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Refraction and wide-angle reflection
tomography: theory and results

R.L. Nowack and L.W. Braile

26.1 INTRODUCTION

In this chapter, we present a review of seismic refraction and wide-angle reflection,
tomography. The classical meaning of tomography was originally the reconstruction of
internal properties of an object from a complete angular set of line averages. However,
today the term is often used in a more general sense for any procedure to mathemat-
ically reconstruct an internal property of an object using remotely recorded data.
Seismic tomography using refraction data and wide-angle reflection data {nvolves
non-coincident sources and receivers, with receivers typically located at the Earth’s
surface. The seismic data set can be the entire seismic wavefield, or sorhe subset of the
. data, 'such as travel times or amplitudes of selected phases. Refraction tomography
implicitly relies on the heterogeneity of the medium to turn seismic energy back up to
receivers at the Earth’s surface. For smoothly varying media with interfaces this requires
diving rays as well as rays that are reflected and refracted at interfaces.

Many experimental geometries can be ussd to image subsurface structure. To-
mographic imaging using transmitted rays from distant sources (Figure 26.1(2)) or using
reflected waves from nearly coincident sources and receivers (Figure 26.1(b}} produces
limited angular ray coverage of the subsurface. Limited ray coverage is also common
In cross-borchole geometries when wsing direct arrivals (Goulty, Chapter 29). In
contrast, the use of refraction and wide-angle reflection data can provide a much
broader range of angular ray coverage of the subsurface (Figure 20.1{c)), particularly
when precritical reflections are included. Using multiple sources and receivers, this wide
range of angular ray coverage can produce an increased resolution of the subsurface
velocity structure. However, the ability to identify and correlate precritical as well as
wide-angle reflections on refraction data generally requires a small receiver spacing {on
the order of 0.1 1, where / is the seismic wavelength), particularly in the near-source
region of the recording profile (e.g. Braile and Chiang, 1986; Jarchow et al, 1990).

The objectives of this paper are to present a brief review of previous applications of
wide-angle tomography, to give an overview of the theory, and to provide several recent
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Figure 26.1 Schematic diagram of experimental geometries for seismic imaging. (a) Transmitted
waves from distant sources recorded at receivers along the surface, (b) Reflected waves recorded
from nearly coincident sources and receivers along the surface. () Refracted and wide-angle
reflected waves with a broad range of angular ray coverage of the subsurface.

examples of tomographic imaging results. The emphasis is on crustal and uppermost
mantle applications using both refraction and wide-angle reflection data. Alse, emphasis
is given to results in laterally varying media, with only a brief overview of the many
one-dimensional (1-D) inversion results. End-member cases, such as near-vertical
reflection and surface wave tomography are discussed elsewhere in this book as are
applications involving teleseismic tomography. ’ ’

26.2 HISTORICAL REVIEW

In this section, we present a brief review of wide-angle seismic applications of inversion
and tomography to the Earth’s crust and uppermost mantie. Wide-angle seismic
inversion techniques differ in model complexity (one-, two- or three-dimensional (-, 2-
and 3-Dj} velocity variations), model parameterization, source and receiver geometry,
and numerical solution method. Schematic illustrations of different techniques are
shown in Figure 26.2.

The inversion of scismic refraction travel time data dates back to the work of
Herglotz (1907) and Wiechert (1910) who inverted for radially varying velocity structure.
The Herglotz-Wiechert method is written in terms of Abel transforms and assumes a
smooth, radially varying medinm with no low—vélocity zones (Aki and Richards, 1980).
The complete travel time curves must be used, including secondary triplications, for a
unique solution, For example, Healy (1963) showed that non-uniqueness in the solutton
occurs when only first arrivals are used. The use of the travel time derivative, dT/dx=p,
with distance, or alternatively using p with intercept time t has the benefit of
unwrapping triplications in the travel time data. Bessonova et al. (1974) gave inversion
results in terms of 7(p), as did Garmany et al. (1979).

The classical tomography problem of reconstructing medium properties from a
complete angular set of averages along straight lines can be written jn terms of Radon
transforms (e.g. Deans, 1983; Chapman, 1987). For straight rays in a radially concentri¢
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Figure 26.2 Seismic inversion methods, model parameterization, and typical observations.
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medium, Radon transforms reduce to Abel transforms (Vest, 1974; Deans, 1983).
Nowack (1990) noted that the Herglotz—Wiechert method which utilizes Abel trans-
forms.can be:considered a specialized-tomography-like algorithm along curved rays in
. a2 radially varying mediom. Applicatior_ls. of seismic tomography: may, therefore, be said

to date back to the early part of this century. ‘

* In the presence of low-velocity zones, usefu! inversion results can still be obtaineg
from travel time data in terms of bounds on the feasible solutions (Slichter, 1932; Gerver
and Markushevich, 1967; Aki and Richards, 1980). None the less, blind spots due to
low-velocity zones place limitations on refraction tomography results for vertically
varying as well as more general, laterally varying media. For media with interfaces,
precritical reflection data can reduce non-uniqueness in the solution when low-velocity
Zones are present. .

