and on their overall social networks. In
the sample, the average Facebook user has 229 friends, whereas the average
adult has an overall network of 634 social ties, including weak ties (e.g.,
acquaintances). Dunbar (1992) proposes 150 as being a natural size for social
groups. With a stricter definition of social ties (e.g., only including family,
close friends, and colleagues) one may expect an even lower number, say less
than 50; Internet discussion boards about stocks as channels for information
diffusion, on the other hand, may lead to a higher number, perhaps even above
1,000.

The mean number of links in our EIN is relatively high. However, the
distribution of links is severely skewed, due to the small fraction of investors
with a very large number of links. The most connected investor when the
30-minute window length is used has over 200,000 links, and is thereby
directly connected to almost half of the other investors. We suspect that these
investors are (unofficial) market makers that provide liquidity—an investor
group that is not part of our theoretical model—and therefore come out as
extremely connected, although they are not part of the information network.
We eliminate the undo influence of such extreme observations by truncating the

chosen, are typically also indirectly connected (at a higher degree than one) with a window length �T ′ <�T .
The main difference when varying the windows length is that we find a somewhat stronger relationship between
centrality and profitability for longer windows.

1340

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/27/5/1323/1580322 by Purdue U

niversity Libraries AD
M

N
 user on 12 August 2019



[10:49 1/4/2014 RFS-hht065.tex] Page: 1341 1323–1366

Investor Networks in the Stock Market

100 101 102 103 104 1050

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree − number of links

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

Figure 5
Distribution of number of links
The figure shows the cumulative distribution function of the 580,142 investors’ number of links (degrees) in
the Empirical Investor Network (EIN), calculated by using actual trades from Istanbul Stock Exchange over a
12-month period, January 1–December 31, 2005. Two agents are linked when they trade in the same stock in the
same direction within a 30 minute window at least M =3 times. The median number of links is 159. Further, 90%
of investors have less than 4,000 links. A small number of investors have an extremely large number of links,
leading to a significantly higher average number of links (1,781) than the median.

distribution and by using logs of variables. In Figure 5, we show the cumulative
distribution of the number of investor links. We see that 90% of investors
have less than 4,000 links. The median number of links thus seems more
informative than the mean. The median number of links with the 30-minute
window is 159, which is within the lower range of numbers reported in the
literature.

A related measure is the number of communities in the network. Briefly, a
set of investors who are heavily connected among themselves, but sparsely
connected with other investors, form a community. In a decentralized
information diffusion process (e.g., representing diffusion through social ties)
we would expect a large number—many hundreds or even thousands—of
relatively small communities in the network. With a more centralized diffusion
process on the other hand, we would expect a smaller number of communities.
For example, if the network represents information diffusion through different
media channels, we would typically expect the number of communities to be
less than 100.11

11 There were four TV news channels and 28 newspapers in Turkey in 2005, with an average daily circulation over
10,000 (source: www.medyatava.com).
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We estimate the number of communities, using the method developed
in Clauset, Newman, and Moore 2004. This is one of the few methods
that can be used for a network of our size; see also Newman (2004).
For computational reasons, we exclude the 10% most connected investors.
This also helps us avoid influence from outliers. The algorithm detects
1,109 communities with an average size of 523, which is consistent with
decentralized information diffusion, but not with centralized diffusion (e.g.,
through mainstream media).

A third measure of network centralization is the network centralization
index, NCI, which is a number between 0% and 100% that measures how
centralized a network is compared with a completely centralized star network
(see Freeman 1979). Such a star network has a maximal NCI of 100%. The
NCI for our EIN is 4.5%, which is quite low. For example, in a network with
many local communities where each community has a star structure, an NCI
of 4.5% corresponds to having about 1,250 such communities, with about 460
investors in each, again higher than what we would expect from diffusion
through mainstream media channels.

In total, the structure of our EIN is thus consistent with decentralized
information diffusion through social ties, Internet discussion boards, and local
communities rather than through mainstream media.

2.4 Trading volume, number of trades, and returns
For each investor i and trade z, we define number of shares traded (Niz), trading
price (Piz), and trading quantity (Qiz =Niz∗Piz). We first construct a vector of
total trading quantity, Qi , where Qi =

∑
zQiz is the total value (in TL) of

purchases and sales that investor i executes over the total time period (one
year). Similarly, we define the vector of number of trades of each individual
investor, Ni , over the total time period. We also define the log-counterparts, qi

and ni , as vectors with qi =log(Qi) and ni =log(Ni).
To measure trading returns, we use the same approach as in in Barber et al.

(2009), but focus on individual investors’ trades rather than on investor groups.
Briefly, we define a window length, �T , which we set to 30 days but vary for
robustness purposes later. For each trade, z, the realized return is:

μiz = sign∗ P t+�T −P t

P t
,

where P t+�T is the closing price of the stock 30 days after the trade (or, if the
market is closed on that day, the closing price on the nearest open day after), P t

is the price at which the stock was traded and the sign indicates the direction of
the trade, and is negative for an investor on the sell side of a trade and positive
for an investor on the buy side of a trade. Here, P is corrected for stock splits,
and takes dividend payments into account. We then define the return of the
investor from all trades as the value-weighted average returns from all trades
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within a year,12

μi =

∑
zμiz∗Qiz∑

zQiz

. (2)

We use the value-weighted return measure μi in our main tests. In robustness
tests, we verify that the results are very similar when using average returns
instead (i.e., when weighing each transaction equally in determining an
investor’s profitability).

Our return measure captures returns that are generated within a month after
a trade. Given our focus on information that diffuses relatively quickly, we
believe that this window is long enough. Returns over longer time horizons
will not be captured by this return measure, but investors who trade and
realize returns at higher frequencies will be measured correctly, on average.
For example, assume that an investor has positive information about a stock,
buys it (this is trade z at t), and that it subsequently generates high returns over
the next week, after which the investor sells it (this is trade z′ at t ′). The first
trade will be profitable, whereas the second trade will on average yield zero
return, so given that current information shocks are uncorrelated with future
information shocks, returns realized over a shorter period than a month will
also be captured. In subsequent robustness tests, we verify that the results also
hold with profit windows that are longer than 30 days, and when using the time
when trades are actually closed, by limiting our sample to trades that are closed
within the sample period.

Our weighted return measure μi also captures market movements, that is, a
trader may be profitable even without valuable information, because the market
happened to go up during the period in which he traded. To adjust for market
movements, we define μe

iz as the excess return for transaction z,

μe
iz = sign∗

P t+�T P t
M

P t+�T
M

−P t

P t
,

where PM is the value of the ISE 100 index. Then we calculate value weighted
excess returns as:

μe
i =

∑
zμ

e
iz∗Qiz∑
zQiz

. (3)

It is unclear whether or not we should adjust for market returns, since it
could be that valuable stock information actually happened to apply to all
firms in the market. We therefore use both the raw and excess returns in our
analysis.

12 Our data does not contain any information about investors’ portfolios, so we can not calculate the return on these
portfolios. We also cannot calculate the total value of an investor’s portfolio. In principle, over a long enough
period, we could “build” the portfolios by adding up investors’ trades, but our sample period is not long enough
to do this. Another limitation is that we can not identify a trader who uses multiple accounts.
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2.5 Summary statistics
We provide summary statistics for the variables in Panels A and B of Table 2,
where we have used the 30-minute window for the EIN, M =3, and the 30-day
return window. Several observations are in place: (i) mean profits, defined as
�i =

∑
zμiz∗Qiz and mean excess profits �e

i =
∑

zμ
e
iz∗Qiz are both identically

equal to zero, since there are always investors on both sides of a trade; (ii)
C, D, and N are all severely right skewed, which can be seen from their
mean being much higher than their median. Also, their standard deviations
are high, consistent with heavy-tailed distributions13; and (iii) C and D,
as well as their logarithms, c and d, are significantly positively correlated.
Nevertheless, we shall see that the additional information provided by centrality
beyond what is provided by connectedness is important in explaining investor
performance.

