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Abstract

We introduce the two-stage stochastic maximum-weight matching problem and demonstrate that this problem is
NP-complete. We give a factor 1

2
approximation algorithm and prove its correctness. We also provide a tight example

to show the bound given by the algorithm is exactly 1
2
. Computational results on some two-stage stochastic bipartite

matching instances indicate that the performance of the approximation algorithm appears to be substantially better
than its worst-case performance.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V,E) be a graph, and let each edge
e 2 E have an edge weight ce. The maximum-
weight matching problem (Cook et al., 1998) is

max
X
e2E

cexe
X
e2dðvÞ

xe61;

����� 8v2V ; xe2f0;1g; 8e2E

( )
:

ð1Þ
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserv
doi:10.1016/j.ejor.2004.10.011
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It is well known that the maximum-weight match-
ing problem is polynomially solvable (Edmonds,
1965). Consider a stochastic programming exten-
sion of this problem as follows. Each edge has
two weights, a first-stage weight ce, and a discretely
distributed second-stage weight ~de. The first-stage
decision x is to choose a matching in G. After
the decision, a scenario of the second-stage edge
weights is realized. That is, each edge weight is as-
signed to one of the r possible values d1e ; . . . ; d

r
e

with corresponding probabilities p1, . . .,pr. For
each scenario s = 1, . . ., r, the second-stage deci-
sion ys is to choose a matching over those vertices
unmatched by the first-stage matching. Without
loss of generality, the edge weights ce and ds

e for
ed.
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each scenario s = 1, . . ., r are nonnegative, since
any edge with negative ce or ds

e won�t be chosen
in any optimal solution. The goal is to maximize
the total expected edge weight in these matchings.
The stochastic programming extension of (1) can
then be written as:
max
X
e2E

cexe þ
Xr

s¼1
ps
X
e2E

ds
ey

s
e ð2Þ

subject toX
e2dðvÞ

xe þ
X
e2dðvÞ

yse 6 1; 8v 2 V ; s ¼ 1; . . . ; r;

xe 2 f0; 1g; yse 2 f0; 1g; 8e 2 E; s ¼ 1; . . . ; r:

For an introduction to stochastic programming,
we refer to Kall and Wallace (1994) and Birge and
Louveaux (1997). Interestingly, unlike the polyno-
mially solvable deterministic maximum-weight
matching problem, this stochastic programming
extension is NP-complete, as will be shown in
Section 2. Therefore, it is natural to develop
approximation algorithms that finds solutions
with a performance guarantee in a polynomial
number of steps for the stochastic programming
extension. Hochbaum (1997) and Vazirani (2001)
provided surveys of approximation algorithms.
There have been very few studies of the computa-
tional complexity of stochastic programs and the
applications of approximation algorithms to such
problems. Dye et al. (2003) studied the computa-
tional complexity of the stochastic single-node ser-
vice provision problem arises from an application
of distributed processing in telecommunication
networks. They showed the strong NP-complete-
ness of the problem and presented several approx-
imation algorithms.

The remainder of the paper is organized as fol-
lows. In Section 2, we show the NP-complete-
ness of the stochastic matching problem. In
Section 3, we present a factor 1

2
approximation

algorithm and provide a class of instances for
which the bound is tight. Section 4 provides com-
putational results that show the performance of
the approximation algorithm on a set of randomly
generated two-stage stochastic bipartite matching
instances.
2. The complexity of two-stage stochastic matching

We state the two-stage stochastic matching
problem formally.
Instance: Graph G = (V,E), for each e 2 E,

first-stage edge weights ce and second-stage edge
weights ds

e for s = 1, . . ., r, and probability ps for
scenario s, a positive integer number r, and a posi-
tive real number k.
Question: Are there matchings M0,M1, . . .,Mr

in the graph G such that for s = 1, . . ., r,
M0 \ Ms = /,M0 [ Ms is a matching, and the to-
tal expected edge weight given by

X
e2M0

ce þ
Xr

s¼1
ps

X
e2Ms

ds
e ð3Þ

is at least k?

Theorem 1. Two-stage stochastic matching is NP-

complete.

