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Summary. In this paper, velocity inversion using waveform data is investi-
gated. A linearized approach is used in which a linear sensitivity operator
must be derived. This operator can be computed economically using
reciprocity of the Green’s function, In order to avoid a large matrix inversion,
several descent algorithms are described, Data errors and a priori model
information are incorporated using covariance operators. A fast and
reasonably accurate forward modelling scheme is required and here the
Gaussian beamn method for a slowly varying heterogeneous medium is used.
Several types of linearizations can be done including the Bomn approximation,
a linearization in terms of the field, and the Rytov approximation, a
linearization in terms of the log field. Field linearizations are expected to be
useful for small-scale heterogeneities which result in scattering effects that are
additive in the field. For small perturbations from a homogeneous back-
ground, a linearized inversion in terms of the lield is equivalent 1o a sequence
of Kirchhoff migrations. Log field linearizdations may be more tobust for large-
scale heterogenéities where forward scattering predominates, but phase
unwrapping may be difficult numerically, Several numerical examples using a
field linearization are performed in which transmitied body waves through a
model with small velocity variations are used. The results using the waveform
dara identify the trial structures and are comparable or slightly betier than
the travel-time inversion results.
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In this paper, an iterative inversion method for each structuse is investigated. Previous
inversions for velocity using array data have mostly used travel times in constructing the
tomography problem (see Aki 1977; Aki, Christoffersson & Husebye 1977). Recently

24



702 R, L. Nowack and K. Aki

Inversion for structure
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Figure 1. Sketch of heterogeneous body with surrounding sources and seceivers. A simple transmitied
wuvetonn is shown.

iterative methods, such as the algebraic reconstruction method, have been applied to travel
time inversions (see McMechan 1983; Clayton & Conter 1983 ; Humphreys, Clayton & Hager
1984). Several of these iterative algorithms are described by Censor {1981). The iterative
methods have advantages over generalized inversion methods when dealing with large sparse
matrices, but can have convergence problems when small eigenvalues are present (lvansson
1983). Still, there is much more information in seismic data than just first arrival travel
times, including amplitudes and waveforms, Fig. 1 shows a sketch of a heterogeneous region
with surrounding sources and receivers, A simple transmirtted waveform is shown.

A number of studies have incorporated amplitude and waveform data in seismic inversion
and interpretation. For example, spatial variations of phase time and amplitude from tele-
seismic body waves recorded at the Montana LASA were interpreted by Larner (1970) in
terms of a dented Moho. Haddon & Husebye (1978) and Thamson & Gubbins (1982)
derived joint interpretarions of travel time and amplitude to infer the structure beneath
NORSAR. Wavetorm inversion using refraction data that assume a vertically varying
structure has been performed by Shaw (1983). Brown (1984) made a comparison of travel-
time inversions and waveform inversions using synthetic data also in a vertically varying
structure. Migration of reflection seismic data is a form of inversion (see Schneider 1978),
and it has been recently shown to be kinematically similar to a linearized Born inversion (see
Tarantola 1984b, Miller, Orstaglioc & Beylkin 1984). Direct inversions based on the
linearized model have been investigated by Cohen & Bleistein (1979) and Raz (1981). There
has also been some progress in generalizing exact 1-D inversion methods 1o higher
dimensions (see Newton 1983).

A recent formulation by Tarantola (1984a) uses an iterative linearized approach and is
described in the next seciion. A linear sensitivity operator must be derived, and this can be
done economically by using reciprocity of the Green’s function. Several descent algorithms
are described which ayoid a large matrix inversion. A fast and reasonably accurare forward
modelling scheme is required, and here we make use of the Gaussiarr beam method in a
slowly varying medium. Data errors and ¢ priori information are incorporated using
covariance operators, Different types of linearization are possible including linearization in
terms of the field, the Bom approximation, and a linearization in terms of the log of the
field, the Rytov approximation, Their relative merits are discussed. Finally several numerical
examples are performed using a linearization in terms of the field and transmitted waveforms
in order to test the method.



Lrevarive version 703
Linearized inversion

In this section a review ol the linearized inverse approach is given following Madden
{unpublished lecture notes), Tarantola (19844, b, ¢) and Lailly (1983). In the lincarized
approach, a linear sensitivity or Frechet desivative operator must be derived first and then
used in an iterative procedure for the model parameters, In addition, several descent
algorithms are described which do not require the inversion of a large matsix.

The forward problem can be written in the form

Llp(r, )] =8, 1), _ (1)

where £ is 2 model dependemt differential operator, p (r, 7} is the field variable, and S{r, 1) is
the source term. For example, for the scalar wave equation

o :
v(_r)2 3 B ‘ -

The solution of (1} can be written

plr, )= de(r')g (r.1;0)% 5(r, 1) + (boundary terms),

where g (1, ¢, r)is the Green’s function from r to r, and * is a time convolution. This can be
derived from the bilinear identity (see Lanczos 1961). For the scalar wave equation, the
Kirchhoff integral is the relevant boundary term, in the following, homogeneous boundary.
conditions will be assumed giving zero for the boundary term. Finally, for a wave equation
operator L with homogeneous boundary conditions, the Green’s function is reciprocal with
respect to source and receiver location, Thus,

glr. rxg) =g (rg, £31).

In order to obtain a linear sensitivity operator, a perturbed problem is constructed
(L+8L)(p+8p)=5+ 88 (3)
or
L{ép)= —8L{p + 6p) + bS.

Assuming that 8L (6p) is small is equivalent to the Born approximation which requires that
the perturbed field, 8p, be much smaller than the unperturbed primary field, p. To first
order, (3) can be written

Ldp)=—8L(p)+ 58, (4)

where —8L(p) is an equivalent source term for the medium perturbations and &5 is the term
for the source perturbations. Here we will investigate the ‘inverse medium problem’ for a
given source, thus 85 = 0. The solution for the perturbed field can then be written as a space
integration over secondary equivalent sources

5p (rg, 131) = —JdV(r)g(r. Girg) 8L [p(r, 1:15)], )

where 8L includes the model perturbations, and p is the incident primary field. Equation (5)
can be written as

op
& Lirg= — 8L =FA8L, 6)
DTy o ol . {
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where £ is u linear sensitivity or Frechet derivative operator, and the operator 8L has
imbedded within it the mode] variations. Assuming that the primary field can be written as
pir. tirg} = g{r, 1;1), then

Splrg, Iits) = wde(_r)g(r. rirg)+ 8L [glr riry)]-

Thus, the linear sensitivity operator can be constructed by computing g(r,7;¥,) which
propagates the field from the source r; 10 each model point, r, and g(r. 7; 1) which back-
propagates the tield back from the geophones into the model at r. This requires the
computation of N, + Ny forward problems evaluated at the interior points of the model
where .V, is the number of geophones and V, is the number of sources.