Applications of generalized inversion methods to refraction travel time data for
vertically varying media include the works of Kennett (1976), Kennett and Oreutt
(1976} and Orcutt (1980). Braile (1973) presented a generalized inverse solution of
both refraction and wide-angle reflection travel times in a horizontally stratified
medivm. Diebold and Stoffa (1981) investigated horizontally and dipping layered
media. '

Slowness-intercept transformations, or slant stacks, can be applied directly to
seismic waveform data (McMechan and Ottolini, 1980; Chapman, 1981; Stoffa
et al, 1981; Phinney et al, 1981; Stoffa, 1989). Slant stacked wavefields can then
be iteratively inverted -for vertical velocity structure {Clayton and McMechan,
1981). Inversions of wavefield data for 1-D structure using generalized inversion -
methods were performed by Shaw and Oreutt {1985) and Chapman and Orcutt
- (1985). ' o

In laterally varying media, a specialized geometry using variable source and receiver
time terms and an unknown refractor velocity was first investigated by Scheidegger and
Willmore (1957) using a least squares approach called the time-term method. This
method has been used in both shallow refraction seismics as well as crustal seismology
{e.g. Willmore and Bancroft, 1960; Bamford, 1972). An extension of the time-term
method to anisotropy was given by Raitt et al. (1969} for upper mantle velocity
variations beneath the Pacific ocean. Ocola (1972) developed a non-linear least squares
method for mapping laterally varying refractors. Hearn and Clayton (1986) also
extended the time-term method by inverting for laterally varying crustal refractor
velocities as well as time terms in southern California.

Alckseev et al. (1971) performed a linearized inversion of refraction data for smooth,
laterally varying upper mantle structure from Pamir to Baikal in the Soviet Union {see
also Alekseev et al, 1990). Theorctical analysis of the ill-posed, linearized inverse
problems in smooth, laterally varying media was performed by Romanov (1974) and
Romanov and Alekscev (1980). Wesson (1971) investigated the least squares inversion
of travel time data for smooth, laterally varying crustal structure at Bear Valley and
Borrego Mountain in California. Other examples of linearized, kinematic inversion for
laterally varying media using refraction data are given by Novotny (1981} and Firbas -
(1981, 1987).

Crosson (1976} performed a simultaneous inversion for 1-D Earth structure and
hypocentral parameters. Aki and Lee (1976) simultaneously determined hypocentral
parameters and laterally varying velocity in a block model using travel times from local
earthquakes along the San Andreas fault in central California. Additional examples of
stimultaneous inversions for Earth structure and hypocentral parameters for local
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earthquakes as well as shots include Chou and Booker (1979), Pavlis and Booker (1980),
Thurber (1983), Benz and Smith (1984), Ankeny et al. (1986), Sambridge (1990} and
Thurber (Chapter 20).

In this chapter, seismic inversion for laterally varying Earth structure from wide-angle
data with known sources will be emphasized. These.applications can involve controlied
- “sources, earthquake sources -with well-constrained-hypocentral .parameters, or cases in
which a parameter ‘separation - technique has been applied (Thurber, Chapter 20}
Further recent examples and. applications of the inversion of seismic refraction data are
given in Section 264.

26.3 REVIEW OF THEORY

Various inversion methods can be used to estimate subsurface seismic structure
depending on the specific model parameterization and the scale and geometry of the
velocity structure. With limited knowledge of the spectral characteristics of the medium,
- a wide range of the length scales should be anticipated. However, because of the
difficulty in directly solving wide-band seismic inversion problems, a two-scale ap-
. proach is often used. The long-wavelength -or smoothly varying components of the
medivm are estimated first and the:short-wavelength features second. There is some
similarity here with reflection seismology where velocity . analysis determines the
smoothly varying.components of the medium followed by stacking and migration {using
the derived velocity model} to estimate the short-wavelength . components of the
medium. However, in the reflection case, the long-wavelength information from the
velocity analysis is not included in the final image,

-The two-scale- approach to seismic’ inversion.is complicated by.the fact that the
estimation of smoothly. varying medium parameters can be contaminated by effects of
the- small-scale structures. For example, for an isotropic medium with small-scale )
layering, a smoothly varying inversion could indicate effective anisotropy and possibly
anelasticity. However, bias resulting from small-scale features can ultimately be adjusted
when an inversion for small-scale structure is performed. A separation between
smoothly varying and fine-scale structure can be made based on the dominant seismic
wavelength of the source.