In Panel C of Table 2, we divide the total sample into the subgroups of
institutional and individual investors. The 489 institutional investors behave
quite differently than the individual investors. They are on average more central
and connected; the average centrality of institutional investors is 44.6 versus
4.95 for individual investors, and the average degree is 28,347 versus 1,759.
Also, not surprisingly, institutional investors trade in much larger quantities.
Since individual investors make up the vast majority, the summary statistics
of the total investor pool are almost identical to the summary statistics of the
individual investors, as is seen by comparing Panels A and C in Table 2. The
only number that is significantly different in the two tables is average trading
quantity, where the institutional investors, although they make up less than
a per mille of the total investor pool, increase the average trading quantity
by about 10% when they are included. An implication of the dominance of
individual investors is that our results are not affected by whether we include
or exclude institutional investors. We will therefore usually include them, but
verify that the results do not change when they are excluded—for the sake of
robustness.

3. The Centrality in the EIN, Information, and Returns

3.1 Stability of EIN over time
For the EIN to be consistent with an information network, we would expect
it to be relatively stable over time. Equivalently, for information networks to
provide a meaningful concept and to be measurable, they should not change too
fast. A simple test of such stability is to divide the total time period of one year
into two sub-periods of six months each, calculate EINs for both sub-periods,
E1 and E2, and see whether they are more similar than what they would be, if
randomly generated.

13 In a separate analysis, available upon request, we verify statistically that the distributions are indeed heavy-tailed.
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Table 2
Summary statistics for investors

A. All investors

Correlation

Mean Std. dev. Median C D N � �e V

Centrality, C 4.99 12.1 0.64 1
Degree, D 1,781 5,786 159 0.95 1
Number of trades, N 149 1,467 8 0.71 0.60 1
Profits, � 0 2.0E5 −19.0 0.021 0.040 0.011 1
Excess profits, �e 0 1.3E5 −2.4 0.018 0.039 0.010 0.69 1
Quantity, Q 9.1E5 20.4E6 11,340 0.27 0.43 0.14 0.21 0.18 1

B. All investors: log-variables

Correlation

Mean Std. dev. Median c d n μ μe v

Centrality, c −1.11 17.0 −0.43 1
Degree, d 5.23 2.23 5.07 0.23 1
Number of trades, n 2.41 2.00 2.08 0.17 0.93 1
Returns, μ −0.014 0.085 −0.038 0.013 0.067 0.083 1
Excess returns, μe −0.058 0.074 −0.0012 0.003 0.002 0.018 0.86 1
Quantity, q 9.34 2.95 9.34 0.16 0.82 0.84 0.050 0.006 1

C. Individual and institutional investor groups

Individual Institutional

Mean Std. dev. Median Mean Std. dev. Median

Centrality, C 4.95 12.0 0.64 44.6 41.6 36.1
Degree, D 1,759 5,632 159 28,347 37,685 14,262
Number of trades, N 144 1,350 8 6,805 18,390 1,460
Profits, � 23.7 2.0E5 –19.0 –28,070 1.0E6 2.98
Excess profits, �e –31.2 1.3E5 –2.4 37,040 3.6E5 8,680
Quantity, Q 8.3E5 18.3E6 11,310 9.9E7 2.9E8 1.3E7

The table shows summary statistics from the Empirical Investor Network (EIN) calculated by using actual trades
from Istanbul Stock Exchange over a 12-month period, January 1–December 31, 2005. Two agents are linked
when they trade in the same stock in the same direction within a 30-minute window at least M =3 times during
the period. Degree measures the number of links an agent is connected to, including himself. Centrality is the
eigenvector centrality. The variable μ is the value-weighted return for all trades of an investor for the entire
year assuming a 30-day holding period for each trade and μe is the excess return of the investor calculated
similar to μ after adjusting return from each trade by the market return (ISE 100 index return). Quantity is the
sum of value of all transactions for an investor. Panels A and B shows summary statistics for all investors and
the correlation between the variables. Panel C has two groups, institutions and individual investors, and shows
summary statistics.

Obviously, the test will depend on our assumptions about the data-generating
process for the EINs. The simplest null hypothesis is that these are completely
random (except of course for the self-connection between an investor and
himself, which is always present), i.e., that if the matrix E1, with N investors,
contains k1 links, then for each pair of investors, i and j �= i, the chance
to be linked is k1

K
, where K =N (N −1)/2 is the total number of possible

(bidirectional) links. This corresponds to a situation where the data-generating
process for E1 was such that links were randomly added until the matrix had in
total k1 elements.

We let y denote the number of overlaps between the two EINs (i.e., the
number of investor pairs that are linked in both E1 and E2). Given that both E1
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and E2 are completely random (with the given data-generating process), and
that k1 <<K , k2 <<K , where k2 is the number of links in E2, it follows that
the expected number of overlaps is approximately14

ECompletely random[y]≈ k1k2

K
. (4)

We compare the realized and expected number of overlaps, for the EINs
generated with one-minute and five-minute windows, in Table 3. We do this
for different choices of the threshold for the number of trades needed for two
investors to be treated as connected in the network, M . We let M vary between
1 and 80. Clearly, the hypothesis of completely random data-generating
processes for the EINs can be strongly rejected. In fact, as seen in Table 3,
the likelihood of being linked is between 72.2 and 26,200 times higher than
what is predicted under the hypothesis of completely random data-generating
processes, depending on the window length and the link threshold.

Now, obviously the EINs are not completely random; if they were, the degree
distributions would be Poisson distributed. However, the true distribution has
heavier tails (see Section 2.5). A more appropriately specified test for stability
is therefore to study the number of overlaps, given the (heavy-tailed) degree
distributions observed in practice. We define such a degree-adjusted measure
in the Internet Appendix and show that the overlap with this measure is still
substantially higher than under the null: 6.09 times higher with the five-minute
window and 7.55 times higher with the one-minute window, both highly
statistically significant.

3.2 Centrality and returns
The theory suggests that centrally placed investors, all else equal, are more
profitable than peripheral investors. This is a novel prediction, and if it holds
empirically, it lends support to the information network story. Specifically, it is
quite natural that the degree of an investor—being derived from the investor’s
trading behavior—is strongly related to other variables (e.g., number of trades,
trading volume, and even trading returns) and it is therefore difficult to draw
inferences from properties of the degree. Centrality, on the other hand, a priori
has no such direct relation to other measures, or stories, of trading behavior—the
natural interpretation is that it measures investor advantage from information
diffusion.

