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Security Constrained Economic Dispatch: A Markov Decision Process 

Approach with Embedded Stochastic Programming 

 
Lizhi Wang, Iowa State University, USA 

Nan Kong, Purdue University, USA 
       
ABSTRACT  
 

The main objective of electric power dispatch is to provide electricity to the customers at low cost and high 

reliability. Transmission line failures constitute a great threat to the electric power system security. We use a 

Markov decision process (MDP) approach to model the sequential dispatch decision making process where demand 

level and transmission line availability change from hour to hour. The action space is defined by the electricity 

network constraints. Risk of the power system is the loss of transmission lines, which could cause involuntary load 

shedding or cascading failures. The objective of the model is to minimize the expected long-term discounted cost 

(including generation, load shedding, and cascading failure costs). Policy iteration can be used to solve this model. 

At the policy improvement step, a stochastic mixed integer linear program is solved to obtain the optimal action. We 

use a PJM network example to demonstrate the effectiveness of our approach. 

 

Keywords: Security constrained economic dispatch; Markov decision process; mixed integer linear program; 

stochastic programming 

 

 

INTRODUCTION  
 

In a pool-based electricity market, security 

constrained economic dispatch is the process of 

allocating generation and transmission resources to 

serve the system load with low cost and high 

reliability. The goals of cost efficiency and reliability, 

however, are oftentimes conflicting. On the one hand, 

in order to serve the demand most cost efficiently, the 

capacities of transmission lines and the cheapest 

generators should be fully utilized. On the other hand, 

the consideration of reliability would suggest using 

local generators, which may not be the cheapest but 

are less dependent on the reliability of transmission 

lines; a considerable amount of generation and 

transmission capacities should also be reserved for 

contingency use. A tradeoff between low cost and 

high reliability is thus inevitable. 

In practice, the “optimal” tradeoff for all 

stakeholders is a complex problem, and the solution 

may vary depending on the chosen perspective of 

decision making. The N-1 criterion (Harris & 

Strongman, 2004), for example, lists all possible 

contingency scenarios that have a single component 

failure and requires that the system be able to 

withstand all of these scenarios. Various stochastic 

criteria have also been proposed. Bouffard et al. 

(2005a, 2005b) review some of the recent 

publications on the probabilistic criteria and propose 

a stochastic security approach to market clearing 

where the probabilities of generator and transmission 

line failures are taken into consideration. 

 

This paper presents another stochastic 

approach to security constrained economic dispatch, 

which is able to study some important issues that 

have not been adequately addressed in the existing 

literature. First, cascading failures are taken into 

consideration. Although a rare event, the impact of a 

cascading failure could be tremendous. The 2003 

North American blackout, for example, affected 50 

million customers and cost billions of dollars (Apt et 

al., 2004). Despite the amount of investment and 

effort spent by engineers and policy makers, there has 

been evidence that the frequency of large blackouts 

in the United States from 1984 to 2003 has not 

decreased, but increased (Hines & Talukdar 2006). A 

great amount of research has been conducted on 

modeling, monitoring, and managing the risk of 

cascading failures (see e.g., Chen & McCalley, 2005; 

Talukdar et al., 2005; Hines & Talukdar, 2006).  

Zima & Anderson (2005) propose an operational 

criterion to minimize the risk of subsequent line 

failures, in which the generation cost is not being 

considered. We adopt the hidden failure model (Chen 

et al., 2005) and take both the probability and the 

economic cost of a cascading failure into 

consideration of power dispatch.  

Second, in our model, the dispatch decisions 

are made for an infinitely repeated 24-hour time 

horizon, representing the power system’s non-stop 

daily operations, as opposed to several other studies 

(such as Bouffard et al. 2005a, 2005b) which only 

consider an isolated 24-hour period. The advantage 
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of an infinite planning horizon is that the future 

economic cost of a potential contingency is not 

underestimated when compared with the immediate 

reward of taking that risk.  

Third, the optimal policy from the MDP 

model provides the optimal dispatch not only for the 

normal scenario but also for all contingency scenarios. 

The solution for the normal scenario is the optimal 

pre-contingency preventive dispatch, whereas the 

solution for contingency scenarios yields the optimal 

post-contingency corrective dispatch. Song et al. 

(2000) use an MDP approach to study the bidding 

decisions of power suppliers in the spot market. Their 

model has a finite time horizon and transmission 

constraints are not taken into consideration. 

Ragupathi & Das (2004) use a competitive MDP 

model to examine the market power exercise in 

deregulated power markets, in which transmission 

lines are assumed to be perfectly reliable. 

The remaining sections are organized as 

follows. In Section 2, we introduce the power 

dispatch problem and make necessary definitions and 

assumptions. The MDP model is formulated in 

Section 3, and the policy iteration algorithm is used 

in Section 4 to solve the MDP model. Section 5 

demonstrates the approach with a numerical example, 

and Section 6 concludes this paper.  

 

DEFINITIONS AND ASSUMPTIONS 
 

Transmission Network 
 

A set of nodes, 𝒩 , is connected by a set of 

transmission lines, ℒ. The sets of nodes with demand 

for and supply of power are denoted by 𝒟  and 𝒮 , 

respectively. Depending on whether there is demand 

for or supply of power, any node in 𝒩 could belong 

to either 𝒟 or 𝒮, or both, or neither.  

A DC lossless load flow model is used here, 

which has been found to be a good approximation to 

the more accurate AC load flow model when thermal 

limit is the primary concern (Hogan, 1993; Overbye 

et al., 2004). This model is a special case of the 

network flow model with a single commodity 

(electricity) and multiple source and sink nodes; the 

biggest difference is that for given amounts of 

generations and consumptions the power flows 

cannot be set arbitrarily but are determined by laws 

of physics (e.g., Kirchhoff’s laws).  

 

Load 
 

Hourly load fluctuation is considered. Locational 

demands are assumed to be inelastic, deterministic 

and constant within each hour. The demand (in MW) 

at node n in hour t is denoted by 𝐷𝑛 ,𝑡 , ∀𝑛 ∈ 𝒟, t = 1, 

2,…,24. A more realistic representation of demand as 

a function of price and time can be found in Abrate 

(2008). 

In case the generation and transmission 

resources are not sufficient to meet all the demands, a 

certain amount of load will be involuntarily left 

unserved, which is called load shedding. The 

associated cost of unit amount of load shedding is 

denoted by 𝑐𝑛
LS  (in $/MWh). Although the exact 

monetary value of load shedding is not easy to 

evaluate, power system operators need such 

estimation to make operational decisions. This value 

is estimated in the order of $10,000/MWh in 

Australia (Stoft, 2002). Bouffard et al. (2005b) use 

$1,000/MWh in their analysis, and we adopt the same 

value 𝑐𝑛
LS = $1,000/MWh, ∀𝑛 ∈ 𝒟  in our numerical 

example. 

 

Generation 
 

We assume that each supply node could have 

multiple generators, representing different generation 

units with varying costs. Let 𝐺𝑛  denote the set of 

generators at node n. The supply function of 

generator i at node n is represented by a quantity-

price pair (𝑏𝑛
𝑖 , 𝑄𝑛

𝑖 ), ∀𝑛 ∈ 𝒮, 𝑖 ∈  𝐺𝑛 , which indicates 

the willingness of the supplier to generate power up 

to 𝑄𝑛
𝑖  (in MW) at price 𝑏𝑛

𝑖  ($/MWh). No minimum 

generation, fixed cost, or other unit commitment 

requirements are considered. Since the focus of this 

paper is the transmission line failures, we ignore 

generator failures but point out that they could be 

incorporated without additional significant modeling 

effort. 