For the scalar wave equation {rom equations (2) and (5), we have

bl

8p (r. 1505) = fdi’(r){ S P {r, 7;r.) =g, r;rg)} Su{ry, (7
v{r)

where the term in the brackets is the linear sensitivity operator, £ =3p/ou, Svir} is the
velocity model perturbation at r, and pi(r, r;r,) is the second rime derivative of the primary
field computed from the source point to the point r in the medium. The linear sensitivity
operators for the elastic wave equation are given by Tarantola (1984¢). The linear sensitivity
operators for the acoustic wave equation are given by Tarantola {1984a) and used in a simple
1-D example in Appendix C.

In the following, the linearized problem (5) will be imbedded within an iterative
procedure. The effect of ignoring the 8L (8p) term in the linearization will result in no
multiple interactions with the perturbations within 6L, or no ‘cross talk’ between
perturbations during each iteration. Multiple interactions from. previous iterations are
included via the Green’s functions. This approach requires the calculation of Green’s
functions, which are recalculated at each iteration. In principle, an ilerative strategy should
be able to handle large velocity contrasts. This approach requires the calculation of Green’s
function in inhomogencous media inexpensively and reasonably accurately. Various forward
modelling approaches could be considered including ray theoretical methods, the discrete
wavenumber method, or the finite difference and finite element methods. Any inversion
method is only as good as the forward modelling scheme on which it is based.

The forward problem as a function of model parameters is in general a nonlinear function

and can be written

p=J(m), (8)

where p is the figld and m is the model. In general, pooy # f(Mprior), Where poys is the
observed field and my o, is the a priori model based on previous information. The objective
is 10 find the combined vector [p, m] that satisfies p = f(m) and is closest 10 [Popys Mprior]
in some sense. This distance could be defined in various ways depending on the noise
structure of the problem, including the L, norm, the £, norm, or the L., norm. Here the
weighted £, norm will be considered with its associated induced inner product. This results
in a least-squares formulation. Thus we want to minimize the functional (see Tarantola &

Valette 1982; Tarantola 1984a)
S(m) =% {Ipops — M) + 1M — Mp ot} (9)

where the 1/2 has been introduced for later convenience. The linear sensitivity operator,
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F; ar my then satisfies
fimy + dm)=flmy )+ Fémy + OS2 ).

The negative of the gradient of Stm,, } gives the local direction of maximum descent al my.
To firse order this can be written

Te = — VSUI-]A": {F: 'SPI\‘ - (mk_ mprior)}, (10}

where 59, = pubs - Jimg ), and £ is the adjoint of the linear sensitivity operator, Fi.The
adjoint is defined from the bilinear identity

<8p. FSm>;, — < F78p, m>,, = boundary term, (11)

where <, > is a defined mner product. The boundary tems is assumed to be zero using
homogeneous boundary conditions. Thus, £ is a linear mapping from model to data space,
and the adjoint, £*, is a linear mapping from data space back to model space. Inverse
operators are in general difficult to construct, but adjoint operators through the bilinear
identity are straightforward 1o obtain. In addition, adjoint operators have very useful
properties which aid in the construction of inverse and generalized inverse operators,

Consider a linear problem, Fim = p,y,, with noisy observations but where the null space
of F is zeto, N(F) = 0. The null space, N(F), represents the subspace of the model space that
satisfies Fm = 0. The standard least-squares solution results by using the adjoint theorem,
RYF)Y=N(F*), where R is the range of Fm in data space. Thus mapping Fm and pyns
through F* annihilates the component of pgp, in RY(F) resulting in a consistent ser of
equations. Then, £*Fin = F pgps or m= (FFY F pyps. For V(F) =0, (F* F) is full rank
and an inverse exists. The standard least-squares solutions thus results from two operations
on the data, p,s,. First, the data is operated on by the adjoint operator, F*, which projects
Pobs from data space to model space. This blurred image in model space is then filtered with
the operator (F*F)™'. When N(F)# 0, a genenlized inverse can be computed by using
additional adjoint theorems. This is equivalent to the Lanczos formulation which resulisin a
minimum -norm least-squares solution (Aki & Richards 1980). An alternative is to stabilize
the (#*F) operator using 2 maximum likelihood procedure which reduces to minimizing a
functional like (9) with appropriate data and model covariance operators defined. Any «
priori knowledge about the component of the model in the null space can be incorporated
into the final solution. This might include smoothness of the resulting solution.

The maximum likelihood algorithm of Tarantola & Valette (1982} is a linear iterative
procedure for solving the non-linear inverse problem, (8), by minimizing the functional (9).
It can be written

My, Mg+ [h'k]-l {F.:BP —{m; — nlprior)} s (12}
where the term in the brackets is the negarive gradient of the functional $(m), and
He=+FF]. {13)

Covariance operators can be introduced by a suitable definition of the data and model
space scalar products (see Tarantola 1984c). Thus

<m;,my>, =m Cylm,

<p1.Pr>p © bTCEIP: '

where m’ is the transpose of m, C,, is the model covariance operator, and C, is the data
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covariance operator. From this definition of the scalar products, the adjoint operator, F,
of £ is related to the transpose by

Fr=CaFiCy'. (14)

The adjoint is equal to the transpose when Cp,, =/ and Cp = 1. For a complex operator, F,
the iranspose is replaced by the conjugite ranspose operator.

A major problem with the iterative scheme (12) is that in discretized form it requires the
inversion of a possibly large matrix. Since the goal is to iteratively solve the original problem,
(8), only an approximate solution of the imbedded linearized problem may be required.

" Thus, a simple iterative scheme could be written

g, =My + oWy, (15)

where v, is the negative gradient of the functional S(m), W, is a preconditioner, and
o, is a scalar that approximately solves a 1-D line search of S{m) in the direction Wy, ay
is thus chosen to minimize S(my + o Wy, ) with respect to ay giving

<WiYe, Y>>
_ kYe: Tk (16)

Wiy, HeWieve>

where H, is given in (13). For the maximum tikelihood algorithm, (11), Wy = Hy' giving
ay = 1. This would then be similar to 2 modified Newton’s method for solving the non-linear
problem, (8), dependent on the choice of the covariance operators used.

Various simplifying choices for W; could be considered. Choosing W, = results in the
sieepest descent method, Thus,

My, =My + O Tk, (17)
where

RS £ g
o= —————— ,

<Y, Hiye>

with H; given in (13). For a quadratic S(m), Yx+ and 7k will be perpendicular. One thus
moves in the direction 4, until tangent to a level curve of S(m). At this point, yg., is chosen
perpendicular to the level curve in a direction of maximum descent,

Another possible choice for Wy is (see Tarantola 1984a}

' = [DIAG (H )] ™. (18)

This is similar to a modified Jacobi method with suitably defined covariance operators.