For smoothly varying media, as compared with the dominant seismic wavelength, ray
theoretical methods and their extensions can be applied. Kravtsov and Orlov (1990)
describe the conditions under which ray methods are gencrally applicable. Physically,
seismic rays are the trajectories along which high-frequency energy fHows, The size of
the first Fresnel zone can be used as an estimate of the effective width along a ray
(Nolet, 1987; Kravtsov and Orlov, 1990). Because ray methods can be used directly to
compute travel times and ray amplitudes, it is natural to apply inversions to these
quantities. :

The use of travel times and amplitudes of selected phases requires that these
parameters be estimated from the observed seismic record sections. For seismic
refraction data, travel times and amplitndes can be estimated manually and can be
verified using methods such as reciprocity of travel times between shot gathers.
Alternatively, automated algorithms to obtain travel times from wavefield data can be
used (Allen, 1982; Zelt et al, 1987). However, in the presence of ‘noise’, and for
secondary arrivals, automated picking of travel times can be a difficult task. None the
less, the quality of any inversion method using travel time and amplitude data is only
as good as the procedure used to estimate these observables from the data.
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Using ray methods, travel times can be considered as line averages of the medium
slowness along curved ray trajectories. For the special case of straight ray-paths, the
clagsical -tomographic reconstruction of medium. -properties from line averages.results,
None the less, tormographic reconstruction techniques can be applied along. either
* straight or curved-rays depending onthe geometry of the problem and the properties
of the medium (e.g. Beylkin, 1984).

The ray method also can be applied to smoothly varying media- with curved
interfaces. Assuming that the interfaces are slowly varying, the reflected and transmitted
rays.can be computed by applying Snell's Law locally, computing reflection and
transmission coefficients with respect to the local tangent plane, and correcting the
geometric spreading along the ray for the curvature of the boundary. Head waves are
not included in first-order ray methods with interfaces. For these waves, higher order
ray methods, or decompositions in terms of plane waves or Gaussian beams, must be
used (Cerveny, 1985a,b).

For the inversion of fine-scale structure of the medium, the first-order Born, or single
scattering, approximation is often implemented using wavefield data. The Born approxi-
mation is valid when the scattered field is small compared with the incident field (Al
and Richards, 1980). ‘Tarantola (1984, 1987) and Tarantola et al. (Chapter 28} for-
mulated seismic inversion methods based on the Born approximation and related them
to classical seismic migration algorithms for reflection data. Wavefield migration has
been applied to wide-angle reflection, wavefield data by McMechan and Fuis (1987) and
Chang and McMechan (1989a,b). However, care must be taken if multiple scattering is
- significant. Iterative inversion procedures must be used to account for multiple
scattering effects, :Particularly for refraction and wide-angle reflection data, large
postcritical reflection coefficients can often lead to mn!nple scattering,

‘In the following -subsections, we summarize. ray-theoretical methods for smoothly
varying media with curved interfaces, briefly discuss seismic inversion for small-scale
structure using refraction data, and conclude with a brief dxscusswn of generalized
inversion techniques.

263.1 Ray-theoretical methods

To invert seismic refraction and wide-angle reflection data, partial derivative operators
must be derived describing the sensitivity of the data to the model parameters. For ray
methods, one relates the changes in travel times and ray amplitudes to corresponding
changes in the wave speed, attenuation, and interface parameters. The travel time along
a ray can be written

= JL(H(S), X, %) ds, _ (26.1)

where X is the position, s is the path length, X;=dx,/ds and x; is a component of x. For
an isotropic medium, L=u(x)(%%)/* and u(x) is the medium slowness. The first
variation of the travel time for an isotropic medivtm can then be written

s 5

6L d oL
—— 26.2
+__[(3 i R )53: ds+J5:¢(§}ds, { )_

3o So Lidg

'L
0T = g-,—éx;
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(e.g. Nowack and Lyslo, 1989). For a geometric ray, with no slowness perturbations and
fixed end-points, §T=0. Using equation (26.2), the equations for the ray trajectories can
be obtained from dL/8x;~d/ds{6L/6%)=0. !

For a ray with fixed end-points, the perturbation of the travel time due to a variation
in the material slowness, u(x), is given by the third term in equation (26.2). Thus,
8T =[3,0u(x)ds, where to first order this is computed along the original, unperturbed
ray-path. Using unperturbed rays; or rays from a previous iteration for the calculation
of travel time derivatives results in major computational savings and is done in most
travel time tomography algorithms. None the less, higher order perturbations of travel
time perturbations of the ray trajectories arc required.