 

Transmission Constraints 
 

Denote by 𝑧𝑛 , 𝑇𝑙 , and H the net injection at node n, 

the thermal limit of line l, and the PTDF (power 

transfer distribution factors) matrix, respectively. Net 

injection is the total power flow going into a node 

less the total power flow going out of it. Thermal 

limit is the maximum amount of power flow allowed 

through the transmission line. The PTDF matrix 

gives the linear relation between net injection at each 

node and power flow through each line. For all 𝑙 ∈ ℒ, 

|  𝐻𝑙 ,𝑛𝑧𝑛𝑛∈𝒩 | calculates the magnitude of the power 

flow through line l. The PTDF matrix is determined 

by law of physics and can be calculated from the 

topology of the network; details about PTDF 

calculation can be found in Schweppe et al. (1998). 

The transmission constraints require that power flow 

going through any transmission line in either 

direction must be within the capacity: 
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 𝐻𝑙 ,𝑛𝑧𝑛𝑛∈𝒩  ≤ 𝑇𝑙 , 𝑙 ∈ ℒ, 

−   𝐻𝑙 ,𝑛𝑧𝑛𝑛∈𝒩 ≤ 𝑇𝑙 , 𝑙 ∈ ℒ. 

 

These two constraints will be combined as 

|  𝐻𝑙 ,𝑛𝑧𝑛𝑛∈𝒩 |  ≤ 𝑇𝑙 , 𝑙 ∈ ℒ in the remainder of this 

paper. 

 

Transmission Line Failure 
 

A transmission line can be in either of two states: 

working or failed. There are two types of 

transmission line failures. Type A failure is when the 

power flow is within the thermal limit; the risk comes 

from unexpected events, e.g., fire, falling tree, bad 

weather, etc. Failures of the transmission lines in 

such situations are assumed to be independent of 

each other. The state transition between failed and 

working (repaired) states of a transmission line is 

assumed to be a Markov chain, and the availability of 

the lines can be calculated by using the historical data 

on MTTF (mean time to failure) and MTTR (mean 

time to repair). Denote by λl and μl (both in 1/hour) 

the rates of failure and repair of line l, respectively, 

which can be evaluated by taking the reciprocal of 

MTTF and MTTR. Type B failure is when the power 

flow exceeds the thermal limit of line l; there is an 

additional risk of failure due to the overflow. The 

system operator makes dispatch decisions in such a 

way that power flows do not exceed the thermal 

limits under the current network topology. However, 

once a transmission line has failed due to an 

unexpected event, power flows will instantaneously 

change their routes according to the new network 

topology, which may cause overflows on some other 

lines. Chen et al. (2005) propose a hidden failure 

model to estimate the probability of a type B failure 

on line l as a function f(vl): 

 

𝑓 𝑣𝑙 ∶=  
2.5𝑣𝑙 , if 0 <  𝑣𝑙 < 0.4,

1, if 𝑣𝑙 ≥ 0.4,
  

 

where vl is the percentage of overflow with respect to 

the thermal limit of line l. If the power flow through 

line l is tl, then  

 

𝑣𝑙 =   0,
 𝑡𝑙 −𝑇𝑙

𝑇𝑙
 

+

× 100% ≡ max  0,
 𝑡𝑙 −𝑇𝑙

𝑇𝑙
  ×

100%. 

 

This assumption is reported to be consistent with the 

observed NERC events (NERC, 2002).  

 

Cascading Failure 

 

We assume that a cascading failure occurs whenever 

two or more transmission lines have failed in a single 

hour. This could occur in two situations: (i) two or 

more lines have failed due to unexpected events, or 

(ii) the failure of one line causes overflow and failure 

of another one. Once one line has failed due to an 

unexpected event, which could cause overflows on 

all other lines, we assume that the probability of a 

cascading failure caused by the overflow is a function 

f(v): 

 

𝑓 𝐯 ∶=  
2.5𝑣𝑚𝑎𝑥 , if 0 <  𝑣𝑚𝑎𝑥 < 0.4,

1, if 𝑣𝑚𝑎𝑥 ≥ 0.4,
             (1) 

 

where 𝑣𝑚𝑎𝑥 ≡ max𝑘∈ℒ\𝑙{𝑣𝑘} is the maximum 

percentages of overflows with respect to the thermal 

limits, and l is the line that has failed. 

 

System Operator 
 

The task of the system operator is to make dispatch 

decisions using existing generation and transmission 

resources to serve the demand at minimum expected 

long-term discounted cost, which includes generation, 

load shedding, and cascading failure costs. The 

system operator re-dispatches the system once each 

hour to adjust for demand change and possible 

transmission line failure and repair. In case of a 

cascading failure, the system operator should shut 

down the entire system until the system has been 

restored (all components examined and all failed 

lines repaired). The rate of system restoration is 

denoted by 𝜇  (in 1/hour).  

 

Timing of the Transmission Line Failures 
 

We make two assumptions about the timing of the 

transmission line failures: 

 

(A1) A single transmission line failure may only 

occur at the beginning of an hour, after the system 

operator has already made the dispatch decision 

without the anticipation of that failure. 

 

(A2) A cascading failure occurs at the end of an hour, 

so that the cost of blackout is calculated from the 

next hour. 

 

THE MARKOV DECISION PROCESS 

MODEL 
 

Time Horizon {1, 2, …} 
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We consider infinitely repeated 24-hour cycles. The 

time cycle will be incorporated into the state space, 

thus the decision making time horizon is {1, 2, ...}. 

 

State Space S 
 

There are three types of states: a normal state sN, a set 

of contingency states SC, and a blackout state sB. In 

the normal state sN, all transmission lines are working; 

in a contingency state s ∈  SC, exactly one 

transmission line has failed; sB represents the 

blackout state caused by a cascading failure. A 

contingency state is represented by the failed 

transmission line: SC = {{1}, {2}, …, {|ℒ|}}. To 

incorporate the repeated time cycles, we include the 

demand 𝐷𝑛 ,𝑡  as an additional dimension to the state 

space, and set 𝐷𝑛 ,𝑡  = 𝐷𝑛 ,𝑡+24 for all t = 1, 2, …. As a 

result, the size of the entire state space is (1+|ℒ|+1) × 

24. 