We regress returns, μi , and excess returns, μe
i , on log-trading quantity,

number of trades, connectedness and centrality, using a 30-minute time window.
To avoid influence by outliers, we truncate the data, so that investors in the

14 Here, the approximation is that we treat the addition of links as “draws with replacement,” whereas in practice
there is no replacement (i.e., in practice the probability that a new link in E2 overlaps with one in E1 depends on
how many links already exist in E2). The error introduced by this approximation is marginal, given that k1 <<K

and k2 <<K .
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Table 3
Stability of EIN

A. One minute time window (�T =1)

Connection threshold 1 10 20 40 80

Number of links in first half, k1 129,146,847 11,174,905 5,014,735 2,150,618 903,097
Number of links in second half, k2 136,493,437 12,006,001 5,539,690 2,442,503 1,057,607
Number of overlaps, y 11,860,359 1,347,214 659,874 314,779 148,704

ECompletely random[y] 104,750 793 165 31 6
y/ECompletely random[y] 113.2 1,690 3,997 10,084 26,200

EDegree-adjusted[y] 1,570,908
y/EDegree-adjusted[y] 7.55

B. Five minute time window (�T =5)

Connection threshold 1 10 20 40 80

Number of links in first half, k1 259,906,612 33,510,862 16,238,861 7,420,656 326,895
Number of links in second half, k2 274,034,135 35,975,750 17,924,953 8,449,474 3,817,082
Number of overlaps, y 30,556,857 4,659,221 2,400,323 1,180,224 559,647

ECompletely random[y] 423,237 7,164 1730 373 74
y/ECompletely random[y] 72.2 650 1,388 3,168 7,548

EDegree-adjusted[y] 5,017,607
y/EDegree-adjusted[y] 6.09

The table shows the stability of the empirical investor network across the first and second half year in the
sample period of January 1–December 31, 2005. Two agents are linked when they trade in the same stock in
the same direction multiple times, determined by the connection threshold, within the time window. In Panel A,
the time window is one minute and in Panel B the time window is five minutes. The connection threshold, M ,
is between 1 and 80 and displayed in columns. The total number of potential connections between investors
is K =N (N −1)/2=1.68×1011 (counting the relationship that investors i and j are linked as one link, i.e.,
not double counting bidirectional links), where N =580,142 is the number of investors. Number of overlaps, y

measures the number of intersecting links between the first and second half of the year. ECompletely random[y]

is the expected number of intersecting link between the first and second half of the year if the networks are
random. EDegree-adjusted[y] is also a measure of expected number of intersecting links between the first and

second periods and corrects for the degree distributions observed in practice.

bottom two percentiles and top two percentiles of connectedness are discarded.
The results in univariate regressions, shown in Table 4, columns 1–5, generally
support the presence of a positive relation between centrality and returns. For
example, the coefficients for centrality, rescaled centrality and degree are all
positive and significant in explaining returns (Panel A), suggesting that higher
degree and centrality are associated with higher returns. When excess returns
are regressed (Panel B), the coefficients on centrality and rescaled centrality
are positive, but not significant.

To better identify the effect of centrality, we do multivariate regressions,
controlling for trading quantity, number of trades, and degree. The multivariate
results are stronger. The centrality coefficient comes out positive in all
regressions and the economic significance is higher than in the univariate
regressions. Specifically, a one standard deviation increase in centrality, all
else equal, implies an increase in returns by 0.7%–1.8%, depending on the
regression. We have no reason to believe that error terms are normally
distributed, so in addition to ordinary least squares, we perform an OLS
regression that is robust to heavy-tailed error terms, and an iteratively
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Table 4
Centrality and returns

A. Returns

1 2 3 4 5 6 7 8 9 10 11
OLS OLS OLS OLS OLS OLS OLS t −error t −error Ramsey Ramsey

Centrality (c) 0.0027 0.0060 0.0032 0.0060
>20 14.1 3.7 13.8

Degree (d) 0.0027 −0.0091 −0.0062 −0.0091
>20 −18.6 −6.4 −18.4

Rescaled Centrality (c−d) 0.00003 0.0038 0.0008 0.0038
4.13 9.2 0.94 8.9

# of trades (n) 0.0037 0.0092 0.0063 0.0072 0.0041 0.0092 0.0062
>20 >20 >20 19.9 19.0 >20 >20

Quantity (q) 0.0014 −0.0017 −0.0019 −0.0013 −0.0015 −0.0017 −0.0015
>20 <–20 <–20 −8.8 −10.3 <–20 <–20

R̄2 0.0043 0.0041 3.1E-5 0.0040 0.0024 0.0091 0.0083

�μ 0.6% 0.6% 0.05% 0.7% 0.4% 1.2% 0.1% 0.7% 0.001% 1.2% 0.1%

B. Excess returns

1 2 3 4 5 6 7 8 9 10 11
OLS OLS OLS OLS OLS OLS OLS t −error t −error Ramsey Ramsey

Centrality (c) 0.0001 0.0090 0.0066 0.0090
1.52 >20 8.8 >20

Degree (d) −0.0003 −0.0136 −0.0114 −0.0137
−0.43 <–20 −13.4 <–20

Rescaled Centrality (c−d) 0.00001 0.0056 0.0031 0.0056
1.7 15.6 4.3 15.4

# of trades (n) 0.00069 0.0063 0.0019 0.0056 0.0009 0.0063 0.0018
13.3 >20 19.7 17.8 4.7 >20 18.8

Quantity (q) 0.00014 −0.0004 −0.0008 −0.0004 −0.0008 −0.0004 −0.0008
4.2 −6.4 −12.2 −3.4 −6.0 −6.7 −12.6

R̄2 0.000041 3.5E−9 5.2E−6 0.00031 0.000029 0.0033 0.0010

�μ 0.01% −0.004% 0.02% 0.1% 0.04% 1.8% 0.2% 1.3% 0.1% 1.8% 0.2%

The table displays results from regressions of value-weighted returns (Panel A) and value-weighted excess returns (Panel B) on log centrality, log degree, log rescaled centrality, log number
of trades and log quantity. Each column represents a regression. The first row displays coefficients while the second row displays the t-statistics. Columns 1–7 display results from OLS
regressions, columns 8–9 display results from a regression that is robust to heavy-tailed error terms, and columns 10–11 display results from iteratively reweighted least squares regression
(using Ramsey’s E-function). The variable μ is the value-weighted return for all trades of an investor for the entire year assuming a 30 day holding period for each trade and μe is the excess
return of the investor calculated similar to μ after adjusting return from each trade by the market return (ISE 100 index return). Degree measures the number of links an agent is connected
to, including himself. Centrality is the eigenvector centrality. Trading quantity is the sum of value of all transactions for each investor. And # of trades is the total number of trades for each
investor. The variables, �μ and �μe highlight the economic significance of the results by showing the change in returns (and excess returns), given a one standard deviation increase of the
variable in univariate regressions and centrality or rescaled centrality in multivariate regressions, all else equal. The �t =30-minutes window is used. The data is truncated, such that investors
in the bottom two percentiles and top two percentiles of connectedness are discarded from the data.
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reweighted least squares (using Ramsey’s E-function) for multivariate
regressions. These regressions, displayed in columns 8–11 of Table 4, provide
similar results. The coefficients for d in the multivariate regressions are
negative, whereas the coefficients for c are positive, suggesting that it is indeed
centrality above and beyond degree that is important in determining returns.
Indeed, in multivariate regressions, the coefficients of rescaled centrality
(Table 4, columns 7, 9, and 11) all come out with a positive sign, and are strongly
statistically significant with one exception. These regressions also work as a
robustness test that the results are not driven by multicollinearity, given that
the correlation between centrality and degree is quite high. Thus, the positive
relationship between centrality and returns is well documented.

The previous results are based on a threshold for the number of overlapping
trades of M =3. It is an open question as to what is the “right” value of this
threshold. A too low M may mistakenly identify too many links. On the other
hand, a too high M may tend to under-identify links, especially for agents who
do not trade much.