For the smoothly varying components of the medium, a finite basis expansion can be
written as

N

ux)= z ot;h;(x),

f=1

where hy(x) are the basis functions and «, are the coefficients. For example, Aki and Lee
(1976) used rectangular blocks of constant velocity as basis functions. Dziewonski (1984)
performed a travel time inversion for mantle heterogeneities using a global expansion
in terms of spherical harmonics.-For many applications, splines provide alternatives
which are reasonably localized and result in continuous second derivatives. Alternative-
ly, tetrahedra or finite cells can be used to represent the medium.

Given discrete data and a finite basis expansion for the medinm, a discrete linearized
inverse problem can be written as

N
od;= Z G;j5mj+ 0(51!12): (263)
J=1 - :

where for travel time data, 5dy=T?*— T, i=1, M and dmy=a;—af, j=1,N. The
sensitivity operator Gy;= [;,,h{x)ds can be computed to first order along the unpertus-
bed ith ray.

For highly non-linear problems, the linearization in equation (3.26) can be implemen-
ted within an iterative inversion procedure. For example, Tarantola and Valette (1982)
describe an iterative least squares solution to non-linear inverse problems. For travel
time tomography, each complete iteration requires ray-tracing in the updated velocity
model as well as the recalculation of G;. Iterations proceed until no further improve-
ment in the fit to the data results. Early applications of travel time totmography often
included only one iteration, calling into question the ultimate convergence of the
solution. Even now, multiple jterations may be prohibitive for certain large-scale
problems.

The methods applicable to forward ray-tracing are dependent on the type of model
parameterization (e.g. Cerveny, 1987). A direct numerical ray integration in terms of
splines has been given by Cerveny and Plentik (1984) and Cerveny et al. (1988). For
fmite cells, ray algorithms which are analytic in each cell are faster than direct nuraerical
algorithms (e.g. Virieux et al., 1988). Alternatively, fast ray-tracing using perturbation
methods in cells is described by Farra (1990) and Virieux (1991).

Figure 26.2 gives examples of methods for seismic inversion which are dependent on
the type of medium parameterization. Figure 26.Xa) shows the inversion of 1-D
homogeneous layers using refracted and reflected arrivals (Braile, 1973), and Figure
26.2(b) the inversion for 1-ID continuously varying media (Bessonova et al, 1974;
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Kennett, 1976; Kennett and Orcutt, 1976; Orcutt, 1980; Diebold and Stoffa, 1981).
Figure 26.2(c) illustrates the 2-D inversion for a smooth, functional representation of
the medium using refracted waves (Wesson, 1971). Figure 26.2(d) displays the 2-n
inversion of velocity defined at nodes. This approach includes splined node interpola-
tion of the velocity (e.g. Lutter ez al,, 1990) as well as splined intérpolation of interfaces
(Lutter and Nowack, 1990). Figure 26.2(e) shows the 2-D inversion for velocity defineq
by blocks or cells (Zelt and Smith, 1992). F inally, Figure 26.2(f) itlustrates 3-D inversion
for either blocks or interpolated nodes (Benz and Smith, 1984; Ankeny et af, 198s;
Kissling, 1988).

An alternative procedure for the computation of travel times is a direct, numerical
solution of the eikonal equation {Vidale, 1988). This procedure can be very efficient
computationally because the travel times can be computed in the coordinate space
rather than the complete six-dimensional phase space of x and the ray parameter vector,
P, required for ray-tracing. None the less, for wave front triplications, and other
secondary arrivals, the travel time problem: often requires a more complete solution
(Nowack, 1992). .

For anisotropic media, first-order variations in the travel time from a smoothly
varying change in the medium can be written as

T

I m
8T= —EJ. St pipigy g™ dx, (26.4)

k4]

where da;y, is the change in the density normalized stiffness parameters, p; is the ray
parameter vector and g} is the particle motion vector for the mth wave (Cerveny and
Tech, 1982; Hanyga, 1982; Cerveny and Firbas, 1984; Hirahara, Chapter 18). For an
initial isotropic- medium with degenerate § waves, equation (26.4) must be modified
according to Jech and Pientik (1989). Nowack and Pientik (1991) extended this method
to the perturbation of ray trajectories. Gajewski and Pentik (1989) developed a general
computer code for anisotropic ray-tracing. Anisotropic modeling may be required even
within inversions for isotropic media if fine-scale structure aliases into longer
wavelength anisotropy. :

For a geometric ray which is reflected or transmitted from a curved boundary, the
first term in equation (26.2) can be used to find the travel time perturbation. Thus,

sk Sa
L

0T~ 27-5351- "-“-p,-ﬁx,- .
ax;

where s; is for the incident ray and s* is for the reflected/transmitted ray. This
expression can be used to obtain the variation in the travel time due to a perturbation
in the boundary shape,

ar
Ohlx,)’

where h(x,) is the vertical boundary position at the point of incidence. It is a first-order
approximation because it assumes a slowly varying material slowness of velocity near
the boundary.