 

Action Space As 
 

An action 𝑎𝑠 ∈ 𝐴𝑠 at a given state s is an admissible 

dispatch decision of using the generators and working 

transmission lines (denoted by ℒ𝑠 ) to serve the 

demand 𝐷𝑛 ,𝑡  of all nodes in hour t. More specifically, 

it is a polyhedron of admissible actions {𝑞𝑛 ,𝑡
𝑖 , ∀𝑛 ∈ 𝒮, 

𝑖 ∈ 𝐺𝑛 , t = 1,…, 24; 𝑑𝑛 ,𝑡 , ∀𝑛 ∈ 𝒟 , t = 1,…,24} 

defined by the following constraints: 

 

𝐴𝑠 = {𝑞, 𝑑:   𝐻𝑙 ,𝑛
𝑠  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛𝑛∈𝒮 −  𝐻𝑙 ,𝑛

𝑠  𝐷𝑛 ,𝑡 −𝑛∈𝒟

𝑑𝑛 ,𝑡  ≤ 𝑇𝑙 , ∀𝑙 ∈ ℒ𝑠,  

  𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛
=   𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡  𝑛∈𝒟𝑛∈𝒮 ,         (2)  

0 ≤  𝑞𝑛 ,𝑡
𝑖  ≤  𝑄𝑛

𝑖 , ∀𝑖 ∈ 𝐺𝑛 , 𝑛 ∈ 𝒮;  𝑑𝑛 ,𝑡  ≥ 0, ∀𝑛 ∈ 𝒟}, 
 

where 𝑑𝑛 ,𝑡  is the amount of load shedding at node n 

in hour t and 𝑞𝑛 ,𝑡
𝑖  is the amount of generation from 

generator i at node n in hour t. Constraint (2) 

represents the conservation of electric power. In 

Section 4, as new decision variables are introduced, 

the action space will be expanded to include new 

variables such as u, v, and w.  

 

Transition Probability 𝑷(𝒋|𝒔, 𝒂) 
 

In an MDP model, the transition probability 𝑃(𝑗|𝑠, 𝑎) 

is the probability that the system moves from state s 

to state j within an hour given action a. In the 

remainder, when this probability does not depend on 

the action a (as long as 𝑎 ∈  𝐴𝑠  is a feasible action), 

it may be denoted as 𝑃(𝑗|𝑠). 

 

 The transition of staying at the normal state sN 

means that no unexpected failure occurs in this 

hour, so 

 

𝑃 𝑠𝑡+1 = 𝑠𝑁    𝑠𝑡 = 𝑠𝑁) =   𝑒−𝜆𝑙
𝑙∈ℒ .  

 

 The transition from the normal state sN to a 

contingency state 𝑠 ∈  𝑆𝐶  means that (i) line s 

has failed in this hour due to an unexpected event, 

and (ii) this failure does not cause a type B 

failure of another line. The latter depends on the 

action (dispatch decision). Therefore,  

 

𝑃 𝑠𝑡+1 = 𝑠   𝑠𝑡 = 𝑠𝑁 , 𝑎) =  1 − 𝑓 𝑎   1 −

 𝑒−𝜆𝑠  𝑒−𝜆𝑙
𝑙∈ℒ\𝑠 , ∀𝑠 ∈  𝑆𝐶  ,  

 

where the probability of a type B failure, 

𝑓(∙), is written as a function of the action a, 

because the percentage of overflow can be 

calculated from the action a = {𝑞𝑛 ,𝑡
𝑖 , ∀𝑛 ∈ 𝒮, 

𝑖 ∈ 𝐺𝑛 , t = 1,…,24; 𝑑𝑛 ,𝑡 , ∀𝑛 ∈ 𝒟 , t = 

1,…,24}: 

 

𝑣𝑙 =

  
  𝐻𝑙 ,𝑛

𝑠  𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛 − 𝐻𝑙 ,𝑛
𝑠  𝐷𝑛 ,𝑡−𝑑𝑛 ,𝑡 𝑛∈𝒟𝑛∈𝒮  −𝑇𝑙

𝑇𝑙
 

+

×

100%, ∀𝑙 ∈  ℒ𝑠 .  
 

 The probability of transition from the normal 

state sN to the blackout state sB is  

 

𝑃 𝑠𝑡+1 = 𝑠𝐵    𝑠𝑡 =  𝑠𝑁) = 1 −
𝑃 𝑠𝑡+1 = 𝑠𝑁    𝑠𝑡 =  𝑠𝑁) −   𝑃 𝑠𝑡+1 =𝑠 ∈ 𝑆𝐶

𝑠   𝑠𝑡  =  𝑠𝑁 , 𝑎).    

 

 The transition from a contingency state 𝑠 ∈  𝑆𝐶  

to the normal state sN  implies that, during this 

hour no line has failed and line s has been 

repaired: 

 

𝑃 𝑠𝑡+1 = 𝑠𝑁    𝑠𝑡 = 𝑠) =
(1 −  𝑒−𝜇𝑠)  𝑒−𝜆𝑘 , ∀𝑠 ∈  𝑆𝐶𝑘∈ℒ\𝑠 .  

 

 The transition of staying at the same contingency 

state 𝑠 ∈  𝑆𝐶  implies that, during this hour no 

line has failed and line s has not been repaired: 

 

𝑃 𝑠𝑡+1 = 𝑠   𝑠𝑡 = 𝑠) =
𝑒−𝜇𝑠  𝑒−𝜆𝑘 , ∀𝑠 ∈  𝑆𝐶𝑘∈ℒ\𝑠 . 

 

 The transition from a contingency state 𝑠 ∈  𝑆𝐶  

to another contingency state 𝑘 ∈  𝑆𝐶  implies that, 

during this hour line k has failed, line s has been 

repaired, and no other line has failed: 
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𝑃 𝑠𝑡+1 = 𝑘   𝑠𝑡 = 𝑠, 𝑎) =  1 − 𝑓 𝑎  (1 −

𝑒−𝜇𝑠)(1 − 𝑒−𝜇𝑘 )  𝑒−𝜆𝑗 , ∀𝑠, 𝑘(≠𝑗 ∈ℒ\{𝑠,𝑘}

𝑠)  ∈  𝑆𝐶 .  
 

 The probability of transition from a contingency 

state 𝑠 ∈  𝑆𝐶  to the blackout state sB is  

 

𝑃 𝑠𝑡+1 = 𝑠𝐵    𝑠𝑡 =  𝑠, 𝑎) = 1 −
𝑃 𝑠𝑡+1 = 𝑠𝑁    𝑠𝑡 =  𝑠) −   𝑃 𝑠𝑡+1 =𝑘  ∈ 𝑆𝐶

𝑠   𝑠𝑡  =  𝑠, 𝑎), ∀𝑠 ∈  𝑆𝐶 .       

 

 The probability of transition from the blackout 

state sB to the normal state sN is 

 

𝑃 𝑠𝑡+1 = 𝑠𝑁    𝑠𝑡 = 𝑠𝐵) = 1 − 𝑒𝜇 .  
 

 The probability of transition from the blackout 

state sB to a contingency state 𝑠 ∈  𝑆𝐶  is  

 

𝑃 𝑠𝑡+1 = 𝑠   𝑠𝑡 =  𝑠𝐵) = 0, ∀𝑠 ∈  𝑆𝐶 .  
 

 The probability of staying at the blackout state sB 

is 

 

𝑃 𝑠𝑡+1 = 𝑠𝐵    𝑠𝑡 = 𝑠𝐵) = 𝑒𝜇 .  
 

Immediate Cost 𝒄(𝒔, 𝒂) 
 

Under the normal state sN or a contingency state 

𝑠 ∈  𝑆𝐶 , the immediate cost includes generation cost 

and cost of load shedding of this hour. For a given 

dispatch decision 𝑎 =  {𝑞𝑛 ,𝑡
𝑖 , ∀𝑛 ∈ 𝒮 , 𝑖 ∈ 𝐺𝑛 , t = 

1,…,24; 𝑑𝑛 ,𝑡 , ∀𝑛 ∈ 𝒟 , t = 1,…,24}, the immediate 

cost is 

 

𝑐 𝑠, 𝑎 =    𝑏𝑛
𝑖 𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

+  𝑐𝑛
LS𝑑𝑛 ,𝑡𝑛∈𝒟𝑛∈𝒮 .  