Aboudi (1986) studied a similar problem,
constrained matching, and demonstrated that it
is also NP-complete with a somewhat similar
proof.

Proof. Two-stage stochastic matching is clearly in
NP. We assume that for all s, ps > 0, since any
scenario with ps = 0 may be eliminated. We will
use a reduction from CNF-satisfiability to establish
the theorem. Let C be an expression in conjunctive
normal form with q clauses: C = C1 ^
C2 ^ � � � ^ Cp and q literals x1,x2, . . .,xq. We
assume that xi and �xi do not appear in the same
clause, since each clause is a disjunction and thus
any clause containing both xi and �xi is always
satisfied. We construct the graph G as follows:

For each xi, create vertices vi, wi, and �wi. For
each vi, construct edges (vi,wi) and (vi; �wi). For
each such edge e, let ce = 1, and let dse ¼ 0 for s =
1, . . .,q. For each Cs, create a vertex us. For
i = 1, . . .,q, construct edges (wi,us), and (�wi; us).
For each edge e = (wi,us), let ce = 0, and if xi is in
Cs, let dse ¼ q, otherwise, dse ¼ 0. For each edge
e ¼ ð�wi; usÞ, let ce = 0, and if xi is in Cs, let d

s
e ¼ q,

otherwise, dse ¼ 0. Define r  q and k  q + q.
For s = 1, . . ., r, let ps ¼ 1

r. Note that G is a
bipartite graph with bipartition (V + U,W), where
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Fig. 1. Example of the graph G constructed from the
expression C given in (4). The edge weights are represented
by ðce; d1e ; . . . ; dr

eÞ.

Table 1
Edge weights of the graph constructed from C

e ce d1e d2e

(v1,w1) 1 0 0
(v1; �w1) 1 0 0
(v2,w2) 1 0 0
(v2; �w2) 1 0 0
(w1, u1) 0 2 0
(�w1; u1) 0 0 0
(w2, u1) 0 0 0
(�w2; u1) 0 2 0
(w1, u2) 0 0 2
(�w1; u2) 0 0 0
(w2, u2) 0 0 2
(�w2; u2) 0 0 0
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V, U, W are the sets containing all vertices vi, us,
and wi and �wi, respectively.

We now claim that G contains matchings
M0 [ Ms for s = 1, . . ., r, and the total expected
edge weight given in (3) is at least k if and only if
the expression C is satisfiable. To see this we
demonstrate the correspondence between match-
ings with which the value of (3) is at least k and a
literal assignment which satisfies C.

Suppose that there exists a literal assignment
that satisfies C. Construct the matchings
M0,M1, . . .,Mr as follows.

1. For all xi, if xi is True, add (vi,wi) to M0.
2. For all xi, if xi is False, add (vi; �wi) to M0.
3. For all clauses Cs, pick any literal that satisfies

Cs. If xi is chosen, add (us; �wi) to Ms. If �xi, is
chosen, add (us,wi) to Ms.

It is easy to check that for s = 1, . . ., r,
M0 \ Ms = ; and M0 [ Ms is a matching, and
the total expected edge weight is k.

Now let us suppose that there exist matchings
M0,M1, . . .,Mr such that for s = 1, . . ., r,
M0 \ Ms = ; and M0 [ Ms is a matching, and
the total expected edge weight is at least k. Note
that no more than q edges with ce > 0 can be in
M0, and ce = 1 for all such edges. Also, note that
for each s, no more than one edge with dse > 0 can
be in Ms, and dse ¼ q for this edge. Hence,P

e2M0ce 6 q and
P

e2Mspsd
s
e 6 1. The latter

inequality implies that
Pr

s¼1
P

e2Mspsd
s
e 6 q and

thus the value of (3) is at most q + q = k. Since the
total expected edge weight is at least k, it follows
that M0 matches every vertex in V with a weight 1
edge and each Ms matches vertex us with a
positively weighted edge.

Consider any literal in C, we construct the
literal assignment as follows.

1. If (vi,wi) is in M0, xi is True.
2. If (vi; �wi) is in M0, xi is False.

It is easy to check that this literal assignment
satisfies C.