The interface perturbation at the point of incidence X, ¢an be related to a node per-
turbation of an interpolated boundary. Using splines for example, the coefficients
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for a perturbation of an interface node can be computed, and from these the values
of :

i
Ehix,)

Ez{xnode)

can be found. The first variation of travel time with respect to a pertﬁrbatibn of a
boundary node of an interface can then be written
T éh(x,)
" h(x,) E2(goae)

5z(xnode )’ (26-5)

(Nowack and Lyslo, 1989). For the special case of a piecewise linear boundary and an
incident reflected ray, this reduces to the resnlts given by Bishop et al. (1985). Equation
(26.5) can then be formulated as a linearized inverse problem similar to equation (26.3)
for reflected and transmitted wave travel times and the node depths for each interface.

In the ray-theoretical approximation, the seismic amplitude, U(0,), of a multiply
reflected and transmitted ray can be written (see Cerveny, 1985a,, 1992)

N
U(Os)=A(Os)C(Os) H [ﬁ(O,)G{O,)]‘i‘,
i=1
where C is the receiver matrix, R is the reflection/transmission matrix, ¥ is the source

matrix, and G is the rotation matrix at each interface. A(0;) contains the geometric
spreading and can be written

A(0;)

= 1 ﬁ [I/’(‘S's),ti'(o.-)df:tQ'(Os)]”2
[V(0:)p(0,) det(0.)]'2 . | V(0)p(0:) det@(0) | °

where O, is the receiver position, 0, is the ith reflection/transmission point, {0;) is the
-"velocity and p{0;) is the density. The unprimed values are on the incident ray side of
the boundary and the primed values are on the reflected/transmitted side. Q(0,) is a
2x 2 matrix derived from

(0,)

X(0,)= [P(O)

1
]=71'(0u Oy) H [F(O)r(0;, O, - 1)1X(0y),
i=N
where m(0;, 0;— ;) are the component ray propagator solutions to the dynamic ray
equations for each layer with #(0;, 0;)= {Cerveny, 1985a). F(Q;} is the transformation
. matrix at each interface. For suitable initial conditions, detQ(0,) will be the geometric
spreading for a point source.

Perturbation theory of the dynamic ray equations has been developed by Farra and
Madariaga (1987). Approximate two-point ray-tracing can be performed using pertur-
bation theory. It can be used also to compute perturbed ray amplitudes due to
variations in the medium. Partial derivatives of ray-theoretical amplitudes have been
tested in trial inversions by Nowack and Lutter (1988a) for smoothly varying media and .
by Nowack and Lyslo (1989) for media with-smoothly varying juterfaces. Once the
partial derivatives of ray amplitude have been derived, a linearized inverse problem
similar to equation (26.3) using ray amplitude can be implemented for variations in the
medium velocity or slowness.

Ray methods for slightly dissipative media have been described by Cerveny and
Frangie (1982) (Cerveny, 1992). The seismic response of 2-D absorbing structures was
computed using the ray method of Moczo et al. (1987). Tonn (1991) compared different
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methods for estimating ). Evans and Zucca (1988) performed an inversion for
attenuation in the Medicine Lake Volcano region of California using spectral Tatios,
Jacobson and Lewis (1990) performed. inversions for Q structure in the shallow ocean
crust: Nowack and Trehu (1989) implemented a seismic pulse inversion in which traye]
time, amplitude, and puise broadening of a time-domain pulse were used to invert for
both seismic velocity and attenuation beneath’ Lake Superior. For other examples of
attenuation tomography see Evans and Zucca (Chapter 25) and Sanders (Chapter 24).

In singular regions, such as caustics and at critical distances, extensions of the ray
method are required. Recent extensions include the Gaussian beam method (Popay,
1982; Cerveny et al. 1982; Nowack and Aki, 1984; Cerveny, 1985b) as well as the Mastoy
method (seé Chapman and Drummeond, 1982; Chapman, 1985; Thompsen and Chap-
man, 1985). Modeling of edge diffractions has also been incorporated (Klem-Musatoy
and Aizenberg, 1984; Pedersen et al,, 1989). Macdonald ef al. (1987) has shown that
extensions to the ray method are required to model and invert amplitude data
accurately for wide-angle reflected waves near the eritical distance.