 

Under the blackout state sB, the immediate 

cost is the load shedding cost of all 

demands: 𝑐 𝑠𝐵 =   𝑐𝑛
LS𝐷𝑛 ,𝑡𝑛∈𝒟 .  

 

Objective 
 

The objective of the MDP model is to minimize the 

expected long-term discounted total cost, including 

generation, load shedding, and cascading failure costs. 

The optimality equations are: 

 

𝑉 𝑠 =

 inf𝑎∈𝐴𝑠
 𝑐 𝑠, 𝑎 +   𝛽𝑃 𝑗 𝑠, 𝑎 𝑉(𝑗)𝑗 ∈𝑆  ,   ∀𝑠 ∈

  𝑠𝑁 ∪ 𝑆𝐶 ∪  𝑠𝐵  ×  1,2, … ,24 ,            (3) 

 

where V(s) is the value (total cost) at state s, and β is 

the discount rate. 

 

SOLVING THE MDP MODEL 
 

We present below the steps of the policy iteration in 

Puterman (1994), which is a commonly used method 

for solving MDPs. Here a
i
, V

i
, and P(a

i
) are, 

respectively, the action, value vector, and transition 

probability matrix in iteration i. 

 

Step 1: Set i = 0, and select an initial decision rule 𝑎𝑠
0, 

∀𝑠 ∈   𝑠𝑁 ∪ 𝑆𝐶 ∪  𝑠𝐵  ×  1,2, … ,24 .  
 

Step 2: Obtain V
i
 by solving  

 

 𝐼 −  𝛽𝑃 𝑎𝑖  𝑉𝑖 = 𝑐 𝑎𝑖 .  

 

Step 3: For all 𝑠 ∈   𝑠𝑁 ∪ 𝑆𝐶 ∪  𝑠𝐵  ×  1,2, … ,24 , 

choose 𝑎𝑠
𝑖+1 using updated value of V

i
 to satisfy  

 

𝑎𝑠
𝑖+1  ∈ argmin  𝑐 𝑎𝑠

𝑖+1 +  𝛽𝑃𝑎𝑠
𝑖+1 ∙  𝑠 𝑉𝑖 ,  

 

setting 𝑎𝑠
𝑖+1 = 𝑎𝑠

𝑖  if possible.     

 

Step 4: If 𝑎𝑠
𝑖+1 = 𝑎𝑠

𝑖 , ∀𝑠 ∈   𝑠𝑁 ∪ 𝑆𝐶 ∪  𝑠𝐵  ×

 1,2, … ,24 ,  stop and set 𝑎𝑠
∗ = 𝑎𝑠

𝑖 , ∀𝑠 ∈

  𝑠𝑁 ∪ 𝑆𝐶 ∪  𝑠𝐵  ×  1,2, … ,24 . Otherwise increase 

i by 1 and return to Step 2. 

 

In this algorithm, I is the identity matrix, a
i
 

is the action vector for all states in iteration i, c(a
i
) is 

the immediate cost vector for all states given action 

vector a
i
, V

i
 is the value vector for all states in 

iteration i, and P(a
i
) is the transition probability 

matrix given action vector a
i
. The value vector V

i
 is 

updated in Step 2, but is treated as a constant vector 

in the policy improvement in Step 3.  

Since the action space for each state 

𝑠 ∈   𝑠𝑁 ∪ 𝑆𝐶 ∪  𝑠𝐵  ×  1,2, … ,24  is a 

polyhedron, there are infinitely many possible actions 

thus the decision improvement in Step 3 cannot be 

done by explicitly enumerating all possible actions as 

in the case with a finite discrete action space. 

Therefore, an optimization problem needs to be 

solved in Step 3 for each state 𝑠 ∈   𝑠𝑁 ∪ 𝑆𝐶 ∪

 𝑠𝐵  ×  1,2, … ,24 . In the following sections, the 

optimization problems are derived and structured as 

two-stage stochastic mixed integer linear programs. 

 

Solving Step 3 in Policy Iteration for the 

Normal State sN 
 

For the normal state sN, the optimization problem is: 
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min𝑞 ,𝑑 ,𝑣,𝑣max
𝑠 𝑉𝑖+1 𝑠𝑁 =   𝑏𝑛

𝑖 𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛
+𝑛∈𝒮

 𝑐𝑛
LS𝑑𝑛 ,𝑡𝑛∈𝒟 + 𝛽𝑃 𝑠𝑁 𝑠𝑁 𝑉𝑖 𝑠𝑁 +

𝛽  𝑃 𝑠 𝑠𝑁 , 𝑣max
𝑠  𝑠 ∈ 𝑆𝐶

𝑉𝑖 𝑠 +

𝛽𝑃 𝑠𝐵 𝑠𝑁 , 𝑣max
𝑠  𝑉𝑖(𝑠𝐵)   

s.t.   𝐻𝑙 ,𝑛  𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛
−  𝐻𝑙 ,𝑛(𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡𝑛∈𝒟𝑛∈𝒮 ) ≤

𝑇𝑙 , ∀𝑙 ∈  ℒ,               (4) 

  𝐻𝑙 ,𝑛
𝑠  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

−  𝐻𝑙 ,𝑛
𝑠 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡)𝑛∈𝒟𝑛∈𝒮  ≤

 1 + 𝑣𝑙
𝑠 𝑇𝑙 , ∀𝑙 ∈  ℒ𝑠 , 𝑠 ∈  𝑆𝐶 ,              (5) 

  𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛
=𝑛∈𝒮   (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡)𝑛∈𝒟 ,    

𝑣𝑙
𝑠  ≤  𝑣max

𝑠 , ∀𝑙 ∈  ℒ, 𝑠 ∈  𝑆𝐶 ,  

0 ≤  𝑞𝑛 ,𝑡
𝑖  ≤  𝑄𝑛

𝑖 , ∀𝑖 ∈  𝐺𝑛 , 𝑛 ∈ 𝒮;  𝑑𝑛 ,𝑡  ≥ 0, ∀𝑛 ∈

𝒟, 𝑡 =  1, … ,24,   
𝑣𝑙

𝑠  ≥ 0, ∀𝑙 ∈  ℒ, 𝑠 ∈  𝑆𝐶 ;  𝑣max
𝑠  ≥ 0, ∀𝑠 ∈  𝑆𝐶 .  

 

Here 𝑣𝑙
𝑠  calculates the percentage of thermal limit 

violation on line l caused by the failure of line s, and 

𝑣max
𝑠  is the maximum of such percentages on all 

working line 𝑙 ∈  ℒ𝑠 . The state values 𝑉𝑖 𝑠  for all 

𝑠 ∈   𝑠𝑁 ∪ 𝑆𝐶 ∪  𝑠𝐵  ×  1,2, … ,24  from the last 

iteration i are treated as constants. Constraint (4) is 

the transmission capacity constraint under the normal 

state sN, whereas constraint (5) represents the new 

transmission capacity constraints under all 

contingency states SC, in which one transmission line 

has failed. No overflow is allowed under the normal 

state; variable 𝑣𝑙
𝑠  calculates the overflow if/when a 

contingency occurs. Notice that the PTDF matrix H
s
 

is different under different states, since when a 

contingency occurs, the network topology will 

change, and the PTDF matrix must be recalculated. 