In any of the preconditioning strategies, the single step convergence properties for
quadratic functionals, S(m), are governed by the difference in the smallest and largest eigen-
values of W, H with A given in (13). From Luenberger (1984),

7\mux - ?\min
—_

2
S(my 4P [ ] S(my).

7\m ax T ?\min
The closer W, is to H;" the better the single step convergence. A general overall strategy is to
construct a preconditioning scheme that is easy to compute and possesses a favourable
eigenvalue structure at each step.

Instead of using the gradient directions in the steepest descent approach, improved con-
vergence for very litile extra effort can he obtained by using the so called conjugate gradient



frerative inversion 707

directions defined with respect to a new inner product, <X, x> =xTH,x where Hy is given
in (13). The Fletcher-Reeves implementation of the conjugate gradient method to non-
quadratic problems is briefly outlined. First, given mjo, and yo= — VS(mppior), set
dg = ¥o. Now let my,, = my + apd, where o minimizes S(my + &, d; ). The next direction
of descent, d;,, is chosen to be H, — orthogonal to the previous direction d, . This is done
by setting dg .y ® Yieq + Brdr, Where By = <¥rep, Y >/<¥k, Y& > dg4y 13 thus a direction
modified from the steepest descent direction. In a similar fashion to steepest descent, d;
and d, are orthogonal but with respect to . The conjugate gradient method has the
important property that the estimate m, minimizes a quadratic functional S(m) over a sub-
space spanned by all the previous directions (dg, . .., d; -, }{see Luenberger 1984).

All of the above methods require the linear sensnwny operator Fy and the adjoint of this
operator Fy;. For example, for the scalar wave equation (2)

F { 2 v )} dp (1o
= nryxe(r ) b=,
ol ¢ £ v !

where velocity v is the model parameter. Thus to first order 8p = (8p/dv)dv. Using the
bilinear identity, (11), with C,,, =/ and Cp={and homogeneous boundary conditions, then
F*=FT and :

<8p, Fu>,= 3. ). | drdpF(v)

re r'g

=Y ¥ {drsp(rg ;1) |dV(r') [ plr' tr) xglr', oo )] su(r'}.

Fe ?’g

Then,
<F*8p, 8u>, = fdlf(r') F*(5p) bv

de{r Yy far

J’g J‘g

L) * glr', I;rg)l Sp(re, [;rf)]] su(r").

Thus Fji Js just £3 with summauons now over geophone and source locations and an
integration in time.

The final adjoint operator includes the data and model covariance operators. Assuming
uncorrelated errors over source and receiver locations and time, then,

'3 (20)

{r rrlr rr\-n
"?l:

Cpleg, BinlTg, 2esbeg b
where g, represents the estimated error in the trace corresponding to the gth receiver and
the sth source. For the model covariance operator, a spatial Gaussian correlation is a
commonly used choice (see Aki & Richards 1980; Tarantola 1984a). Thus,

2 _ 2
C,lr1) = Cny 3“{-‘3exp[ 21 (rA:)] @

where v is the model parameter m, L is the medium correlation length for the Gaussian
correlation function, and Oy represents the estimated departures of m(r) from my . (r). As
L goes to zero, then C,(r, r") = a28(r ~ r’). The model covariance operator will constrain the
iterated model parameters as well as act like a spatial smoothing filter. The complete adjoint
can be written, £, = C,F{C;', as in (14).
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For the scalar wave equation, the preconditioned descent method can be written

Ukey = Uit 0 Wy [CoFT8p" — (0 - Uprios )] - (2)

where

dp'=C,l6p

are the weighted data residuals. Now let

56=C,Fisp: (23)

Then,

56=C, z Y J_‘dr Lsi) plr, Lirg) = glr. rirg)| Op '(rg, e (24)
rg T

This can be rewritten as

2

&

s =C, Y 3. |di

ry rg

() plr, tyry) [g(r, — 65rg) * Bpl(rg- 1,15}, (25)
where the term in the brackets corresponds to the propagation of the weighted residuals
from the geophones into the model backwards in time. This is then compared with the
computed primary field from the sources to the model point, A summation over all source
and receiver locations is then performed and an integration over time. Finally, the a priori
model covariance operator is applied. This is reminiscent of an imaging principle in which
the reflector (velocity perturbation) exists where the downgoing and upgoing waves coincide
in time (Claerbout 1976; Tarantola 1984b}.

In order to implement this algorithm, p(r, £;1;) and g(r, £;1g) must be computed where r
is a point in the model (see Fig. 2). Since for an inhomogeneous. medium an inexpensive
forward modelling scheme is required, one possibility is that paraxial ray theory or the
Gaussian beam method be used to calculate p and g (see Cerveny, Popov & PEentik 1982,
Nowack & Aki 1984). An advantage of using these methods is that no two-point ray tracing
is required. In addition, the Gaussian beam method produces a smoothed field with no
unphysical singularities in amplitude resulting from caustics which may have adverse effects
on an inversion.

Using the ray approximation in 3-D,

glr, o rg) = “Irr_g,'jj(I - Trrg)
ij(rr ‘r: r;s‘) = ArrSS-U - Trr.!')’

Figure 2. The computation of the lincar sensitivity operator requires a forward problem for each source
and receiver evaluated at the interior points of the model.
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where 4, and T, are the amplituide and travel time computed by ray theoretical methods
and S(1) is the second derivative of the source rime puise. For the 2D case, an additional
/4 phase shift in the far tield must be included. Lquation {24) is then

~
65;\. = CDF_E—P&p' = Cv z Z ——3—' .4rrs‘4rrgfdf S(I - Trrs)ﬁp'(rg‘ I+ T”-g;rs) (26)

¥ rg u ‘\r)

This can be rewitien as

2 -
5 =Cp LY = Arg Arn8Pilg, 1= Ty + Torgi¥shy Qen
rg rg ¥ {r)
where,
8P4 = S(= 1) % 8plrg, 1575): (28)

8P is the cross correlation of the weighted residuals with the second derivative of the source
time pulse. 8B, is the result of the weighted sum over the phase surface through the data
defined by = T,,g + Top, for each model point, 1.