The above transformation is clearly polyno-
mial, so we conclude that Two-stage stochastic

matching is NP-complete. h
2.1. Example of the reduction

Consider the expression

C ¼ f�x1 _ x2g ^ f�x1 _ �x2g: ð4Þ
There are two literals and two clauses, so
r = q = 2, q = 2 and k = 4. Then G is as in Fig.
1 and the edge weights are as in Table 1. All edge
weights are also labeled in Fig. 1. The two scenar-
ios are assigned with equal probability.
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From Theorem 1, there exist matchingsM0,M1

andM2 such thatM0\M1 = ;,M0 \ M2 = ;, and
M0 [ M1 and M0 [ M2 are matchings and

X
e2M0

ce þ
1

2

X
e2M1

d1e þ
1

2

X
e2M2

d2e P 4

if and only if there exists a literal assignment satis-
fying C.

Matchings M0 ¼ fðv1; �w1Þ; ðv2; �w2Þg, M1 =
{(w1,u1)} and M2 = {(w2,u2)} have a total ex-
pected weight of (1þ 1þ 2� 1

2
þ 2� 1

2
¼ 4), and

these matchings correspond to the assignment of
literal x1 to False and literal x2 to False which
satisfies C. Note that M0 [ M1 and M0 [ M2 are
matchings. An alternative is matchings M0 ¼
fðv1; �w1Þ; ðv2;w2Þg; M1 ¼ fðw1; u1Þg, and M2 ¼
fð�w2; u2Þg, which also have a total expected weight
of 4, and correspond to the assignment of literal x1
to False and literal x2 to True which satisfies C
as well.
3. A factor 1
2
approximation algorithm

Definition 1. A first-stage myopic solution is an
optimal solution to:

ðMYOPIC1Þ : max
X
e2E

cexe
X
e2dðvÞ

xe 6 1; 8v 2 V ;

�����
(

xe 2 f0; 1g; 8e 2 E

)
:

Definition 2. A second-stage myopic solution for
scenario s is an optimal solution to:

ðMYOPIC2Þ : max
X
e2E

ds
eye

X
e2dðvÞ

ye 6 1; 8v 2 V ;

�����
(

ye 2 f0; 1g; 8e 2 E

)
:

A first- (second-) stage myopic solution is the
solution to a deterministic maximum-weight
matching problem with the appropriate choice of
objective.
The intuition behind our approximation algo-
rithm is straightforward. We consider r + 1 solu-
tions: one first-stage myopic solution, and r

second-stage myopic solutions for all scenarios.
We compare two objective values: the objective va-
lue of the first-stage myopic solution, and the ex-
pected objective value of the second-stage myopic
solutions over all scenarios. Of these two values,
the larger one gives the output of the approxima-
tion algorithm.

We state the algorithm formally:

Algorithm 1
INPUT: A two-stage stochastic maximum-weight
matching problem.
Let x1 be a first-stage myopic solution, and let
z1 = cx1.
For scenario s, Let ys2 be a second-stage myopic
solution, and let zs2 ¼ dsys2.
Let ẑ ¼ maxfz1;

Pr
s¼1psz

s
2g.

OUTPUT: If ẑ ¼ z1, then return (x1,0, . . .,0) and
z1; otherwise, return (0; y12; . . . ; y

r
2) and

Pr
s¼1psz

s
2.

Theorem 2. Algorithm 1 is an approximation algo-

rithm with performance guarantee 1
2

for the two-
stage stochastic maximum-weight matching problem

given in (2).

Proof. Solutions (x1,0, . . .,0) and (0; y12; . . . ; y
r
2) are

clearly feasible to (2). Let x� ¼ ðx0; y10; . . . ; yr0Þ and
z* be an optimal solution and the optimal objec-
tive value to (2), respectively. Since solution x0 is
feasible to (MYOPIC1),

ẑ P z1 P cx0: ð5Þ

Since solution ys0 is feasible to (MYOPIC2) for sce-
nario s, s = 1, . . ., r,

ẑ P
Xr

s¼1
psz

s
2 P

Xr

s¼1
psd

sys0: ð6Þ

Summing up inequalities (5) and (6) yields
2ẑ P cx0 þ

Pr
s¼1psd

sys0 ¼ z�, and thus the result
follows. h

Since both (MYOPIC1) and (MYOPIC2) are
polynomially solvable, Algorithm 1 runs in poly-
nomial time.
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3.1. A tight example for Algorithm 1

We give a tight example of two-stage stochastic
bipartite matching. The problem is defined on the
graph G = (V,E) as in Fig. 2 and its objective
function is given as in (2).