This formulation can be equivalently simplify by 

substituting 𝑣𝑙
𝑠   with 𝑣max

𝑠  for all 𝑙 ∈  ℒ𝑠 , 𝑠 ∈  𝑆𝐶  and 

then replacing 𝑣max
𝑠  with a simpler notation 𝑣𝑠 : 

 

min𝑞 ,𝑑 ,𝑣 𝑉𝑖+1 𝑠𝑁 =   𝑏𝑛
𝑖 𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

+𝑛∈𝒮

 𝑐𝑛
LS𝑑𝑛 ,𝑡𝑛∈𝒟 + 𝛽𝑃 𝑠𝑁 𝑠𝑁 𝑉𝑖 𝑠𝑁 +

𝛽  𝑃 𝑠 𝑠𝑁 , 𝑣𝑠  𝑠 ∈ 𝑆𝐶
𝑉𝑖 𝑠 + 𝛽𝑃 𝑠𝐵 𝑠𝑁 , 𝑣𝑠  𝑉𝑖 𝑠𝐵   

s.t.    𝐻𝑙 ,𝑛  𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛
−  𝐻𝑙 ,𝑛(𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡𝑛∈𝒟𝑛∈𝒮 ) ≤

𝑇𝑙 , ∀𝑙 ∈  ℒ,  

  𝐻𝑙 ,𝑛
𝑠  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

−  𝐻𝑙 ,𝑛
𝑠 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡)𝑛∈𝒟𝑛∈𝒮  ≤

 1 + 𝑣𝑠  𝑇𝑙 , ∀𝑙 ∈  ℒ𝑠 , 𝑠 ∈  𝑆𝐶 ,  
  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

=𝑛∈𝒮   (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡)𝑛∈𝒟 ,  

0 ≤  𝑞𝑛 ,𝑡
𝑖  ≤  𝑄𝑛

𝑖 , ∀𝑖 ∈  𝐺𝑛 , 𝑛 ∈ 𝒮;  𝑑𝑛 ,𝑡  ≥ 0, 𝑛 ∈

𝒟, 𝑡 =  1, … ,24; 𝑣𝑠 ≥ 0, ∀𝑠 ∈  𝑆𝐶 .  
 

In this stochastic program (Birge & 

Louveaux, 1997), q and d are the first-stage variables 

representing a priori contingency dispatch decisions, 

whereas v can be regarded as the second-stage 

variables representing post contingency percentage 

violations.  

Substituting the transition probabilities 

derived in Subsection 3.4, we rewrite the last three 

terms of the objective function as:  

 

𝛽𝑃 𝑠𝑁 𝑠𝑁 𝑉𝑖 𝑠𝑁 + 𝛽  𝑃 𝑠 𝑠𝑁 , 𝑣𝑠 𝑉𝑖(𝑠)𝑠 ∈ 𝑆𝐶
+

𝛽𝑃 𝑠𝐵 𝑠𝑁 , 𝑣𝑠 𝑉𝑖(𝑠𝐵)  

= 𝛽  𝑒−𝜆𝑙
𝑙  ∈ ℒ  𝑉𝑖 𝑠𝑁 +  𝛽    1 −𝑠 ∈ 𝑆𝐶

𝑓 𝑠, 𝑎   1 − 𝑒−𝜆𝑠  𝑒−𝜆𝑙
𝑙  ∈ ℒ\𝑠  𝑉𝑖(𝑠) +

 𝛽 1 −  𝑒−𝜆𝑙
𝑙  ∈ ℒ −  1 − 𝑓 𝑠, 𝑎    1 −𝑠 ∈ 𝑆𝐶

𝑒−𝜆𝑠  𝑒−𝜆𝑙
𝑙∈ℒ\𝑠  𝑉𝑖(𝑠𝐵)   

=

𝛽   1 − 𝑓 𝑠, 𝑎  𝑠 ∈ 𝑆𝐶
  1 −

𝑒−𝜆𝑠  𝑒−𝜆𝑙
𝑙  ∈ ℒ\𝑠   𝑉𝑖 𝑠 − 𝑉𝑖 𝑠𝐵      

+𝛽  𝑒−𝜆𝑙
𝑙  ∈ ℒ   𝑉𝑖 𝑠𝑁 − 𝑉𝑖(𝑠𝐵) + 𝛽𝑉𝑖(𝑠𝐵).    

 

Since 𝑓(∙)  is a piecewise linear function, we 

reformulate it by introducing a continuous variable u
s
 

to represent 1− f(s,a) and a binary variable w
s
 to 

indicate whether (w
s
=0) or not (w

s
=1) the maximum 

power overflow under scenario s exceeds 40%. If 

w
s
=0, then the loss of transmission line s will surely 

result in a cascading failure. The reformulated 

stochastic program is the following: 

 

min𝑞 ,𝑑 ,𝑢 ,𝑤 𝑉𝑖+1 𝑠𝑁 =   𝑏𝑛
𝑖 𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

+𝑛∈𝒮

 𝑐𝑛
LS𝑑𝑛 ,𝑡𝑛∈𝒟 + 𝛽   𝑢𝑠  𝑒−𝜆𝑙

𝑙  ∈ ℒ\𝑠  1 −𝑠 ∈ 𝑆𝐶

𝑒−𝜆𝑠  𝑉𝑖 𝑠 − 𝑉𝑖(𝑠𝐵)  + constant            (6) 

s.t.    𝐻𝑙 ,𝑛  𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛
−  𝐻𝑙 ,𝑛(𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡𝑛∈𝒟𝑛∈𝒮 ) ≤

𝑇𝑙 , ∀𝑙 ∈  ℒ,  

  𝐻𝑙 ,𝑛
𝑠  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

−  𝐻𝑙 ,𝑛
𝑠 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡)𝑛∈𝒟𝑛∈𝒮  ≤

 1 + 0.4(1 − 𝑢𝑠 ) + 𝑀(1 − 𝑤𝑠) 𝑇𝑙 , ∀𝑙 ∈  ℒ𝑠 , 𝑠 ∈
 𝑆𝐶 ,    
  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

=𝑛∈𝒮   (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡)𝑛∈𝒟 ,  

𝑢𝑠 ≤ 𝑤𝑠 , ∀𝑠 ∈  𝑆𝐶 ,  
0 ≤  𝑞𝑛 ,𝑡

𝑖  ≤  𝑄𝑛
𝑖 , ∀𝑖 ∈  𝐺𝑛 , 𝑛 ∈ 𝒮;  𝑑𝑛 ,𝑡  ≥ 0, 𝑛 ∈ 𝒟,

𝑡 =  1, … ,24; 𝑢𝑠 ≥ 0, 𝑤𝑠 ∈  0,1 , ∀𝑠 ∈  𝑆𝐶 .  
 

Here M is a finite but extremely large number. A 

lower bound of M can be obtained as: 

 

𝑀 ≥
max𝑡=1,…,24  𝐷𝑛 ,𝑡𝑛∈𝒟  

min𝑙  ∈ ℒ 𝑇𝑙 
.  