26.3.2 Full wavefield methods

For fine-scale structure of the medinm with respect to the dominant wavelength of the
source, wave scattering.and diffraction effects. become important. Williamson (1991)
suggested, based on a comparison of diffraction and travel time tomography, that
diffraction effects become important for medium scales smaller than the radius of the
first Fresnel zone along the ray trajectories. The first Fresnel zone radius has been used
to define the effective width of rays at finite frequencies (Kravtsov and Otlov, 1990; see
also, Nolet, 1987). :
For scales of the medium smaller than the dominant seismic wavelength, the most
straightforward inversion procedure is to. directly:perform -an iterative.linearization n
- terms of the seismic wavefield. As an example, the Fourier transformed wave equation
can be written as, V2u(x) + k%(x)u(x)== —3(x), where u(x} is the field variable, 5(x) is the
source term, k*(x)= %/ V*(x), and V(x) is the variable velocity of the medium. Let
u(x)=uo(x) + du(x) and k*(x)=k3(x}+S[k%(x)]. Then to first order V26u(x) + k3 bulx)=
[20%/V 3(x)16V (x)uo(x). Using the Green’s function for the initial medium, this can be

written '

2
Fulx.)=— 'f[c(;«', x,)i—”,muo(g,:_c,)] SV(x)dx, (26.6)
Val(x)

where G(x, x,.) is the computed field for a point-source located at the recetver location,
X, and cvaluated at the medium point, x". The forward field uo(x’, x,} is computed at
the medium point for a source at x,. The quantity in brackets in equation {26.6) is the
first-order sensitivity operator giving the variation of the wavefield duc to a change in
the velocity model, 5V(x). For the inverse problem, du(x) can be written as the observed
field minus the field computed for the initial model. This formulation has been
investigated by Tarantola (1984, 1987) who found that a steepest descent solution using
the adjoint sensitivity operator was kinematically similar to a sequence of Kirchhoff -
migrations for the wave equation (see also, Nowack and Aki, 1986). The first iteration
is equivalent to that used in conventional seismic reflection processing of CMP data.
The resulting imaging criterion was found to be similar to that of Claerbout {1971,
1976). The first iteration is a single scattering approximation, but higher iterations allow
for multiple scattering to be included in the inversion, assuming that the Green’s
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functions can be computed accurately, Tarantola (1987) gives analogous sensitivity
operators for the elastic wave equation. )

For wide-angle seismic applications, a Kirchhoff, prestack type of migration was

implemented by McMechan and Fuis (1987) -for wide-angle reflection data from
" southern Alaska. However, for this case there was evidence of multiple scattering (Flueh
et al., 1989). Other examples of wavefield processing of wide-angle seismic data include
Chang and McMechan (198%9a,b). Pan and Phinney {(1989) developed an iterative
inversion of wavefield data for a vertically varying medium. Sun and McMechan (1991)
performed an iterative, full waveform inversion using synthetic, wide-angle SH data, and
were able to recover the higher wave-number components of the medium assuming the
long wave-number components were given a priori. Wavefield inversions using refrac-
tion data with sensitivity operators computed vsing the WKRBJ approximation have
been given by Shaw and Orcutt (1985) and Chapman and Orcutt (1985). Shaw (1988)
performed a waveform inversion of static-time-corrected refraction data.

Extensions of seismic waveform inversions by a linearization of the logarithm of the
wavefield, the Rytov approximation, have been suggested by Nowack and Aki (1986).
These extensions allow some forward multiple scattering (Keller, 1969). Numerical
examples for simple layered cases are given by Oristaglio (1985) who shows certain
advantages of the Rytov approximation for the simple transmission case (see also,
‘Beydoun and Tarantola, 1988). Further work on wavefield inversions is required to find
the best iterative linearization procedures.

26.3.3 Methods for generalized inversion

A variety of generalized inversion .procedures can be applied to discrete geophysical
inverse problems. In seismology, most inverse problems are ill-posed and include
non-uniqueness in the solution and incomplete and inaccurate data. One of the methods
of solution is the natural inverse of Lanczos {Lanczos, 1961; Jackson, 1972; Wiggins,
1972; Aki and Richards, 1980) based on the singular value decomposition. However,
even using the natural inverse of Lanczos, small but non-zero singular values can have
a large effect on the resulting solution. One approach to stabilize the natural inverse
solution has been to climinate small singular values below some critical value.