Let G be a bipartite graph with bipartition
V = (S,T) where jSj = jTj and furthermore let
S = (S1,S2) with jS1j = jS2j and let T = (T1,T2)
with jT1j = jT2j. Let l be any positive integer.
For all edges e = (u, v) with u 2 S1 and v 2 T1,
let ce = l. For all other edges connecting S and
T, let ce = 0. For any scenario s, s = 1, . . ., r, for
all edges e = (u, v) with u 2 S2 and v 2 T2 let
ds
e ¼ l; for all other edges connecting S and T, let

ds
e ¼ 0. Fig. 2 illustrates such an instance with

jSj = jTj = 4.
The first-stage myopic solution is given by

choosing any complete matching from S1 to T1, to-
gether with any matching from S2 to T2. Hence,
the output of Algorithm 1 is to use the first-stage
myopic solution in the first stage and to choose
no edges in the second stage. This output gives
the total expected edge weight l � jV j

4
. For any sce-

nario, the second-stage myopic solution is given
by choosing any complete matching from S2 to
u1
v1

u2 v2

u3 v3

u4 v4
Fig. 2. Example on the complete bipartite graph G when the
bound is tight. Edges with presence have edge weights. Solid
edges are weighted l in the first stage and dashed edges are
weighted l in the second stage. All other edges have zero weight
in both stages. S1 = {u1, u2}, S1 = {u3, u4}, T1 = {v1, v2},
T1 = {ve, v4}.
T2, together with any matching from S1 to T1.
Hence, the output of Algorithm 1 is to choose no
edges in the first stage and to use the sth second-
stage myopic solution in the second stage if sce-
narios s is realized. This output gives the total
expected edge weight l � jV j

4
. The maximum of these

two solutions is l � jV j
4
, so the approximation algo-

rithm gives a solution of l � jV j
4
.

The optimal solution to the two-stage stochastic
bipartite matching problem is to choose any com-
plete matching from S1 to T1 as the first-stage deci-
sion, and for each scenario, choose any complete
matching from S2 to T2 as the second-stage deci-
sion. The first-stage matching gives edge weight
l � jV j

4
, and the expected second-stage edge weight

is l � jV j
4
, so the total expected edge weight is l � jV j

2
.

Thus the approximation algorithm returns a solu-
tion whose total expected edge weight is exactly 1

2

of the optimal objective value.
4. Computational results

We tested our approximation algorithm on a set
of randomly generated two-stage stochastic bipar-
tite matching instances with 10 vertices in each side
of the bipartition and 100 scenarios. In our com-
putational experiments, we used CPLEX 7.0 to
find the solutions to (MYOPIC1) and (MYO-
PIC2). To check the performance of our approxi-
mation algorithm, we also solved the stochastic
programming formulation directly using the L-
shaped method (Van Slyke and Wets, 1969), a var-
iant of Benders� decomposition (Benders, 1962)
and a standard technique for exactly solving two-
stage stochastic linear programs with continuous
or integer first stage. For some large instances,
the L-shaped method tended to be very time-con-
suming, so we imposed a 1-hour CPU time limit
on it and obtained the solution of the restricted
master problem, which is an upper bound on the
exact solution.