When the a priori starting model is close enough to the true velocity model so that the
Born approximation is strictly valid, then Fy = Fy for all iterations. In addition, if the 2
priori model is homogeneous, then

56, = C,FTop'=C, Y
’ Y e VBT R R

R, +R
55 (rg, (= Dt Brrg ,x) , (29)
v

where 87 is defined above, Ry, is the distance between source and model point, and R,,gis
the distance between the geophone and the model point. This is similar to a Kirchhoff
migration and a Cross correlation with the source time pulse (Schneider 1978 Tarantola
1984b). Thus, assuming the Bomn approximation is strictly valid, then a velocity inversion
using a descent approach is equivalent to an iterative sequence of Kirchhoff migrations.

A complete iterative step involves a preconditioner, Wy, and a scalar oy, which solves a
{-D line search. W, is assumed to be some approximation to {(/ + Fr F)"'. Approximating
F} by a matrix, then

F={By}
where

)

i

with /=1,N, where N, is the number of data values = N NJ N, andj = 1, N, where N, is
the number of velocity model values. Assuming

0.2
Fr=—FT

2
Tp

with Cp = 03{ and C,, = g2d, then

. g2 Np
(He)=U+ FeFe) = {‘5;';' t 2 Y BHBI;'} .
. p I=1
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Thus, )
(+ FiF); =8y

2

4
+ zzfd ——‘_U“""_“_ {xﬁ(ri, tyrg) = g(rp, [;rg)}{b(rj— I;rs)*g(rj-f;rg)}'

Upv U‘z) (’;)

oy
In the ray approximation this can be written (30)
U+ FiFidy =8y
2
-+ o2’ :f:; v} () % % rirsArrg ArireArirg S@-= Tyirg* Trrg = Toiry — T,].,g),
(31) -

where,

5() = S(- 1) * S(2).

With a high-frequency source, this matrix will be sparse. For a diagonally dominant operator,
H,, then an improved single-step convergence can be obtained using Wy, = [DIAG(H,)]™,
where

40} 5(0) TY A, w} (32)

2 6
() norg

Thus, a simple preconditioned iterative scheme can be written

40250 -
v (77) =vk(ri')f ag {1 AL SO YY 4 irs r,rg}

6(’:) iy rg

DIAG (Hk)ii = {1

Ar,r_,A Jdr S([ - Tr,-rs) op r(rg. I+ ﬂirj;rs)- (33)

YL =

oty 3()

When the @ priori model is homogeneous, the starting model is sufficiently close to the true
model so that the Born approximation is strictly valid, and with g, -> =, then

Vet () = V() + 24 87203 () { } [EE { 1 }]

J’g r» RE r- ‘R? rg
. 1 1 Ry, + R,
x¥Y ¥ { } p Bp(rg, p=—Te. Mg . rs), (34)
rg g JRrjr_.r rprg s ()] v

where {C,/d}) includes the spatial filtering part of the Covariance operator, 87 is given in
equation (28) and is normalized by S(O)Iap, and ; is obtained from equation (16). The
factor

PArall

Ty rg f,i’g

approximately corrects for geometric spreading. A simple variant of this formula will be used
in the examples to follow,
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Alternative linearizations

The formulation in the previous section was applied to the linearization of the field

variables. General limitations to this approach are summarized in Appendix A. A simple

example of the limitations in using a linearization in terms of the field can be seen as

follows. Consider a field in an unperturbed homogeneous medium (see Brown 1984),

ug(r. 1) = 5———#“ Rivo)
47 R

where R=jr—rgl. Ina slightly perturbed homogeneaus model with velocity v, = v + 60,
the field is :

5(r — Rfu)

ul(r»!)= 411'R

The perturbed-minus-unperturbed field is then approximated by the linearisation

ou
Uy — ug = du=—=av (34)
v
or
8¢ — Rfv,) 8t~ Rfvg) D [5(: - R/vo)] 5
4R R awl ar | °

which reduces to

5(t — Rfvy) — 8(t — Rfve)~ 8(1 — Rfvo) (052) bv.
(3]

A . =
v

Figure 3. A linearization in terms of the field approximates the differential seismogram on the left with
the doublet on the right. This will be a good approximation only for low enough freguencies.

Thus the actual differential seismogram is approximated by a constant times the derivative
of a delta function. As seen from Fig. 3, depending on the frequency content, this will be a
poor approximation when

R R
e (— 2
v, Vg

is large. For a single harmonic frequency in a homogeneous medium, then

_exp (iwR/v)
4rR )

u
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The linearization in terms of the field can then be written

— v2 —_—

exp (fwRimy)  expicwR/vs) du 5 (~fuR) exp iwR/vy) 5
— = e QU

4mR 4w R v vl 4wR
or
i i ~fwR
exp [fwR|— - =]~ 1= > bv,
125 Yo Vo
for small

1 1y
WRi— ——} <1,
m Vo
then the exponential can be approximated as

exp (fwdt) =1 +iwR {—1 - L} .

vy Yo
Thus for sufficiently low frequencies, such that wbt < 1, the linearization will be 2 good
approximation to the actual differential field.

An alternative linearization could be performed in terms of the log of the field variables.
This has been successfully applied to electromagnetic problems by Madden (private
communication). By perturbing the velocity in a homogeneous medium, we again consider
the extreme case of ka » 1. With

In (g) = In (exp {iwR /vo) ) ’
4R
then
ain (
m(ul)—ln(_un)ﬁ—[—n—w)—] &(In v),

3(In v)

of,

;w I—l ._—1—-1 =2 i {:_1\
iR | ] .__R\U%I(ug)ﬁ(lnu)

Thus for this simple example of a homogeneous medium perturbation there is no
dependence on frequency for the complex phase linearization. The region of validity for the
log field parameterization is more involved in the general case where there is an amplitude
perturbation as well. [n any event, this type of linearization has been used successfully
applied in travel time inversions (see Aki et al. 1977; Clayton & Comer 1983), where only
the imaginary part of the complex phase is used.

The linear sensitivity operator in terms of the log field is now derived and compared with
the Born linearization. The log field linearization is additive in the phase, and is equivalent 10
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Rytov's method of smooth perturbations (see Tatarskii 1971, section 45; Ishimaru 1978).
Rytov’s approximation is compared in Appendix 2 with other asymptotic, multiplicative
approximations including geometric optics and the parabolic equation method. We start
with the Helmholz equation

2

Viu+ —u=0
v{x)

and let ¢ = In {u(x. «w)].then the following non-inear Riccati equation is obtained

f.aJ2
V2 + (VYF + — 0.
u(x)”
Now a perturbed problem is derived with ¥ = Yo + e, and v = Ug(x) + €uy (X}, assuming
€< 1, Yy ~ y, and vy~ v;. Then

2w {x)

va (%)

(.02
[V2¢n+ (Vo) + T—] + f[W% + 2V Vy, -
Vg (x)
3wt (x)
d i( ] -o.
vo(x)
The first bracket is set to zero by solving the forward problem in the unperturbed medium,

v (x). Dropping the third bracket in €* constitutes the Rytov approximation, This equation
is now linear in , and v, . Letting Su(x) = ev, and 8y = ¢, gives