A variety of methods of stabilizing generalized inverse solutions have been developed.
These inciude damped least squares, stochastic inversion (Franklin, 1970), Bayesian
inversion (Jackson and Matsu’ura, 1985; Duijndam, 1988) as well as the non-linear
stochastic formulation of Tarantola and Valette (1982). For stochastic inversions, a
priori model and data covariance operators are used to damp as well as smooth the
generalized inverse solution. For example, diagonal elements of the a priori medel
covariance would act to constrain the inverse solution o the vicinity of the initial
model. Alternatively, off-diagonal elements of the a priori model covariance provide a
way to smooth the inverse model solution. '

In addition to the inverse solution, a posteriori model errors and covariance as well
as resolution should be estimated for all inversion techniques. These measures provide
estimates of model reliability as well as the range of feasible solutions consistent with
the data and the a priori information. For non-linear problems, only linearized
estimates of the a posteriori model covariance can usually be determined (Tarantola,
1987; Nowack and Lutter, 1988h), )

Because many geophysical inverse problems are non-linear, iterative solutions are
usually required. The forward problem and the sensitivity operator must then be
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recomputed for higher iterations. Iterations are continued until no significant improve-
ment in the solution can be obtained. Lutter et al. (1990) used an iterative procedure
using refraction travel times to estimate a smoothly varying velocity model in which g
small number of velocity parameters was estimated first, followed by inversions for
more detailed velocity models. In this way the longer wavelength components of the
model were frozen into the solution during the first iterations. Williamson (1990} used
a similar method to constrain long-wavelength medium components using reflection
seismology. .

In practice, standard methods for solving linearized inverse problems can be restric-
tively slow for large seismic tomography problems. For example, recent tomography
studies for the mantle have had as many as 10° travel times and 10-10° unknown
medium parameters (Dziewonski, 1984; Spakman and Nolet, 1988). For large sparse,
linear inverse problems, several types of iterative matrix inversion techniques have been
used. One class includes Algebraic Reconstruction Technigues (ART) and related
Simultaneous Iterative Reconstruction Techniques {SIRT). These have been applied in
medical imaging (Herman, 1980) and in geophysics (Dines and Lytle, 1979). A second
class of solutions is based on a generalization of the conjugate gradient method, For
example, the LSQR algorithm of Paige and Saunders (1982) can be applied to
non-square, damped lcast’ squares problems. Geophysical applications have been
described by Nolet (1985, 1987) and in Chapters 9 and 10, and Spakman and Nojet
(1988). Van der Sluis and Van der Vorst (1987) found the LSQR algorithm to be
generally superior to SIRT for many large tomographic problems. Nowack and Lutter
(1988a) used LSQR to invert both travel times and ray amplitudes in trial inversions
for seismic velocity. Techniques- using subspace and projection methods for large-scale
geophysical inverse problems have also been developed by Kennett and Williamson
(1988).

264 EXAMPLES OF WIDE-ANGLE TOMOGRAPHY

In this section, several recent examples of refraction tomography are summarized. These
include 1-D and 2-D inversion results from the 1986 Ouachita PASSCAL (Program
for Array Seismic Studies of the Continental Lithosphere) experiment and the 1986
Nevada PASSCAL experiment. The 2-D inversion results using refraction data from the
1980 Yellowstone—ecastern Snake River Plain experiment (Eibring, 1984) are described
briefly. Finally, the inversion results of Ankeny et al. (1986) for the Jemez Mountains
voleanic field, New Mexico, are shown as an example of 3-D seismic inversion of
refraction data. :

Kelter et al. (1989) describe the geometry of the 1986 Ouachita experiment in
southwestern Arkansas and northeastern Louisiana. Lyslo and Nowack (1990) used
waveficld data from one shot gather to estimate the 1-D velocity profile in the central
part of the deployment. They windowed and stant stacked the wavefield data using an
approach similar to McMechan and Ottolini (1980) and Clayton and McMechan
{1981). The slant stack wavefield was then downward continued to obtain the o{z)
wavefield shown in Figare 26.3. The solid line is their estimate of the 1-D velocity
structure. This modet is similar to ray trace results of Jardine (1988) and travel time
inversion results of Lutter and Nowack (1990) for the Ouachita experiment. A full
wavefield inversion has the advantage of not requiring the picking of travel times until
the final step of the inversion process. Uncertainties of the estimated velocities can be
inferred from the width of the zone of larger amplitudes in F igure 26.3.
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Figure 263 Velocity-depth, »(z), wavefield image of the t—p slant stacked data from shotpoint 16
of the 1986 Ouachita PASSCAL experiment (from-Lysio and Nowack, 1950), :