To address this concern, we carry out the tests for all M between 1 and 10
and report the results in Table 5. The coefficient of centrality is always positive,
and significant for most of the range (the one exception being M=7, using raw
returns), but of course the actual magnitude of coefficients varies. It is higher
for lower Ms, and lower for higher Ms. However, the relationship between
centrality and returns is not monotonically decreasing in M; it increases for
M >7. The fact that the results hold up for a wide range of M mitigates the
concern regarding the choice of threshold. We also note that the correlation
between the different centrality measures is high when varying M . For example,
the correlation between the centrality vector with M =1 and with M =3 is 0.98,
and the correlation between the two vectors with M =1 and M =5 is 0.95.

With this in mind, going forward, we mainly use the threshold M =3 as
the base case, corresponding to a median number of links of 159. This is in
the low range of the numbers mentioned in Section 2.3. Another rationale
for choosing a fairly low threshold number is that although this may lead to
mistakenly identified links, such over-identification is possible to control for
to some extent, by controlling for number of trades, total trading quantity,
and degree (which are directly affected by number of trades), and by using
rescaled centrality. On the other hand, as M increases, we are more likely to
miss connections for agents who do not trade much, and it seems difficult to
control for such missed links.

As is common for tests on individual investor performance, the adjusted R-
squares (Table 4) are low, because of the noisiness of individual returns. As a
comparison, Ivković and Weisbenner (2007) use about 27,000 households to
check the correlation between average monthly excess returns and their locality
measures (see their Table V, columns 7 and 8). Their main variable of interest
is significant and adjusted R-squares vary between 0.0002 and 0.0004 (though
they get somewhat higher R-squares in other tests). This is about 10 times
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Table 5
Different thresholds

A. Returns

Threshold (M) 1 2 3 4 5 6 7 8 9 10

Median # links 673 294 159 119 86 73 58 52 44 39

Centrality (c) 0.012 0.098 0.0060 0.0035 0.0019 0.0014 0.00001 0.00015 0.00019 0.00019
>20 19.8 14.1 9.3 5.8 6.3 0.19 6.1 13.0 16.3

Degree (d) −0.014 −0.013 −0.0091 −0.0061 −0.0042 −0.0033 −0.0019 −0.0017 −0.0018 −0.0017
<–20 <–20 −18.6 −13.6 −10.5 −10.7 −7.5 −11.1 −11.2 −10.9

# of trades (n) 0.0084 0.095 0.0092 0.0087 0.0085 0.0079 0.0078 0.0076 0.0076 0.0075
>20 >20 >20 >20 >20 >20 >20 >20 >20 >20

Quantity (q) −0.0017 −0.0016 −0.0017 −0.0017 −0.0017 −0.0017 −0.0018 −0.0018 −0.0018 −0.0017
<–20 <–20 <–20 <–20 <–20 <–20 <–20 <–20 <–20 <–20

R̄2 0.01 0.010 0.0091 0.0088 0.0086 0.0085 0.0082 0.0084 0.0087 0.0087

�μ 2.2% 1.9% 1.2% 0.7% 0.4% 0.3% 0.01% 0.1% 0.2% 0.2%

B. Excess returns

Threshold (M) 1 2 3 4 5 6 7 8 9 10

Median # links 673 294 159 119 86 73 58 52 44 39

Centrality (c) 0.0098 0.013 0.0090 0.0059 0.0043 0.0015 0.0005 0.0001 0.0001 0.0001
>20 >20 >20 17.9 15.4 7.9 3.7 3.1 5.9 6.9

Degree (d) 0.013 −0.017 −0.014 −1.02 −0.0081 −0.0049 −0.0032 −0.0026 −0.0024 −0.0023
<–20 <–20 <–20 <–20 <–20 −18.4 −15.1 −19.3 −18.0 −17.0

# of trades (n) 0.0038 0.0059 0.0063 0.0059 0.0055 0.0048 0.0042 0.0040 0.0037
>20 >20 >20 >20 >20 >20 >20 >20 >20 >20

Quantity (q) −0.0004 −0.0003 −0.0004 −0.0004 −0.0005 −0.0004 −0.0006 −0.0005 −0.0006 −0.0006
−6.6 −4.8 −6.38 −6.54 −8.1 −7.1 −8.8 −8.9 −9.1 −8.4

R̄2 0.0032 0.0044 0.0033 0.0025 0.0020 0.0016 0.0013 0.0012 0.0012 0.0010

�μ 1.8% 2.6% 1.8% 1.2% 0.9% 0.3% 0.1% 0.03% 0.1% 0.1%

The table displays results from OLS regressions of value-weighted returns (Panel A) and value-weighted excess returns (Panel B) on log centrality, log degree, log rescaled centrality,
log number of trades, and log quantity, similar to Table 4, when varying the threshold for connections, M , between 1 and 10. Each column represents a regression. The first row displays
coefficients while the second row displays the t-statistics. The variable μ is the value-weighted return for all trades of an investor for the entire year assuming a 30-day holding period for each
trade and μe is the excess return of the investor calculated similar to μ after adjusting return from each trade by the market return (ISE 100 index return). Degree measures the number of
links an agent is connected to, including himself. Centrality is the eigenvector centrality. Trading quantity is the sum of value of all transactions for each investor, and # of trades is the total
number of trades for each investor. The variables, �μ and �μe highlight the economic significance of the results by showing the change in returns (and excess returns), given a one standard
deviation increase of the centrality, all else equal. The �t =30-minutes window is used. The data is truncated, such that investors in the bottom two percentiles and top two percentiles of
connectedness are discarded from the data.
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lower than the R-square we obtain in univariate regression using raw returns.
As another example, Massa and Simonov (2006) study almost 300,000 Swedish
households to find the determinants of portfolio choice. In their multivariate
individual household regressions (see their Table 4), they report adjusted R-
squares of 1%-2%. These are of similar magnitudes as our adjusted R-square
of 0.9% in our multivariate regressions for raw returns. We note that we are
trying to explain trading returns, which add up to zero by definition, and are
noisier than the portfolio returns used in the studies above.

By sorting investors into groups, based on their centrality, we can of course
largely cancel the noise out. For example, if we sort investors into 30 groups
based on their centrality, and do a univariate regression of average returns on
average group centrality across groups, we get an R2 of 83% and a t-stat of
11.96 for the coefficient of centrality. We avoid such grouping, since we are
interested in studying the complete investor population from an information
network perspective.

3.3 Centrality, information, and timing of trades
We verify that centrality is related to trading earlier than ones’ neighbors, and
also to actual information events in that investors who trade earlier with respect
to such events are more central than investors who trade later.Also, we show that
delaying the trades of central investors by a day decreases their performance,
further underlining the importance of the timing of their trades. These results
provide additional support for the information diffusion story over alternative
explanations (e.g., liquidity provision and style investing).

As a first test, we verify that trading before ones’ neighbors is related
to centrality.15 Specifically, we define the vector w, where the ith element
represents the average fraction of times investor i traded before his neighbors.
We regress w on rescaled centrality, c−d, and verify that the two variables are
positively related (t-stats above 20 for OLS, and for iterated reweighted robust
regressions with Ramsey’s E-function, and 12.9 for OLS with t-distributed
errors).

To verify that centrality is also related to trading early with respect to real
information events, we proceed as follows. Using standard news outlets, we
identify 11 events that can be related to large daily stock movements in 2005.
Details about the type of event, affected company, and size of stock movement
are provided in the Internet Appendix. We have focused on medium-size
companies with a couple of exceptions. The companies operate in fairly diverse
business areas. There were nine events that led to positive returns and two that

15 We have also carried out several tests that show that a general property of the EIN is that some investors tend
to systematically trade before their neighbors (the analysis is available upon request). This is a distinguishing
feature between the information story and several alternative stories of investing, e.g., liquidity provision and
style investing (broadly defined). Without further assumptions, two liquidity providers who trade in the same
stock will tend to trade ahead of each other about half of the time each, as will two style investors using the same
investment style.
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led to negative returns. The information events were reported in news outlets
within five business days prior to and after stock movement dates. All events
were stock-specific (i.e., idiosyncratic for one specific firm).