In all test instances, the first-stage and second-
stage edge weights were normally distributed. All
scenarios were realized with equal probability.
We tested four groups of instance classes, in each
of which only one of the four distribution param-
eters (mean and standard deviation of the first-
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stage and second-stage edge weights) was varied
and other three were fixed. For example, in group
1, we varied the mean of the first-stage edge
weights from 5 to 25. We generated 100 instances
for each instance class and reported the average
CPU time. Table 2 presents the characteristics
and computational results of these instance classes.
Our computational experiments indicate that the
CPU time of the approximation algorithm is
insensitive to the distribution parameter settings.
On the other hand, when the first-stage and sec-
Table 2
Characteristics and computational results of small instances

Group Instance Average
approx. CPU

Average
L-shaped CPUFirst stage Second stage

�N(5, 152) �N(10, 152) 0.08 0.71
�N(10, 152) �N(10, 152) 0.08 1.88

1 �N(15, 152) �N(10, 152) 0.08 2.25
�N(20, 152) �N(10, 152) 0.08 0.41
�N(25, 152) �N(10, 152) 0.08 0.14

�N(10, 52) �N(10, 152) 0.08 0.10
�N(10, 102) �N(10, 152) 0.08 0.34

2 �N(10, 152) �N(10, 152) 0.08 1.88
�N(10, 202) �N(10, 152) 0.08 1.21
�N(10, 252) �N(10, 152) 0.08 0.53

�N(10, 152) �N(5, 152) 0.08 1.81
�N(10, 152) �N(10, 152) 0.08 1.88

3 �N(10, 152) �N(15, 152) 0.08 0.79
�N(10, 152) �N(20, 152) 0.08 0.32
�N(10, 152) �N(25, 152) 0.08 0.15

�N(10, 152) �N(10, 52) 0.08 0.16
�N(10, 152) �N(10, 102) 0.08 0.82

4 �N(10, 152) �N(10, 152) 0.08 1.88
�N(10, 152) �N(10, 202) 0.09 0.97
�N(10, 152) �N(10, 252) 0.09 0.19

Table 3
Characteristics and computational results of larger instances

Instance class Weights Average
approx. CPUFirst stage Second stage

1 �N(10, 152) �N(10, 152) 160.4
2 �N(10, 152) �N(10, 202) 144.9
3 �N(10, 152) �N(10, 302) 131.8
4 �N(15, 152) �N(10, 152) 161.3
5 �N(20, 152) �N(10, 152) 159.7
6 �N(20, 152) �N(10, 302) 132.3
ond-stage edge weights are generated from the
same or similar distributions, the L-shaped meth-
od is relatively less efficient due to the symmetry
between the edge weights in the two stages. We
also report the average ratio of the approximation
solution to the exact solution in the table. When
the first-stage and second-stage edge weights are
generated from the same or similar distributions,
this ratio tends to be the lowest for the same rea-
son. The last column in Table 2 shows the integral-
ity gap of the LP-relaxation for these instances.
Average # of
L-shaped iterations

Average
performance ratio

Average
integrality gap (%)

13.39 0.976 0.1
25.35 0.958 0.3
23.70 0.984 0.3
9.05 0.998 0.0
4.79 1.000 0.0

3.01 1.000 0.0
7.20 0.997 0.0
25.35 0.958 0.3
18.93 0.966 0.2
11.54 0.978 0.0

21.97 0.980 0.1
25.35 0.958 0.3
14.02 0.980 0.1
7.20 0.994 0.0
4.11 0.998 0.0

5.74 0.989 0.0
15.20 0.976 0.1
25.35 0.958 0.3
12.66 0.991 0.0
4.86 0.999 0.0

Average
L-shaped CPU

Average # of
L-shaped iterations

Average
performance ratio

P3600 P3 0.954
P3600 P3 0.998

197.0 2 1.000
P3600 P3 0.986
P3600 P3 0.997

191.4 2 1.000
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We then considered some large stochastic bipar-
tite instances with 500 vertices in each side of the
bipartition and 10 scenarios. Table 3 presents the
characteristics and computational results of these
instances. Each instance class consists of 10 in-
stances. As above, each random parameter was
generated according to a normal distribution and
each scenario was assigned with equal probability.
In the table, we also report the average ratio of the
approximate solution to the exact solution or its
upper bound if the L-shaped method did not ter-
minate within 1 hour.

5. Conclusions

As we have shown in this paper, the stochastic
programming extension of a polynomially solvable
combinatorial optimization problem may become
NP-complete. However, the line between easy
and hard stochastic combinatorial optimization
problems has yet to be fully explored. Meanwhile,
given difficulty of solving stochastic programs,
particularly stochastic integer programs, develop-
ing approximation algorithms for such problems
is a promising direction for future research.
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