 

Any value above this bound can guarantee the 

validity of the formulation, since the maximal 

percentage of violation max𝑙  ∈ ℒ{𝑣𝑙}  is bounded by 

the largest possible amount of power flow 

max𝑡=1,…,24  𝐷𝑛 ,𝑡𝑛∈𝒟   divided by the minimal 

thermal limit min𝑙  ∈ ℒ 𝑇𝑙 . 

 

Solving Step 3 in Policy Iteration for Other 

States 
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For a contingency state 𝑠 ∈  𝑆𝐶 , the optimization 

problem is: 

 

min𝑞 ,𝑑 ,𝑣 𝑉𝑖+1 𝑠 =   𝑏𝑛
𝑖 𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

+  𝑐𝑛
LS𝑑𝑛 ,𝑡𝑛∈𝒟𝑛∈𝒮   

+𝛽𝑃 𝑠𝑁 𝑠 𝑉𝑖 𝑠𝑁 + 𝛽  𝑃 𝑘 𝑠, 𝑣𝑘  𝑘  ∈ 𝑆𝐶
𝑉𝑖 𝑘 +

𝛽𝑃 𝑠𝐵 𝑠, 𝑣 𝑉𝑖(𝑠𝐵)  

s.t.   𝐻𝑙 ,𝑛
𝑠  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

−  𝐻𝑙 ,𝑛
𝑠 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡𝑛∈𝒟𝑛∈𝒮 ) ≤

𝑇𝑙 , ∀𝑙  ∈ ℒ𝑠 ,   

  𝐻𝑙 ,𝑛
𝑘  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

−  𝐻𝑙 ,𝑛
𝑘  𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡 𝑛∈𝒟𝑛∈𝒮  ≤

 1 + 𝑣𝑘  𝑇𝑙 , ∀𝑙 ∈  ℒ𝑠\𝑘, 𝑘 ∈  𝑆𝐶\𝑠,  

  𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛
=𝑛∈𝒮   (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡)𝑛∈𝒟 ,    

0 ≤  𝑞𝑛 ,𝑡
𝑖  ≤  𝑄𝑛

𝑖 , ∀𝑖 ∈  𝐺𝑛 , 𝑛 ∈ 𝒮;  𝑑𝑛 ,𝑡  ≥ 0, ∀𝑛 ∈ 𝒟,

𝑡 =  1, … ,24; 𝑣𝑘  ≥ 0, 𝑘 ∈  𝑆𝐶\𝑠.  
  

Similar to Subsection 4.1, this stochastic program can 

be reformulated as: 

 

min
𝑞 ,𝑑 ,𝑢 ,𝑤

𝑉𝑖+1(𝑠) =   𝑛∈𝒮   𝑖∈𝐺𝑛
𝑏𝑛

𝑖 𝑞𝑛 ,𝑡
𝑖 +   𝑛∈𝒟 𝑐𝑛

LS 𝑑𝑛 ,𝑡    

+𝛽   𝑘∈𝑆𝐶\𝑠  𝑢𝑘   𝑗 ∈ℒ\{𝑘 ,𝑠} 𝑒−𝜆𝑗  1 − 𝑒−𝜇𝑠  1 −

𝑒−𝜆𝑘  [𝑉𝑖(𝑘) − 𝑉𝑖(𝑠𝐵)] + constant              (7) 

s.t.    𝑛∈𝒮 𝐻𝑙 ,𝑛
𝑠  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

−   𝑛∈𝒟 𝐻𝑙 ,𝑛
𝑠 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡) ≤

𝑇𝑙 , ∀𝑙 ∈ ℒ𝑠, 

   𝑛∈𝒮   𝑖∈𝐺𝑛
𝐻𝑙 ,𝑛

𝑘 𝑞𝑛 ,𝑡
𝑖 −   𝑛∈𝒟 𝐻𝑙 ,𝑛

𝑘 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡) ≤

[1 + 0.4(1 − 𝑢𝑘) + 𝑀(1 − 𝑤𝑘)]𝑇𝑙 , ∀𝑙 ∈ ℒ𝑠\𝑘, ∀𝑘 ∈
𝑆𝐶\𝑠,  

  𝑛∈𝒮   𝑖∈𝐺𝑛
𝑞𝑛 ,𝑡

𝑖 =   𝑛∈𝒟 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡),  

𝑢𝑘 ≤ 𝑤𝑘 , ∀𝑘 ∈ 𝑆𝐶\𝑠, 

0 ≤ 𝑞𝑛 ,𝑡
𝑖 ≤ 𝑄𝑛

𝑖 , ∀𝑖 ∈ 𝐺𝑛 , 𝑛 ∈ 𝒮; 𝑑𝑛 ,𝑡 ≥ 0, ∀𝑛 ∈ 𝒟, 𝑡 =

1, . . . ,24; 𝑢𝑘 ≥ 0, 𝑤𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝑆𝐶\𝑠.  
 

For the blackout state 𝑠𝐵 , the action space is empty, 

thus no optimization problem needs to be solved. 

 

Converegance of the Policy Iteration 

Algorithm 
 

The policy iteration algorithm has been proved to 

converge finitely (Theorem 6.4.2 in Puterman (1994)) 

for an MDP with a finite state space and a finite 

action space. Although our MDP model has a 

continuous action space, the following theorem 

establishes the convergence of policy iteration for 

arbitrary state and action spaces under the assumption 

that there is a minimizing decision rule at each value 

vector 𝑉 (Puterman, 1994). 

 

Theorem 1 (Theorem 6.4.6 in Puterman (1994))  

The sequence of value vectors {𝑉𝑖}  generated by 

policy iteration converges monotonically and in norm 

to {𝑉𝛽
∗}, which solves the optimality equation (3). 

 

It is mentioned on page 180 in Puterman (1994) that 

Theorem 1 holds for models with action space 𝐴𝑠 

compact, transition probability matrix 𝑃(𝑗|𝑠, 𝑎)  and 

immediate cost function 𝑐(𝑠, 𝑎)  continuous in 𝑎  for 

each 𝑠 ∈ 𝑆, and 𝑆 either finite or compact. It can be 

confirmed from Section 3 that the action space 𝐴𝑠 is 

compact, the transition probability 𝑃(𝑗|𝑠, 𝑎)  and 

immediate cost 𝑐(𝑠, 𝑎) are continuous in 𝑎  for each 

𝑠 ∈ {{𝑠𝑁} ∪ 𝑆𝐶 ∪ {𝑠𝐵}} × {1,2, . . . ,24} , and the state 

space {{𝑠𝑁} ∪ 𝑆𝐶 ∪ {𝑠𝐵}} × {1,2, . . . ,24}  is finite. 

Therefore, the convergence of policy iteration for this 

model can be established. 

 

Corollary 1 As long as stochastic programs (6) and 

(7) are solved to optimality, the sequence of value 

vectors {𝑉𝑖}  generated by the policy iteration in 

Section 4 converges monotonically and in norm to 

{𝑉𝛽
∗}, which solves the optimality equation (3). 

 

A NUMERICAL EXAMPLE 
 

To demonstrate the effectiveness of the MDP model 

and policy iteration, we apply our approach to a ten-

bus network example of PJM (Pennsylvania-New 

Jersey-Maryland Interconnection, 2008), which is a 

regional transmission organization (RTO) in the 

eastern United States that operates the world’s largest 

competitive wholesale electricity market. The 

network is shown in Figure 1. In this example, all 

nodes are both demand and supply nodes. Each 

supply node is assumed to have three generators. 