We choose a time window of seven days before and after the day the event
was mentioned for the first time in the media. Within this window, we identify
the investors who traded in the right direction (i.e., purchased the stock if the
information led to positive returns and sold it if returns were negative). For each
investor, we identify the time of the trade relative to the date of the information
event (time 0). If an investor traded multiple times (over the time period of one
event and/or across events), we use the (unweighted) average time traded for
that investor. This leads to a vector, T , of trading times (in the range [−7,7])
for each investor who traded within the window around any of the events, in
total 37,779 investors.

We regress T on the logarithms of centrality (c), degree (d), number of
trades (n), and trading quantity (q), where c and d were constructed using the
30-minute window, with threshold M =3. The results are shown in Table 6,
Panel A. We see that there is a strongly significant negative relation between
c and T , that is, that central investors trade earlier than peripheral investors,
both in multivariate and univariate regressions. The result is robust to several
variations. For example, very similar results are obtained if we move c to
the left-hand side of the regression and T to the right-hand side, with the
reversed causality interpretation that centrality is explained by investors trading
early with respect to information events. In the univariate regressions of T

on c, the t-statistic in the OLS regression is −19.4, it is −9.3 in the robust

Table 6
Trading time versus centrality

A. Original set of 11 events

1 2 3 4 5
Centrality Centrality Degree Number of trades Trading Quantity

c c d n q

βOLS −0.15 −1.0 1.0 −0.19 −0.03

tOLS <−20 −15.0 14.9 −11.2 −3.3
tt−error −15.1 −6.4 5.2 −1.9 −2.0
tRamsey <−20 −14.8 14.7 −10.8 −3.2

B. Extended set of 27 events

Centrality Centrality Degree Number of trades Trading Quantity
c c d n q

βOLS −0.19 −1.1 1.3 −0.31 −0.18

tOLS −19.4 −10.2 12.7 −11.6 −15.7
tt−error −13.7 −6.4 7.0 −4.3 −9.2
tRamsey −19.4 −10.2 12.7 −11.6 −15.6

The table shows the trading time (T ) regressed on log-centrality (c) in univariate regressions (Column 1), and in
multivariate regressions (Columns 2–5), together with log-degree (d) log-number of trades (n) and log-trading-
quantity (q). For a detailed definition of these variables, see Table 4. Panel A includes 11 events, and Panel B
includes an extended set of 27 events. In both panels, the first two rows show the coefficients and t-statistics
from OLS regressions. Rows 3 and 4 display t-statistics from a regression that is robust to heavy-tailed error
terms and from iteratively reweighted least squares regression (using Ramsey’s E-function), respectively.
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least squares regression, and −19.3 in the reweighed iterated least squares
regression.

To get an indication of the economic significance of this relationship, we
note that since the (univariate) coefficient on c is −0.15, and since the standard
deviation of c is 17.0 (from Table 2), a one standard deviation increase in
centrality corresponds to trading 2.55 days earlier with respect to the event.
The average absolute return in an event is 15.1%, that is, 1.1% per day over
the 14-day period. So, a one standard deviation increase in centrality would
correspond to higher profits of 1.1%×2.5=2.8%. This is higher than the
economic significance obtained in Table 4, which for the univariate regression
was 0.6%.

Of course, it is difficult to directly compare these two return measures,
although they do not seem inconsistent. The events we have focused on in
this section are special, in that they were reported in the media. This could
mean that they were “larger” information events than normal, and thereby
more profitable for central investors. It could also mean that they were just
more easily identifiable, thereby decreasing the informational advantage and
profitability of central investors. Moreover, the events were not rare in terms
of their return size. In fact, there were 3,291 events in 2005, in which
a stock’s absolute return was over 15% within a 10-day period, so such
events could potentially contribute significantly to the performance of central
investors.

We also verify that the results are still present when we use a larger set
of events. We expand the number of events to 27, in total covering 67,509
investors. Some of the events in the expanded set were less clear-cut than in
the original set, because the link between the reported news and the stock
movement was (subjectively) somewhat ambiguous. For instance, it could be
questioned whether the news on April 22, 2005, that GIMA (a national retail
chain) was to open a branch in a mid-sized coastal town could have caused
a sizable jump to its stock price, although such a jump was observed around
this news event. The results for the expanded set, shown in Table 6, Panel B,
are still similar to those of the original set. For example the univariate OLS
t-statistic is −19.4, and the multivariate OLS t-statistic is −10.2.

We next study the trading activity of investors around the information event,
to get an indication of what is the right time horizon for information diffusion.
We calculate the number of trades in the stock per hour for each of the original
11 events, where t =0 corresponds to the date when the event was reported
in the media. For each event, we normalize, by dividing with the average
number of hourly trades over the whole year. A number higher than one thus
represents a higher-than-average trading activity. We calculate the average of
these normalized hourly trading activities across the 11 events and, since there
is considerable noise at the hourly level, form a rolling average with a three-day
backward-looking time window. This measure of trading activity is shown in
Figure 6.
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Figure 6
Trading activity
The figure shows the average hourly trading activity over time for the 11 events (described in the Internet
Appendix), where Day 0 represents the point in time when each respective event was reported in the news. A
level higher than one represents a higher-than-average trading activity. The main increase in trading activity
occurs between 3 and 11 trading days before the event is reported in the news.

We see that the activity is above average from about 12 trading days before
the news event, until about 2 days after. The main increase in activity, however,
lasts between 3 and 11 trading days before the news event. During this period, a
sharp increase in trading activity occurs to almost twice the average, followed
by an equally sharp decline. We draw two conclusions from this: First, that our
conjectured information diffusion horizon of about a week to ten days is in line
with observed trading activity. Second, that most of the activity occurs before
the event is reported in the media. This provides additional support for that
information diffusion occurs through other channels than mainstream media.

We also verify that timely trades by central investors are important. We
sort traders into high and low centrality groups (using the median centrality
as a cutoff) and delay the trades of the high centrality investors by one day.16

Using excess returns to measure performance, the hypothesis is then that central
investors—who will tend to take the right side of the trade against less central
investors around information events—should lose out when their trades are
delayed, whereas less central investors should gain (the net effect is zero).

Indeed, we find that excess returns of high (above median) centrality
investors decrease by 0.21% when their trades are delayed by a day. In contrast,
excess returns of low (below median) centrality agents increase by 0.26% when
trades are delayed by a day.17 The t-stats in all of these tests are strongly
significant.

16 We use one day, since shorter delays may introduce micro-structure issues such as bid-ask bounce effects,
especially in less liquid stocks.

17 The changes in returns of high and low centrality agents do not exactly add up to zero since we weight each
agent equally, to be consistent with the rest of the paper.
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Finally, we regress returns from delayed trades on centrality. The hypothesis
is that the relationship between centrality and returns becomes weaker when
trades are delayed. Indeed, when trades are delayed, the centrality coefficient
decreases from 0.0027 to 0.0019, and the economic significance of a one
standard deviation increase in centrality decreases from 0.57% to 0.42%. Thus,
close to 30% of the positive relationship between centrality and returns is lost
when trades are delayed.