+ € [ (i) +

20* Su(x)
VA (64) + 2V V(BY) = —5
up(x)
This is a linear equation for § % which can be simplified by the substitution, §¢ = ¢ exp (—o),
2 2 20%8w l
Vi3 + = - exp (¥
vﬁ(x) 7 v p (o)
which has a solution
_ - . , . 2wt
§irg 1) = f 4V (g trg, r Y exp (ol rl =
0

or

IR 1)

51}’ (rg- r.s')z - fdl/(.r')g(rgn r,) exp [\pﬂ(r: rs) - lp()(rg» rs)]

T
This gives the linear sensitivity operator in terms of the log field variables in the form

oy
5 =—bv.
v ov v

To see how this compares to the Born approximation or a linearization in terms of the
field, equation (35) is exponentiated

exp (59) = exp (¥ — Yo) = exp [~ f aver) ()
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For smalf — J dViry..),

7 . . 20%Bu(r’)
exp ()= exp (¥o) — fdl/(r ypdr, rdglrg. rl-

valr'y

which is equivalent to the frequency transformed equation (7). Thus equation {7 can be
derived from (33) assuming that the exponentiated argument is small. It appears that the
Rytov approximation includes some multiple scattering effects not included in the Bom
approximation. However, the Ryiov approximation was originally derived assuming 8y < 1.
Thus, there has been ongoing controversy as to whether the Rytov approximation is in
fact any better than the Born approximation (see Tatarskii 1971; Barabanenko et al. 1971;
Aki 1973 Brown 1966, 1967: Taylor 1967: Yura et al. 1983 Devaney 1984). In fact, Aki
& Richards (1980) derive their expressions for the log amplitude and phase from the
exponentiated Born series (EBS).

However, asymptotic equivalence may not correspond to a practical equivalence between
the two approaches as shown in the previous simple example. Keller (1969) showed that the
Born and the Rytov approximations are equally accurate in their dependence on the small
velocity parameter, €, bui show quite different asymptotic properties asa function of range.
Mueller, Kaveh & Wade (1979) noted that both the Born and the Rytov approximations
required that some norm of the velocity perturbations over the volume be small compared to
anity. In addition, the Born approximation required smallka, where a is the scale of the hetero-
geneity, in agreement with the range of validity for the single scattering formulation given in
Appendix A. Thus low spatial wavenumber, band limited velocity perturbations appear to
favour the Rytov approximation. In the context of an inverse problem, it is natural to
estimate the low spatial wavenumbers of the velocity first via a multiple scale type of
procedure, For small-scale residual heterogeneities, the Born approximation to the field may
have an advantage.

Experiments in diffraction tomography comparing the Born and the Rytov formulations
have been conducted by Kaveh ez of. (1982, 1984) who showed that when a large forward
scattering component exists, the linearized reconstrucied images based on the Born approxi-
mation were more in error than the Rytov, but the Rytov required the determination of the
phase of the scattered waves, There are numerical difficulties in obtaining the log of the field
since the phase of the complex log must be unwrapped. Still, numerical algorithms for this
exist (see Tribolet 1978). Also, algorithms based on the smoothness of the phase at adjacent
spatial points have had some initial success (see Kaveh e al. 1982, 1984),

Another consideration as to whether to use a linearization based on the Born (field) or
ihe Ryiov {log of the field) approximations is the noise structure of the problem (see
Tatarskii 1971). If the data are expressed as a sum of signals plus independent Gaussian
noise, .V, then the linearized inversion should be applied to the waveform or to the real and
imaginary Fourier components. If the noise structure is multiplicative and proportional Lo
the signal, then log A/ will behave in a Gaussian mannar around log #. In this case, the log
should be taken (see Aki & Richards 1980, p. 639). Detailed work on the effects of additve
and multiplicative noise for moment tensor inversion of surface wave data was performed
by Patton & Aki (1979).

If the noise is Gaussian and additive in the field, then the fluctuations in the amplitude
should follow a Rayleigh distribution. If the noise is Gaussian and additive in the complex
phase, then the fluctuations in the amplitude should follow a lognormal distribution,
Experiments of light propagation in the atmosphere show closer agreement with the log-
normal distribution (see Tatarskii 1971). '
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in order to investigate the linearization in terms of the log field for a large-scale hetero-
geneity, a homogeneous velocity perturbation, 8v, is again considered. Equation {35) can
then be written

A

2%y o exp (KR, ) exp UikRy,)
BY rg, ryd =~ ‘dl"(r} e
Vo o

4nR rot’ 4Ry,

AnR, exp(—ikR, ).

Using the Fresne! approximation with the z-axis oriented from the source to receiver

—wibpz 7 e el , i L0 ,
J ; o J dx" exp [ikzx"*2z'(z — 2 )]J dv
e l2-2)2 Jew -

5%Dl" Jr.l‘J:

Qv
x exp [ikzy'*27'(z - 2')].

Using the relation
f exp (—ax?) = (r/a)' %, then

d2' 2az'(z -2

2z =2y —ikz

R .. f
Tor¥s) = '
g 210, 0

or
—iwzbv
8 (g 1) =~
Vg
Now let

1 I — iwzby
S =iwdt =iwz {— - —} —

Uy Vo Up
Thus, the linearization in terms of log variables will retrieve a global velocity change in one
iteration withour the apparent low frequency requirement of the Born approximation of
equation (7).

There are several basic linearizations that can be used in inversion studies, including those

based on the additive nature of the tield, Born, or the log field, Ryiov. Travel-time inversions
are more similar 1o the Rytov approximation except that only the imaginary part of the

complex phase is uillized and usually only first arrival times. Keller (1969} noted thar any

advantages that the Rytov approximation may have over the Born approximation may be
lost when the waveform contains more than one wave. This would occur when there is high
wavenumber velocity fluctuations causing significant backscatter. This may be the reason
for the success of simple migration algorithms which map smail-scale reflectors and which
are kinematically equivalent to Born inversion (see Miller er al. 1984). Another consideration
as to whether 1o use the log field data, or the amplitude and phase, is the numerical
difficulties in unwrapping the phase when taking the complex log, although work on this
has been done (Tribolet 1978; Kaveh er al. 1982, 1984).

One strategy for inversion of material parameters is 1o use a multiple scale procedure in
which the large-scale fluctuations are inverted first, and compensated for. This might include
several Rytov iterations followed by a series of Born iterations. A compromise approach
would be to use an iterative travel-time inversion first to adjust for the major phase
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differences and then use Lhe iterative Born inversion on the waveforms 10 incorporate more
of the data and fine tune the model. In the following numerical examples, the Born
linearization is used on residual waveform data assuming small velocity perturbations.