Generation and transmission data are given in Tables 

1 and 2. Discount rate 𝛽 is set to be 0.95, and system 

restoration rate is assumed to be 0.0108 (1/hour). 

Policy iteration is implemented using Matlab 

(The MathWorks, 2009), Tomlab (Tomlab 

Optimization, 2009) and Cplex (ILOG Cplex, 2009). 

The algorithm converges in three iterations within a 

minute. We compare the optimal MDP policy with 

the economic dispatch and the N-1 criterion and 

present the results by answering the following 

questions. 

 

 How is the initial policy obtained? 

 

The initial policy (in Step 1 of policy iteration) is 

obtained using the economic dispatch for all 𝑠 ∈
{{𝑠𝑁} ∪ 𝑆𝐶} × {1,2, . . . ,24}: 

 

min
𝑞 ,𝑑

  𝑛∈𝒮   𝑖∈𝐺𝑛
𝑏𝑛

𝑖 𝑞𝑛 ,𝑡
𝑖 +   𝑛∈𝒟 𝑐𝑛

LS 𝑑𝑛 ,𝑡     

s.t.    𝑛∈𝒮 𝐻𝑙 ,𝑛  𝑞𝑛 ,𝑡
𝑖

𝑖∈𝐺𝑛
−   𝑛∈𝒟 𝐻𝑙 ,𝑛(𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡) ≤

𝑇𝑙 , ∀𝑙 ∈ ℒ,  

  𝑛∈𝒮   𝑖∈𝐺𝑛
𝑞𝑛 ,𝑡

𝑖 =   𝑛∈𝒟 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡), 
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0 ≤ 𝑞𝑛 ,𝑡
𝑖 ≤ 𝑄𝑛

𝑖 , ∀𝑖 ∈ 𝐺𝑛 , 𝑛 ∈ 𝒮;   𝑑𝑛 ,𝑡 ≥ 0, ∀𝑛 ∈

𝒟, 𝑡 = 1, . . . ,24.  
 

The objective here is only to minimize the immediate 

cost, ignoring the risk of future transmission line 

failures. The policy iteration algorithm starts with 

this economic dispatch policy and iteratively 

improves it by balancing the immediate cost and 

future risk of transmission line failures.   

 

 How is the solution to the N-1 criterion 

obtained? 

 

We obtain the solution to the N-1 criterion for all 

𝑠 ∈ {{𝑠𝑁} ∪ 𝑆𝐶} × {1,2, . . . ,24} by solving the 

following problem: 

 

min 
𝑞 ,𝑑

𝑉𝑖+1(𝑠) =   𝑛∈𝒮   𝑖∈𝐺𝑛
𝑏𝑛

𝑖 𝑞𝑛 ,𝑡
𝑖 +   𝑛∈𝒟 𝑐𝑛

LS 𝑑𝑛 ,𝑡   

s.t.    𝑛∈𝒮 𝐻𝑙 ,𝑛
𝑠  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

−   𝑛∈𝒟 𝐻𝑙 ,𝑛
𝑠 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡) ≤

𝑇𝑙 , ∀𝑙 ∈ ℒ𝑠,   

   𝑛∈𝒮 𝐻𝑙 ,𝑛
𝑘  𝑞𝑛 ,𝑡

𝑖
𝑖∈𝐺𝑛

−   𝑛∈𝒟 𝐻𝑙 ,𝑛
𝑘 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡) ≤

𝑇𝑙 , ∀𝑙 ∈ ℒ𝑠\𝑘, ∀𝑘 ∈ 𝑆𝐶\𝑠, 

  𝑛∈𝒮   𝑖∈𝐺𝑛
𝑞𝑛 ,𝑡

𝑖 =   𝑛∈𝒟 (𝐷𝑛 ,𝑡 − 𝑑𝑛 ,𝑡), 

0 ≤ 𝑞𝑛 ,𝑡
𝑖 ≤ 𝑄𝑛

𝑖 , ∀𝑖 ∈ 𝐺𝑛 , ∀𝑛 ∈ 𝒮; 𝑑𝑛 ,𝑡 ≥ 0, ∀𝑛 ∈

𝒟, 𝑡 = 1, . . . ,24.   
 

Here, the dispatch has to satisfies the transmission 

constraints under not only the current scenario but 

also all possible scenarios with one more 

transmission line failure. As such, the N-1 criterion is 

a more conservative policy than the economic 

dispatch.  

 

 How much improvement does the optimal 

MDP solution have over the economic 

dispatch and the N-1 criterion? 

 

We show the differences of economic dispatch, the 

N-1 criterion, and optimal MDP policy using three 

measures: immediate costs, stationary state 

probability distribution, and expected long-term 

discounted cost. The immediate costs of all states are 

obtained from the immediate cost vector 𝑐 under the 

optimal MDP policy. In Table 3, the terms 𝑐𝑠𝑁
𝑡 , 𝑐 𝑆𝐶

𝑡 , 

and 𝑐𝑠𝐵
𝑡  denote the immediate costs at hour 𝑡  under 

the normal state, an average contingency state, and 

the blackout state, respectively. For ease of 

exposition, we will combine the probabilities of all 

states in the set of contingency states 𝑆𝐶  as one. The 

stationary state probability distribution is obtained by 

solving the equation 𝜋𝛵𝑃(𝑎∗) = 𝜋𝛵 , where 𝑃(𝑎∗) is 

the transition probability matrix under the optimal 

policy 𝑎∗  and 𝜋  denotes the stationary probability 

vector with 𝜋(𝑠) being the stationary probability in 

state 𝑠. We will take the average over 24 hours and 

combine the probabilities of all states in the set of 

contingency states 𝑆𝐶  as one. The expected long-term 

discounted costs are obtained from the immediate 

cost vector 𝑉  under the optimal MDP policy. Here 

𝑉(𝑠)  is the optimal expected long-term discounted 

cost if the system starts from state 𝑠, averaged over 

all 24 hours. Results are given in Table 3. The 

immediate costs and expected long-term discounted 

costs are given in $106 , and the stationary state 

probability distribution has no unit. 

The immediate costs of all states under all 

dispatch policies follow a similar temporal pattern 

with demand fluctuation. Since in a contingency state 

𝑠 ∈ 𝑆𝐶  one transmission line is lost but the system is 

still able to operate using the rest of the lines, the 

immediate cost is usually slightly higher. However, it 

is also noticed in several occasions that the 

immediate cost under a contingency state is smaller 

than that under the normal state. Although counter-

intuitive, this is a well-studied effect known as 

Braess’s paradox. Fisher et al. (2008) and Hedman et 

al. (2008) have detailed discussions on how removing 

transmission lines could potentially reduce the 

generation costs. The economic dispatch has smaller 

immediate costs than the other two policies under all 

states and all hours, except the blackout state, in 

which the dispatch action is interrupted by system 

restoration and thus all policies have the same 

immediate cost. The N-1 criterion has the largest 

immediate costs. The MDP policy’s costs are in 

between, but closer to the economic dispatch 

especially under contingency states. 

Since the economic dispatch minimizes the 

immediate costs without hedging any risk of 

transmission line failure, it has the smallest normal 

state probability 𝜋(𝑠𝑁)  and highest blackout state 

probability 𝜋(𝑠𝐵). As the opposite, the N-1 criterion 

hedges every single-contingency in the dispatch 

decision making, thus has the highest 𝜋(𝑠𝑁)  and 

smallest 𝜋(𝑠𝐵). The MDP policy is also in between, 

but closer to the N-1 criterion. 