3.4 Alternative explanations and robustness of results
We have shown that centrality is positively related to profitability and to
trading early with respect to information events, in line with information
diffusion being the driving force behind our results, and we have argued that
several other explanations are unlikely. In this section we carry out several
additional tests, and find additional support for information diffusion over
alternative explanations. Especially, our robustness tests favor information
diffusion over spurious mechanical relationships between centrality and other
variables, algorithmic trading or other trading strategies by institutional
investors, momentum, and price impact from illiquidity, adverse selection, or
market micro-structure effects. In the on-line Internet Appendix, we provide
further robustness tests, using alternative profit measures and conditioning the
regressions on degree.

3.4.1 Out-of-sample tests. Since our dataset is restricted to only one year,
we have constructed all variables using the full year of data. A weakness of this
approach is that since profits are measured in-sample, there may potentially be
a purely mechanical relationship between centrality and returns that is driving
the results. To address this concern, we divide the one-year sample into two
subperiods. We construct C, D, N , and Q during the first eight months, and
then measure μ and μe during the remaining four months of the year. The tests
are then restricted to include only investors who traded in both sub-periods,
and to avoid losing too many investors, we use the threshold M =1. There were
228,538 such investors.

The results, shown in Panel A of Table 7 for the returns and in Panel
B for the excess returns, are similar to the previous results, although the
statistical significance is somewhat weaker. We attribute this to the shorter time
period in combination with smaller sample size. Specifically, all the centrality
coefficients have the correct (positive) sign, and most of them are highly
statistically significant. The economic impact on returns of a one standard
deviation increase in centrality varies between 0.2% and 2.1%, which is similar
to the previous tests (see Table 4).

We also study the out-of-sample relationship between trading early on
information events and centrality. In the base sample, with 11 events, all events
were chosen to be in the second half of 2005, so we construct C, D, N , and Q

using the first six months (and a 30-minute window). This reduces the number
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Table 7
Out-of-sample tests

A. Returns

1 2 3 4 5 6 7 8 9 10 11
OLS OLS OLS OLS OLS OLS OLS t −error t −error Ramsey Ramsey

Centrality (c) 0.0030 0.0110 0.0126 0.0113
>20 10.7 6.1 10.9

Degree (d) 0.028 −0.0124 −0.0146 −0.0127
>20 −12.1 −7.1 −12.3

Rescaled Centrality (c−d) 0.011 0.012 0.014 0.012
9.8 11.7 7.0 11.7

# of trades (n) 0.0035 0.0057 0.0047 0.0053 0.0037 0.0058 0.0047
>20 >20 >20 >20 10.3 >20 >20

Trading quantity (q) 0.0018 −0.0009 −0.0010 −0.0007 −0.0007 −0.009 −0.0009
>20 −7.3 −7.4 −2.7 −2.7 −7.1 −7.2

�μ 0.5% 0.5% 0.2% 0.6% 0.4% 1.8% 0.2% 2.1% 0.2% 1.8% 0.2%

B. Excess returns

1 2 3 4 5 6 7 8 9 10 11
OLS OLS OLS OLS OLS OLS OLS t −error t −error Ramsey Ramsey

Centrality (c) 0.0008 0.0010 0.0021 0.0012
9.9 1.2 1.2 1.3

Degree (d) 0.0008 −0.0022 −0.0037 −0.0024
9.6 −2.5 −2.6 −2.5

Rescaled Centrality (c−d) 0.0018 0.0018 0.0035 0.0020
1.6 2.1 2.0 2.2

# of trades (n) 0.0012 0.0038 0.0029 0.0035 0.0024 0.0038 0.0029
12.4 >20 13.8 14.2 5.8 >20 13.6

Trading quantity (q) 0.0005 −0.0004 −0.0006 −0.0004 −0.0002 −0.0004 −0.0006
7.7 −6.6 −5.3 −3.5 −1.0 −6.8 −5.2

�μ 0.2% 0.1% 0.03% 0.2% 0.1% 1.8% 0.2% 2.1% 0.3% 2.0% 0.2%

(continued)
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Table 7
Continued

C. Trading time regressions

T
Centrality Centrality Degree # trades Trading quantity

c c d n q

βOLS −0.13 −0.03 0.11 −0.15 −0.07
tOLS −13.8 −1.4 3.4 −5.6 −4.6
tt−error −9.5 −12.9 9.5 −2.8 −2.8
tRamsey −13.7 −1.4 3.4 −5.5 −4.6

The table repeats tests in Table 4 and Table 6 Panel A using left-hand side variables calculated out of sample period. The dependent variable is value-weighted returns in Panel A and
value-weighted excess returns in Panel B. In Panels A and B each column represents a regression and columns 1–7 display results from OLS regressions, columns 8–9 display results from a
regression that is robust to heavy-tailed error terms, and columns 10–11 display results from iteratively reweighted least squares regression (using Ramsey’s E-function). The first row displays
coefficients while the second row displays t-statistics. In Panel C, column 1 shows univariate regression results, while columns 2–5 show multivariate regression results. The second, third and
fourth rows show t-statistics from OLS regressions, a regression that is robust to heavy-tailed error terms and an iteratively reweighted least squares regression, respectively. In Panels A and B,
profits are calculated using the final four months of the year, whereas right-hand side variables are constructed using the first eight months. The variable �μ highlights the economic significance
of the results by showing the change in returns and excess returns, given a one standard deviation increase of the variable in univariate regressions and centrality or rescaled centrality in
multivariate regressions, all else equal. In Panel C, variables are constructed using the first six months of data, whereas the events occur over the following six-months. The threshold M =1 is used.
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of traders in the sample to 32,375. The results are shown in Panel C of Table 7.
For the multivariate regressions, all centrality coefficients have the right sign
(negative). For the robust least squares regression, the coefficient is strongly
significant (t-statistic of −12.9), whereas the coefficients are insignificant for
the OLS and reweighed least squares regressions (t-statistic of about −1.4
for both regressions). For the univariate regressions, all results are strongly
negatively significant (t-statistic of −13.8, −9.5 and −13.7, respectively, for
the three regressions).

Thus, our results hold out-of-sample and therefore do not seem to be driven
by a mechanical relationship between centrality, returns, and early trading.

3.4.2 Excluding institutional investors. We carry out the same tests as
before, but exclude institutional investors. The results (not reported) are
virtually identical. That is, we get very similar regression coefficients, statistical
and economic significance when institutional investors are excluded as when
they are included. That the results are very similar is not surprising, given that
each investor has the same weight in the regressions, and individual investors
make up more than 99.9% of the investor population in our sample. Our results
are therefore not capturing differences between institutional and individual
investors, but rather differences among individual investors. This also suggests
that (profitable) high-frequency, automated portfolio algorithm-based trading
strategies are not the source of our results, since it is unlikely that these are
prevalent among the noninstitutional investor population.