Examples
In this section, several examples are given using a linearization in terms of the field as
described previously. A simple descent method is used

. * 5 .
Ve = Vg + Wi (Fpbp ) (36)

where Fg = C,Fy C W, is a preconditioner, and o is a scaling factor. For an initial homo-
geneous model Llose to the true model, then F = F§. Operating on the residuals by the
adjoint is then given in (29} as

R, +R,,
5= Fops = | ol = 2B )

where 87 is the cross-correlation of the second derivative of the source time function with
the weighted data residuals, C, is the model covariance operator and includes a spatial
smoothing function, Here, a Gaussian smoothing function as in (21} is used. Operating on
the residuals by the adjoint is kinematically similar to a Kirchhoff migration. If the pre-
conditioner, Wy, is chosen as /, then the velocity inversion in (36) with £ = F§ is equivalent
to a sequence of Kirchhoff migrations. An altemative choice for the preconditioner, Wy, is
the inverse of the diagonal of (/ + F*F) as in (32). The part of this preconditioner that
approximately corrects for geometric spreading is

.

ry fg rre rrg

3 P

38 g Rrrs Rrrg

This simple preconditioner will be used in addition to the identity in the next example.
The geametry of the first example is shown in Fig. 4. There are nine sources marked by
x's and 19 receivers marked by triangles. The axes are in km to give spécific units and the.

singic smoolh helerogeneily

o 200
o AKX A A ANAAAMADNANANNDNANA

150 A

km

Figure 4. Model geomeiry tor the single smooth heterogeneity numerical example.
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initial velocity is 8 km s™'. For this example, a single smooth heterogeneity with a radius of
10 km is reduced in velocity by —0.01 km s™*. This is shown by the circle in Fig. 4. The
inierior box in Fig. 4 shows the region where the velocity is to be inferred.

Fig. 5 shows the seismograms computed using the Gaussian beam method for the single
smooth heterogeneity shown in Fig. 4 for three of the nine source locations. The source
wavelet is the Gabor wavelet

Flry=exp [ (2nfotfy)?] cos (2mfpr + o),

where fy =4 Hz, =3, ¢, = 0. This results in a 2 km wavelength. The correction given by
éeweny er al. (1982) is used to approximately compute the 3-D response. In Fig. 5, a
slightly larger amplitude can be seen on some seismograms for different source locations. For
example, for § = (30., 140.), the amplitude increases due to focusing at a range of 180 km
and a time of 24 5,

The residual, perturbed minus unperturbed, seismograms are shown in Fig. 6 for three
source locations. The amplitudes of the residuals are about 10 times smaller than the

¥ ] PabalTg L1y}

e
B

Wy
Li

R ERRTEER]

17r I T 1 s=(30.140)
sl .

-20 [ EN
x
- y—
241 3
23} -
az} -
1 Elf 3 -
2} -
195 ;_-E%
- i
18 >N -
17F ¥easddll
16} 1 S={60.,140}
15—+ .
=) i 208 228
x
26 -
s B
24t
23
Sl |
a1t
at - -
3 T 3 33
1wt " = )
] = 1
1y l Hrll 1 s={100.,140.)
1] . a
-z¢ 3 . 100 2 22e

Figure 5. Gaussian beam seismograms for three source locations for a single smooth heterogeneity.
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Figure 6. Residual seismograms for three source locations for a single smooth heterogeneity.

amplitudes of the unperturbed seismograms. This satisfies the Born requirement that the
scattered field be small compared to the primary field. The wavelét cross correlation with
the daia resulis in a symmetric wavelet cenired on the arrival time, and the second derivative
approximately results in a factor, —cw} , assuming a Gabor wavelet.

Fig. 7 shows the result of back propagating the residuals into model space using the
adjoint operator, This would be the first iteration in a descent procedure with W, =7 and
C,=0,8(t —t'). A grid of 100 by 100 points has been evaluated in model space. The result
in Fig. 7 is scaled from —1 to +1. The contours are at (—0.75, —0.25, 0.25, 0.75) with the
~0.75 contour in the cenire. The paralielogram and the small plus represent the location of
the true heterogeneity. The data residuals appear to be streaked along lines from the
receivers to the stations in model space. The response to the simple transpose operator for a
single heterogeneity thus has a streaked appearance in model space.

There are additional operations that can be included in an individual velocity inversion
step. This includes a more involved preconditioner as in equation (37) which approximately
corrects for geometric spreading, and is an approximation to filtering the backpropagation.
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single heterogeneity
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Figure 7, The backpropagation of the residuals into model space for a single smooth heterogeneity.

single heterogeneily

fern 150.

10.

110
Figure 8. The first iteration of a velocity inversion for a single smooth heterogencity with Wy given by
equation (37) and Cyy = a,6(r — ).

single heterogeneity

km 154,

110,

Figure 9. the first iteration of a velocity invession for a single smooth heterogeneity with Wy = Jand G,
given by a Gaussian function with a 5 km radius,
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Fig. 8 shows the result of using this preconditioner. It has the effect of reducing some of
the streaks in the backpropagation. Again, the true heterogeneity is represenied by the
parallelogram.

Another operation which could be applied to the backpropagation is spatial smoothing
by the model covariance operator based on a priori information. Fig. 9 shows the result of
smoothing the backpropagation by a Gaussian smoothing filter with a 5 km radius. This
filtering operation eliminates the streaks and localizes the heterogeneity. The derived hetero-
geneity is elongated in the = direction as compared to the true heterogeneity represented by
the parallelogram. This results from the source and receiver geometry with sources below
and receivers above the helerogeneous region. .

To check the sign of the derived heterogeneity, the example was done with a positive
instead of negative velocity heterogeneity. This resulted in the inferred velocity also being
positive. A final step in an iteration is the choice of the scalar, a, which specifies how far in
a particular descent direction one moves. A particular value for the scaling factor can be
computed from equation (16), although other values might be used to over or under relax
the problem. The scale factor for each iteration must be chosen small enocugh to ensure
convergence of the process.

In the next example, three heterogeneities are used, each with a velocity heterogeneity
of —0.01 km 5! lower than the background. The geometry is shown in Fig. 10 with the
sources below the heterogeneity and the stations above. An iterative procedure is then used
to reconstruct the velocity structure. The scale factor here was chosen as a certain fraction
of the value used to match the single heterogeneity case.