The optimal MDP policy is almost as cost 

efficient as the economic dispatch and almost as 

secure as the N-1 criterion, therefore, it has the 

smallest expected long-term discounted costs 

compared to the other two policies in all states. 

 

CONCLUSION 
 

Cost efficiency and security are two main ingredients 

for an “optimal” dispatch. Cost efficiency means to 

serve demand with minimum cost, while security 

requires that electricity be delivered to the customers 

without interruption even in the event of component 
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failures. In this paper, we have introduced an MDP 

approach to obtain the optimal balance of these two 

conflicting objectives for the security constrained 

economic dispatch problem. This approach quantifies 

the risk of transmission line failures and minimizes 

the expected long-term discounted total cost. As an 

important social service, electric power dispatch is a 

continuous and uninterrupted process. Many existing 

models focus on a short period of the process. The 

MDP approach, on the other hand, allows one to 

formulate the dispatch process as an infinite horizon 

problem. Another advantage of the MDP model is its 

capability to provide not only the optimal preventive 

actions under the normal scenario but also optimal 

corrective actions under contingency scenarios. 

In contrast to standard MDP models, the 

security constrained economic dispatch problem 

contains a continuous action space which is defined 

by generation and transmission constraints. The 

contribution of this paper also includes using a 

stochastic programming approach to substitute the 

policy improvement step of the policy iteration 

algorithm, since exhaustively enumerating and 

comparing all feasible actions is no longer a viable 

strategy. 

The numerical example of a PJM case study 

demonstrates the advantage of this model over the 

economic dispatch and the N-1 criterion. The 

problem with the economic dispatch is that 

immediate cost is minimized without consideration of 

potential risk, whereas the N-1 criterion tends to be 

over conservative and expensive. Numerical results 

show that the MDP approach is almost as cost 

efficient as the economic dispatch, and at the same 

time achieves a reliability level almost as high as the 

N-1 criterion. 

Our MDP model also has some limitations. 

For example, generator failure and demand 

uncertainty within a given hour are ignored to reduce 

the state space and to focus the discussion on the 

effect of transmission line failures. Future research 

should integrate generator failure and demand 

uncertainty with transmission line failure. 

Computation burden for such an integrated model 

could be alleviated by heuristic or approximation 

algorithms. 
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Figure  1: Schematic of linearized DC network for PJM (map adapted from PJM (2008) with modification) 
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Table  1: Assumed demand and generation data (partially adapted from PJM Market Monitor (2007)) 

𝑛 𝐷𝑛  𝑏𝑛
1  𝑏𝑛

2 𝑏𝑛
3 𝑄𝑛

1  𝑄𝑛
2 𝑄𝑛

3 

1 3715 17 48 184 0 3545 793 

2 3988 10 60 125 1041 1676 523 

3 4671 18 60 181 1269 4423 732 

4 1777 19 45 124 472 1681 262 

5 2041 17 44 193 71 4083 515 

6 2849 18 55 135 371 947 933 

7 4723 17 69 120 2695 2711 1873 

8 2236 14 50 125 0 1721 1732 

9 1340 17 58 162 5 758 319 

10 5518 12 47 147 2012 3068 1798 

𝐷𝑛  is the average of demand at node 𝑛 over 24 hours 

 

Table  2: Assumed transmission data (partially adapted from Chen and Hobbs (2005)) 

line 
reactance thermal limit MTTF MTTR 

𝑋  (Ω) (MW) (hour) (hour) 

1-2 0.01550 1403 11966 81 

2-3 0.00390 1741 12283 24 

2-4 0.01004 1531 8932 93 

4-5 0.02814 1808 11758 35 

5-3 0.02206 1809 11586 20 

3-6 0.01190 1590 8138 25 

3-7 0.00197 3227 7833 62 

7-6 0.00980 1824 10489 47 

3-8 0.00850 1844 13718 35 

8-9 0.00190 1523 9383 83 

9-10 0.02498 1590 11097 59 

10-6 0.00490 2758 8567 55 
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Table  3: Comparison of economic dispatch, the N-1 criterion, and optimal MDP policy 

hour Economic Dispatch N-1 criterion MDP 

𝑡 𝑐𝑠𝑁
𝑡  𝑐 𝑆𝐶

𝑡  𝑐𝑠𝐵
𝑡  𝑐𝑠𝑁

𝑡  𝑐 𝑆𝐶
𝑡  𝑐𝑠𝐵

𝑡  𝑐𝑠𝑁
𝑡  𝑐 𝑆𝐶

𝑡  𝑐𝑠𝐵
𝑡  

1 1.131 1.135 28.050 1.155 1.156 28.050 1.155 1.135 28.050 

2 1.054 1.059 26.780 1.079 1.079 26.780 1.079 1.059 26.780 

3 1.012 1.017 26.076 1.038 1.036 26.076 1.038 1.017 26.076 

4 0.994 0.999 25.781 1.021 1.019 25.781 1.021 0.999 25.781 

5 1.012 1.017 26.072 1.037 1.036 26.072 1.037 1.017 26.072 

6 1.097 1.101 27.492 1.120 1.119 27.492 1.120 1.101 27.492 

7 1.250 1.255 30.012 1.278 1.275 30.012 1.278 1.255 30.012 

8 1.388 1.394 32.016 1.429 1.429 32.016 1.409 1.394 32.016 

9 1.519 1.529 33.333 1.580 1.577 33.333 1.558 1.529 33.333 

10 1.643 1.653 34.369 1.706 1.704 34.369 1.684 1.654 34.369 

11 1.747 1.756 35.201 1.806 1.807 35.201 1.785 1.756 35.201 

12 1.804 1.813 35.660 1.865 1.866 35.660 1.843 1.814 35.660 

13 1.829 1.839 35.859 1.895 1.896 35.859 1.874 1.840 35.859 

14 1.850 1.861 36.028 1.920 1.921 36.028 1.899 1.861 36.028 

15 1.849 1.861 36.021 1.924 1.925 36.021 1.903 1.861 36.021 

16 1.859 1.871 36.097 1.939 1.939 36.097 1.917 1.872 36.097 

17 1.917 1.931 36.565 2.003 2.003 36.565 1.981 1.931 36.565 

18 2.023 2.037 37.379 2.112 2.112 37.379 2.091 2.037 37.379 

19 2.028 2.041 37.416 2.115 2.115 37.416 2.093 2.042 37.416 

20 1.981 1.995 37.067 2.066 2.066 37.067 2.045 1.995 37.067 

21 1.940 1.951 36.744 2.016 2.016 36.744 1.994 1.951 36.744 

22 1.778 1.788 35.454 1.843 1.844 35.454 1.822 1.789 35.454 

23 1.467 1.479 32.897 1.542 1.541 32.897 1.521 1.479 32.897 

24 1.262 1.268 30.181 1.292 1.299 30.181 1.292 1.268 30.181 

𝜋(𝑠) 0.923 0.036 0.041 0.939 0.055 0.006 0.937 0.055 0.008 

𝑉(𝑠) 35.48 39.86 552.14 32.48 39.56 551.63 32.44 38.94 551.62 

 