3.4.3 High- and low-information periods. Given that the source of higher
returns of central agents is information-based, we would expect the effect to be
stronger in periods of high information diffusion. The amount of information
diffusing into the market at any given time is unobservable, but a reasonable
proxy may be given by the number of earnings announcements in a given month.
The hypothesis is then that, all else equal, in months with a large number of
earnings announcements, central agents should outperform peripheral agents
more than in months with few earnings announcements. The number of earnings
announcements per month during the year varied as follows:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
8 41 178 109 182 87 19 176 120 55 179 80

We see that the numbers in the months of March, May, August, and November
are substantially higher than during the rest of the year (averaging 178, versus
65 during the remaining months). We therefore run regressions where profits
are based on trades in these months, and compare them with regressions on
the remaining months. The results are shown in Table 8. In line with the
hypothesis, the effects are much stronger in the high-information months. For
example, the centrality coefficient in the OLS regression is 0.019 in the high-
information period, with an economic significance of 3.6%, whereas it is 0.0008
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Table 8
High- and low-information periods

A. Returns

High-information periods Low-information periods

OLS t −error Ramsey OLS t −error Ramsey

Centrality (c) 0.019 0.015 0.019 0.0008 0.0025 0.0014
>20 12.5 >20 1.7 2.6 2.9

Degree (d) −0.016 −0.013 −0.017 0.0015 −0.0018 0.0007
<−20 −10.7 <−20 3.0 −1.9 1.3

# of trades (n) 0.0064 0.0059 0.0064 0.0007 0.0006 0.0007
>20 >20 >20 6.8 3.0 7.2

Quantity (q) −0.0054 −0.0049 −0.0054 −0.0010 −0.0007 −0.0010
<−20 <−20 <−20 −14.5 −5.0 −14.4

R̄2 0.016 0.0031

�μ 3.6% 2.8% 3.6% 0.2% 0.5% 0.3%

B. Excess returns

High-information periods Low-information periods

OLS t −error Ramsey OLS t −error Ramsey

Centrality (c) 0.010 0.0080 0.010 0.0025 0.0026 0.0029
19.6 7.9 19.8 5.9 3.0 6.8

Degree (d) −0.010 −0.0088 −0.011 −0.0023 −0.0033 −0.0028
<−20 −8.6 <−20 −5.2 −3.8 −6.5

# of trades (n) 0.0023 0.0017 0.0022 −0.0001 0.000003 −0.0004
19.3 7.0 17.8 −0.7 −2.3 0.05

Quantity (q) −0.0019 −0.0013 −0.0018 −0.0001 0.00003 −0.0002
<−20 −7.9 <−20 −2.4 −2.3 −2.8

R̄2 0.0032 0.00004

�μ 1.9% 1.5% 1.9% 0.5% 0.5% 0.6%

The table displays results from regressions of value-weighted returns (Panel A) and value-weighted excess
returns (Panel B), when total time period is split into high-information months, in which there were many
earnings announcements (March 178, May 182, August 176, and Nov 170), and low-information months, in
which there were few such announcements (January 8, February 41, April 109, June 87, July 10, October 55,
and December 80). The first row displays coefficients while the second row displays the t-statistics. Columns
2–4 display results in high-information months (OLS, heavy-tailed error terms, and iteratively reweighted least
squares with Ramsey’s E-function). Columns 5–7 display the regressions in the low-information months. The
variable μ is the value-weighted return for all trades of an investor for the entire year assuming a 30-day holding
period for each trade and μe is the excess return of the investor calculated similar to μ after adjusting return
from each trade by the market return (ISE 100 index return). Degree measures the number of links an agent is
connected to, including himself. Centrality is the eigenvector centrality. Trading quantity is the sum of value of
all transactions for each investor. And # of trades is the total number of trades for each investor. The variables,
�μ and �μe highlight the economic significance of the results by showing the change in returns (and excess
returns), given a one standard deviation increase of the variable in univariate regressions and centrality or rescaled
centrality in multivariate regressions, all else equal. The �t =30-minutes window is used. The data is truncated,
such that investors in the bottom two percentiles and top two percentiles of connectedness are discarded from
the data.

in the low-information period, with an economic significance of 0.2%. These
results further support our findings in Section 3.3 that information diffusion
significantly contributes to the returns of central agents.

3.4.4 Realized returns. According to our model, investors trade when
information arrives. However, the positions may not necessarily be closed right
after the information is incorporated into prices. Rather, the closing date may
be determined by other factors, like liquidity needs. In order to measure the
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information content of trades in a short time period, we have therefore used
a fixed holding period of one month for each trade. This assumption could
potentially induce spurious correlation in measured returns of investors.

As a robustness test, to ensure that such spurious correlation is not inflating
the significance of our results, we repeat our main test using a return measure
that is based on actual realized returns. This specification reduces the number
of trades that the return measure is based upon, since many trades are not
closed during the sample period, and also the number of traders in the sample,
since many investors did not close any trades during the period. The number of
remaining traders in the sample is 332,766. As shown in Table 9, the results are
similar with the alternative specification. All coefficients except one have the
right (positive) sign, and the economic and statistical significance are similar as
in the base tests, despite the large reduction in sample size. This indicates that
the highly significant values we obtain are not caused by spurious correlation
induced by the fixed holding period assumption.

This specification also addresses concerns that the positive relationship
between centrality and returns arises because of price impact or other micro-
structure effects, since returns in this test are realized. Of course, the time
horizon typically assumed for these micro-structure effects, whether due to
illiquidity, adverse selection, or other effects, is typically way shorter than
our return window of one month (e.g., Campbell, Grossman, and Wang 1993;
Chan 1993; Engelberg, Sasseville, and Williams 2012), so it should be of little
concern in the base test too, and even less so in our robustness test below, which
uses a three-month return window.

3.4.5 Longer return window. We extend the profit window. This shows that
our results are robust to longer profit horizons, and also supports information
diffusion over some alternative explanations. Specifically, given our time
windows, momentum or price impact are unlikely to explain our results.

We extend the profit window, �TP , to three months (our sample period of one
year make longer windows infeasible). With the extended window, centrality
and returns are positively correlated, and the magnitude is similar as before. For
example, the multivariate regression for excess returns, using a three-month
profit window, leads to a coefficient of β =0.0061 with a t-stat of 10.1 (not
reported in a table), compared to β =0.0060 with a t-stat of 14.1 when the 30-
day window is used (see Table 4). Similar results arise in the other regressions.
Thus, the bulk of returns seem to be realized within 30 days.

When stocks are sorted into winner and loser categories based on their
past performance in the momentum strategy, one month is skipped (Jegadeesh
and Titman 1993, 2001) before investing and holding for 6–12 months. It is
therefore implausible that momentum plays a major role behind the results in
this study, given the one-month window used when defining trading profits.
Indeed, momentum portfolio returns go in the wrong direction for the one-
month horizon (Jegadeesh and Titman 1993). Further, as noted above, the
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Table 9
Realized returns

A. Returns

1 2 3 4 5 6 7 8 9 10 11
OLS OLS OLS OLS OLS OLS OLS t −error t −error Ramsey Ramsey

Centrality (c) −0.012 0.0007 0.013 0.011
<−20 0.48 4.1 6.7

Degree (d) −0.012 0.0012 −0.0010 −0.0091
<−20 0.73 −3.2 −5.4

Rescaled Centrality (c−d) 0.058 0.0040 0.015 0.013
>20 2.6 4.8 8.4

# of trades (n) −0.013 −0.013 −0.014 −0.013 −0.011 −0.013 −0.014
<−20 <−20 <−20 -14.8 <−20 <−20 <−20

Quantity (q) −0.0081 −0.0013 0.0016 0.0016 0.0048 0.0016 0.0039
<−20 −6.7 8.1 7.8 5.4 7.6 19.3

R̄2 0.016 0.022 0.0059 0.022 0.017 0.023 0.023

�μ 1.9% 2.0% 1.1% 2.2% 2.0% 0.1% 0.08% 2.0% 0.3% 1.7% 0.3%

B. Excess returns

1 2 3 4 5 6 7 8 9 10 11
OLS OLS OLS OLS OLS OLS OLS t −error t −error Ramsey Ramsey