For each iteratiori, the residuals were backpropagated into model space and then
smoothed using a 4 km smoothing filter in order to reduce the streaked character of the
backpropagation. To avoid any broadening of the main anomalies at each iteration due to
smoothing, only values greater than 50 per cent of the maximum for that iteration were
multipled by the scale factor and added to the cumulative anomaly from previous iterations,

An example using a scale factor of 0.50 times the factor used to match the single hetero-
geneity case is shown in Fig. 11. The contour interval is scaled to go from 1.0 to +1.0.In
the first iteration shown in Fig. 11(a), the lower heterogeneity is evident and the upper
anomalies are emerging. Fig. 11(b) shows the fifth iteration in which the upper hetero-
geneities are more well defined. The eighth iteration is shown in Fig. 11{c) where the lower

three helerogencilies

o 200.
o LAAAAL A.A N AN A A MMNAAAAA

150

Figure 10, Model geometry for a numerical example with three smooth heterogeneities.
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-25

{a)
(b}

(c)

Figure 11. lterative inversion results for three smooth heterogeneities with Wy =/ and C, tiven by a
GCaussian [unction with a 4 km radius. (a) Fixst iteration; (b} fifth iteration; (¢} eighth iteration.

heterogeneity is still slightly more compensated for than the upper heterogeneities. All three
heterogeneities are also elongated in the vertical direction. This results from the geometry of
the soutces and receivers. In Fig. 12, the observed -minus-predicted waveforims are shown for
the first, fifth and eight iterations for the source coordinate at {100., 140.). The root mean
square error was decreased by 49 per cent at the fifth iteration and by 60 per cent at the
eighth iteration. .

Other scale factors were attempted in the iteration process. Smaller values for the scale
factor resulted in more iterations. For values much larger than 0.5, the scale factor for the
single heicrogeneity case, divergent results oceurred. Although this steepest descent
procedure is straightforward, laster convergence might be obiained from the more elaborate
conjugate gradient methods.

Finally, a simple comparison with travel-time inversions was made using the same
geometries, The model was divided into 10 by 10 blocks or 100 model parameters. One
hundred and seventy-one traveltime values were used, not all of which provided new
information about the model. The results for the single heterogeneity are shown in Fig.
13(a). This result compares well with the waveform inversion shown in Fig. 9. The travel-
time inversion for three heterogeneities is shown in Fig. 13(b) and this compares with the
waveform results shown in Fig. 11(c). The travel-time results appear to be slightly less
localized than the waveform results. Thus, in this case, the waveform results are comparable
or better. As discussed in the previous section, log field linearizations may be slightly more
robust over field linearizations in certain cases. Travel time inversions aré in the log field
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Figure 12, Cbserved minus predicted residuals with a source at (100.,140.) for {a) first iteration: (b) fifth
iteration; (c) eighth iteration.

class in which only part of the data, the imaginary part of the complex phase, derived from
the first arrivals is used. However, for small percent velocity perturbations, the field and log
field linearization results are expected to be comparable. In actual cases, waveform
inversions will allow for a more complete use of the data when the phase perturbations are
small, or have been previously compensated for.
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Figure 13. Travel-time inversions, (a} Single heterogeneity’; (b) three heterogeneities.

Conclusions

In this paper, a linearized inversion procedure for material parameters has been investigated.
In this procedure a linear sensitivity operator must be derived and can be computed
economically by using reciprocity of the Green’s function. Data errors and @ priori model
information are included via covariance operators. Large matrix inversions are avoided by
using descent algorithms. A fast forward modelling scheme is required and here the Gaussian
beam method for a laterally varying medium is used. This allows for inhomogeneous initial
models.

Different types of linearizations can be performed including the Born approximation, a
linearization in terms of the field, and the Rytov approximation, a linearization in terms of
the log field. Travel-time inversions are in the class of linearizations for the log field, where
only the imaginary part of the complex phase is used with first arrivals. Log field
linearizations may be more robust than field linearizations for large-scale heterogeneities
where forward scattering predominates, but phase unwrapping may be difficult numerically.
The linearization in terms of the field for small perturbations from a homogeneous back-
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ground is kinematically equivalent to a sequence of Kirchhoff migrations. Field
linearizations are expected to be useful for small-scale heterogeneities which result in
scattering eifects that are additive in the field. Several pumerical examples using a field
linearization are performed in which transmitred body waves through a model with small
velocity variations are used. The results using the waveform data identify the trial struciures,
and are comparable or stightly better than the travel-time inversion results.
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Appendix A

In this appendix a brief review is given for the conditions of validity of the Born approxi-
mation in a continuous fluctuating mediumi chardcterized by a spatial Gaussian correlation
function where

o Elu{ryulr v,
Nir)=—————"=exp (=|r¥a?)

E 4]
where p(r) = —8u(r)fv(r), and £][. . .| represents the expectation over an ensemble of random
media, and a is the correlation length. If the process is ergodic, then this expectation can be
replaced by a spatial average over one realization. The fractional loss of energy to the
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primary wave for a medium with velocities with a Gaussian correlation function is (see Aki &
Richards 1980)

%—I =T E (u?) kakl [1 — exp (—k%a?)].

Al
For the Born approximation to be valid then 7 <], or
VAE[R Yokl <1 kas 1
VIERP P aP kL < 1 ka <)

where L 5 the propagation distance and 2 is the correlation distance. Thus, ka » 1 refers to
large scale scatterers and ka < 1 refers to small-scale scatterers with respect to the wave-
length, k< | corresponds to Rayleigh scattering. For large-scale scatterers, ka » 1, then the
mean square velocity variation must be small for the strict validity of the Born approxi-
mation. For small-scale scatterers, relatively large mean square velocity fluctuations can be
accommodated by the Born approximation. Thus

ka=10. E[u*kL <0056
ka=20 E{u® kL <0280
ka=0.5 E[utikL <4.50
ki=0.1 FE[P1kL < 564.

For a given propagation distance, L, linearizations based on the Born approximation will
favour small scale fluctuations.

Appendix B

In this appendix a comparison is made between perturbation solutions which to first order
are additive in the complex phase or multiplicative in the field. These include the first order
geometric optics approximation, the parabolic equation method, and the Rytov approxi-
mation, These types of approximations work best in a smoothly varying media with
predominantly forward scattering. First, the geometric optics approximation is outlined and
compared with the standard parabolic approximation. These are then compared to the
Rytov approximation.

Starting with the Helmholtz equation, the zeroth order geometric optics approximation
has the following generai trial solution

u=exp (ko) (B1)

where k is a large parameter and o~ 1. In this approximation k is usually identified with
an average wavenumber and large k implies 2 small wavelength. By substituting this into the
Helmholtz equation then

k2 (Vg Vo + 12 [ K (V20 + 2V Vi } + (Vi) + Vi Ty} =0 (B2)
where & = w/u(x). The particular trial solution usually used for geometric optis is u = A(x)
exp [kS(x)] where k = w/<u>. Thus g =iS(x) and ¢, = In A(x) and (B2) can then be
written as

k? [-(VS)? + K3k ) + 2ik (%V’S+ vsva) + (V2A4/4)=0. (B3)
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For large &, the first geometric optics solution involves dropping the {vA4/4} term. The
Eikonal equation results from equating the first bracket to zero and the transport equation
results from equating the second bracket to zero. The transport equation relates the
irnaginary part of the phase to the real part of the phase.