Centrality (c) 0.0041 0.016 0.0096 0.018
>20 13.2 4.0 14.8

Degree (d) 0.0038 −0.015 −0.00934 −0.017
>20 −11.7 −3.7 −13.7

Rescaled Centrality (c−d) 0.0059 0.016 0.0096 0.018
6.0 13.6 4.0 15.0

# of trades (n) 0.0038 0.0048 0.0057 0.0025 0.0026 0.0045 0.0050
>20 16.2 >20 4.1 6.2 14.8 >20

Quantity (q) 0.0019 −0.0004 −0.0008 0.0015 −0.0008 0.0004 0.0005
>20 −6.2 −5.6 4.9 −6.0 2.7 3.1

R̄2 0.0031 0.0029 0.0001 0.0033 0.0016 0.0040 0.0040

�μ 0.7% 0.6% 0.2% 0.7% 0.5% 2.5% 0.3% 1.5% 0.2% 2.9% 0.4%

The table displays results from regressions of value-weighted returns (Panel A) and value-weighted excess returns (Panel B) on log centrality, log degree, log rescaled centrality, log number
of trades, and log volume. Each column represents a regression. The first row displays coefficients while the second row displays the t-statistics. Columns 1–7 display results from OLS
regressions, columns 8–9 display results from a regression that is robust to heavy-tailed error terms, and columns 10–11 display results from iteratively reweighted least squares regression
(using Ramsey’s E-function). The variable μ is the value-weighted return for all trades of an investor and μe is the excess return of the investor. In contrast to Table 4, realized returns of
closed positions are used in the return calculations. Degree measures the number of links an agent is connected to, including himself. Centrality is the eigenvector centrality. Trading quantity
is the sum of value of all transactions for each investor. And # of trades is the total number of trades for each investor. The variables, �μ and �μe highlight the economic significance of
the results by showing the change in returns (and excess returns), given a one standard deviation increase of the variable in univariate regressions and centrality or rescaled centrality in
multivariate regressions, all else equal. The �t =30-minutes window is used. The data is truncated, such that investors in the bottom two percentiles and top two percentiles of connectedness
are discarded from the data.
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results are somewhat weaker—not stronger—when using the three-month profit
window, again at odds with the momentum explanation. Overall, momentum
therefore does not seem to be a likely driver of our results.

3.4.6 Longer time window. So far, we have used time windows of up to 30
minutes. The time horizon for information diffusion that we are considering
is about a week and the time window should be chosen significantly shorter,
since higher-order connections are also taken into account. Focusing on short
windows also helps us to differentiate our results from alternative explanations
such as traditional style motives, as previously discussed.

It could be argued, however, that a longer time window should be preferred,
given the increased trading activity over eight trading days observed in
Section 3.3. To verify the robustness of our results, we therefore also extend
the time window, �t , to one day. Because of computational limitations, we
are restricted to studying one-third of the investors (about 193,000, randomly
chosen) and construct the EIN from three months of trades instead of a year.18

The results, shown in Table 10, again document a positive relationship between
centrality and returns, with similar economic and statistical magnitudes as in
our previous tests.

3.4.7 No neighbors in the same brokerage house. If brokers are trading on
behalf of their clients, systematic sequencing of trades could mean that the
brokers are prioritizing important clients rather than that the clients themselves
are trading sequentially. To address this concern, we do not count links between
investors who are associated with the same brokerage house when creating
the EIN. The results (not reported) are almost identical as before. Thus, such
broker sequencing of trades, although potentially present, does not seem to be
the mechanism behind our results.

4. Conclusion

Central agents in our empirical information network earn higher profits and
trade earlier with respect to information events than their peripheral neighbors.
Our results support a view of the stock market as a place where new
information is incorporated into asset prices through gradual decentralized
diffusion. Information networks provide an intermediate information channel,
in-between the public arena where news events and prices themselves make
some information available to all investors, and the completely local arena of
private signals and inside information. In an information network, the degree
of publicness of a signal is determined by how long it has been diffusing, in

18 Even so, the program took several days to run on UPPMAX, a high performance computer cluster, using multiple
servers with up to 72GB of RAM.
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Table 10
Longer time window

A. Returns

1 2 3 4 5 6 7 8 9 10 11
OLS OLS OLS OLS OLS OLS OLS t −error t −error Ramsey Ramsey

Centrality (c) 0.0091 0.065 0.065 0.056
>20 >20 >20 >20

Degree (d) 0.0083 −0.063 −0.055 −0.063
>20 <−20 <−20 <−20

Rescaled Centrality (c−d) 0.0028 0.061 0.0526 0.061
>20 >20 19.0 >20

# of trades (n) 0.0071 0.0078 0.0059 0.0052 0.0039 0.0076 0.0058
>20 >20 >20 15.3 18 >20 >20

Trading quantity (q) 0.0054 −0.00002 −0.0019 −0.00002 −0.0014 −0.00002 −0.0019
>20 −1.5 <−20 −0.7 −9.7 −1.7 <−20

�μ 1.1% 1.0% 0.3% 1.4% 1.0% 7.7% 0.2% 6.6% 0.2% 7.6% 0.2%

B. Excess returns

1 2 3 4 5 6 7 8 9 10 11
OLS OLS OLS OLS OLS OLS OLS t −error t −error Ramsey Ramsey

Centrality (c) 0.0028 0.020 0.016 0.020
>20 15.7 6.1 15.3

Degree (d) 0.0025 −0.020 −0.016 −0.020
>20 −15.5 −6.3 −15.7

Rescaled Centrality (c−d) 0.0009 0.061 0.052 0.061
7.7 >20 19.0 >20

# of trades (n) 0.0023 0.0030 0.0085 0.0014 0.0057 0.0029 0.0084
>20 17.8 >20 4.3 18.4 17.5 >20

Trading quantity (q) 0.00046 0.00006 −0.0001 0.00006 −0.0001 0.00002 −0.0001
>20 0.55 −1.2 0.26 −0.6 0.23 −1.4

�μ 0.3% 0.3% 0.01% 0.5% 0.4% 2.4% 0.7% 1.9% 0.6% 2.3% 0.7%

The table repeats the tests in Table 4, using a one-day window to calculate links instead of 30 minutes, and threshold M =1. The dependent variable is value-weighted returns in Panel
A and value-weighted excess returns in Panel B. Each column represents a regression. The first row displays coefficients while the second row displays t-statistics. Columns 1–7
display results from OLS regressions, columns 8–9 display results from a regression that is robust to heavy-tailed error terms, and columns 10–11 display results from iteratively
reweighted least squares regression (using Ramsey’s E-function). The variable, �μ highlights the economic significance of the results by showing the change in returns and excess
returns, given a one standard deviation increase of the variable in univariate regressions, and centrality or rescaled centrality in multivariate regressions, all else equal. In both panels, the
sample is restricted to one-third (193,000) of the investors, and centrality and degree are calculated using the first three months of trades. Detailed definitions of variables are provided in Table 4.
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which part of the network it initially entered, and by the network’s topological
properties. This is consistent with significant asset price movements occurring
independently of public information events, with investors taking on diverse
portfolio positions, and with extensive trading in the market.

Although we cannot identify the exact channels of information diffusion,
our results suggest a decentralized diffusion mechanism, more in line with
diffusion through localized channels—for example, social networks—than
through mainstream media channels. This is the view taken in several recent
studies that focus on specific investor groups, for example, in Hong, Kubik, and
Stein (2004) and Cohen, Frazzini, and Malloy (2008). Our knowledge is still
limited, however. Which factors determine a market’s information network?
Geographical location? Social networks? Other channels? Given datasets with
more detailed information about investors in the market, further research may
shed light on this important question.
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