The standard parabolic equation method is derived by using for (B1) the particular trial
solution u = Ue’®* where U/ is assumed to be a slowly varying function, then g, = ix and
¢t = in U(x). {B2) can then be writien

U +U yy+ U
' 2y }=o. _ (B4)

— — ~ u
k2 {—1+k¥E} + 2ik {O+ ——x—} -z—-{
. U i

For large k, the first bracket gives & =k, and the second bracket gives U ,=0. The
parabolic approximation results from neglecting the U /U in the final bracket but
retaining the transverse part of the Laplacian, V?,crp =U,,+ U_,. This is not entirely
consistent within the perturbation scheme used but it gives a one way operator inx,

2kU , + VierUt (K — K U=0. (B3)

The transverse Laplacian is called the diffraction term and the term {k? — K%} is called the
‘thin lens term’ and locally adjusts for the refractive index.
The Rytov approximation results by using the trial solution

u=exp{Pot+eP), (B6)

where € is a small parameter, and Yo~ ¥,. The velocity is also expanded asu(x) = ve(X) +
v, (x), where vy~ v;. Substituting this into the Helmholtz equation gives

[V 2o + (To)® + WHud (%)) +e€ [V2y + 2V oV — 200, ()f03 (%))
+e [(Ty) + 3whei (/s ()] =0, (B7)

where the first term in the brackets is a solution of the Helmholtz equation with v = vy(x})
and u = exp (o). In the first Rytov approximation, the ¢* term is dropped. Equating the
second term to zero gives

T2y, + 209V, = 0%l (B8)

[n order to compare witli the previous approximations let yo=Kkgo and ¥, =y, /e = ko,
then (B7) can be written

S 1 S Y
ikV wo + k7 (Vo) + K \7(:2 +iV o1+ K2V Vi + k ‘7{;5 _u;”
k% 3v?
+ {(V%)Z‘P (;—c-g :)?)} =0, . (B9)

where k = w/<vg(x)>, ko = wfuo(X), and k = ko. The Rytov approximation again retains
the first two brackets, where the first bracket is assumed known. The k? terms telates to
the first model in equation (B2), only now related to the velocity model vy(x). The k
terms correspond to the second model in (B2) plus a correction term to the velocity
linear in v, (x). Finally, the term V2, is retained, but not the term ( Vi, )* and the higher
order terms containing the velocity correction v, (x). This is similar to the parabolic approxi-
mation where again only a part of the third bracket in (B2) is retained. In that case the
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transverse Laplacian perpendicular to the predominant direction of the incident wave is
retained. For example if we let yp be a homogeneous velocity, and Yo = fkx, then by
dropping terms in €, (B7) can be written in terms of I/ = exp {eyy)

U=0.

_ VU? 2ep, w?
AU, + {vzul_lj_)f} thas

v3

This is similar to the parabolic equation given in (B5) with the thin lens term approximated
to first order in evy(x) and the term V ..U replaced by ViU - (VUYYU. Using the

- transverse Laplacian results in a simpler equation but the Rytov equation above is consisient
to order €.

Appendix C

In this appendix, the acoustic wave equation is investigated in a simple 1-D example, where

L{E(I—SB%—-V(L%SV)}

The transposed linear sensitivity operators for a perturbation in density and bulk modulus
from the field are given in Tarantola (1984a) where

! 1 . N
skp=UTop= - — L X |dr{pr. 1:r) =&, 1:7)} 8PUg 1375)
KA oy g
1
bpy = viep= 0 ZZ deV{p(r, irg) * Vglr, 151g)} 8p(rg, £:7s)
re rg
or
5Ky =—— |dr ¥ Pl £31y) {E glr, ~ Lrg) = 8plrg, f;rx)} (cn
K0ty e
o L[ ¢ | l
b= Y Upln e T el - e 8plre 1y (€7
= i 9T T R ) (SRR i)t )

In the 1-D case, a coincident source and receiver are considered where r, = r, =z = 0. Small
perturbations of a homogeneous starting mode} to the true model will be assumed. The
observed reflection seismogram is

Pubs(rga T;_rs) = Pobs(f)

and the predicted seismogram is
Prlrg, t3rs) =Py ().

The differential seismogram is then

E'Pk(rgv I;J’_g) = Pobs(‘r) _Pk(t)-
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The operation in (C1) can then be written
6Ky = 21. - | de bz, £;0)<glz, 1;0) dpy(0)>
Kilz) '
where <.. > denotes a cross correlation. The analogous operation in 8o, in (C2) can be
written

o )
8px = .fdf“l’k(- [ 0)~“-<g(’ 110} 8pi(r)>.

pitz)) oz

* With an initial homogeneous model with velocity v then -

gz, ;) =8(r - z/v)

and

<g(z, 1;0) &p ()= = Bp(t + z/v).

Then

L) s = f = e 1:0) 60 +210)
5Pk(z)‘ Pk(z ¥ 0) 5Pk(f+z/0)

Now with p(z, r;O) = §(f — zfv) then

1
SKk Kk( ) 8Pk(f = 22/1))

1
bprl(2)= 55— 0Pt = 2zfv)
V¥ pi(2)

where 1=2zfu places the model perturbation at z =ut/2. Since v =K /p and n=pu=
impedance, then -

v _ {51\ 6,0}

v K p

»57 {BK dp }

gl hakiiihe s 9

U} K p

Including the model covariances this can be written assuming, Cg = ol =~ K3 (2)

2

' k
8K (2) = CxBK ( (2) ~ ——
x(2) = Cx 8K (2) e,

85(22/v) ~ B2z /v)

and with 0} = pi (2),

a3 B P
o) 2)51)(22/”)"“';5 5p(2z/v).

bpy = Cobpy =



730 R. L. Nowack and K. Aki

Perturbations in velocity and impedance can then be written

v 171 1 .
#4:_[ 4-—] 5p(2zfu)=0

v QE vip

and

& 1[1 115"0/) " 55(:/0)
— =l = 2z /v) = — §p(2z/v).
n 21K K P Kp

Thus for the 1-D reflection seismogram modelled using the acoustic wave equation, there is
no velocity perturbation, but there is an impedance perturbation. This is as expected from
the 1-D exact inversion results.