Seismic inversions based on travel times require the picking of travel times from
the wavefield data. Manual picking of travel times can be complicated when using
data which are sparsely sampled with distance. Furthermore, adequate spatial sampl-
ing is essential for proper correlation of different phases. Even with adequate spatial
sampling, the final inversion and interpretation of refraction results can be highly
dependent on the travel time correlations that have been made and on the errors
in the travel times. Lutter et al. (1990) used reciprocity of travel time on overlapping
shot gathers to constrain the travel time correlations for first arrivals as well as
secondary reflection phases. Visual correlations are also enhanced by using reduc-
tion velocities that flatten the corresponding phase on reduced wavefield record
sections,

Examples of automated travel time picking algorithms include those developed by
Allen (1982) and Zelt et al. (1987). Figure 264 shows an example of automated phase
correlation on observed refraction data from Zelt et al. (1987). Automated phase
correlation of seismic data sets with significant noise levels as well as sparse sampling
can be a difficult task. For refraction and wide-angle data, such picking is complicated
by progressive phase shifts and change of pulse character. Lyslo {1988) found for
wide-angle Moho reflections from the Ouachita PASSCAL experiment, that beyond a
certain distance along the PmP branch, manual intervention was required to avoid cycle

skipping. Further work on automatic phase picking of observed refraction data is still
needed.
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Figure 264 Automated correlation (picking) of refraction phases (Zelt et al,, 1987).

Recent examples of inversion for laterally varying structure using refraction travel
times from controlled sources include Benmz and Smith (1984), Elbring (1984),
Kanasewich and Chiu (1985), Spence et al. (1985), Ankeny et al. (1986), Huang et af,
(1986), White (1989), Hildebrand er al. (1989), White and Clowes (1990), Hawman et gl
(1990), Lutter et al. (1990), and Zelt and Smith (1992). As one example of 2-D travel-time
inversion, the results of Elbring (1984) are shown in Figure 26.5. Figure 26.5(a) shows
three shot gathers along profile 9 of the 1980 Yellowstone-eastern Snake River Plain
‘seismic experiment. Correlations of arrival times are also shown. The thick lines in
Figure 26.5(b) show isovelocity contours of the inverted velocity model. The dots are
the velocity node locations. Representative ray trajectories for all six shotpoints are also
shown in Figure 26.5(b). The distribution of ray coverage gives.qualitative information
. on which:parts of the model ‘are resolved by the data. The inversion results (Figure
26.5(b)) delineate a dramatic lateral change in sefsmic velocity in the wpper 4 km of the .
model. The velocities decrease sharply to the south at the location .of the boundary
* - between' Paleozoic sedimentary rocks and volcanics associated with the eastern Snake
River Plain. The abrupt velocity transition is interpreted to be a fault (Figure 26.5(c)}
consistent with the crustal model of Sparlin et chl. (1982}

As a second example of 2-D inversion, Lutter et al. (1990) inverted for upper crustal
structure using first arrival travel time data from the 1986 Ouachita PASSCAL
experiment. The velocities were specified at nodes and interpolated by splines. The code
SEIS83 was used for the ray-tracing (Cervenj and Pientik, 1984) with the partial
derivatives computed following Nowack and Lyslo (1989). An iterative linearized
inversion was performed for the smoothly splined velocity nodes. Isovelocity contours
of the inverted model for depths Iess than 9km are displayed in Figure 26.6(b). The
inversion procedure was iterated with rays traced in the updated model at cach
iteration. This procedure was continued until no significant improvement of travel time -
residuals was obtained. In order to stabilize the inversion, a set of iterative inversions
was performed starting with a small number of widely spaced velocity nodes and then
increasing the number of nodes. In this way, the longer wavelength features of the model
were estimated first and then frozen into the model.

Figure 26.6(a) shows an independent geologic interpretation based on well log and -
other geologic information and compared with the inversion results in Figure 26.6(b)
for depths above 9 km. Three distinct velocity gradients can be correlated with geologic
units. Surface exposed Cretaceous and Jurassic sediments with velocities from 2 to
3.5kms™! extend to 1.5km depth. Inferred Triassic rift fill sediments have inverted
velocities ranging from 3.5 to 4.75kms™* between depths of 1.5 and 3.0 km. Finally,
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Paleozoic sediments are imaged by a decreased velocity gradient below a depth of
3.0km.

Lower resolution for depths greater than 12 km, using only first arrival travel times,
necessitated the modeling of wide-angle reflected phases. Using reflected waves increases
the regions of illumination as well as increasing angular ray coverage for the upper parts
of the model. However, introducing interfaces adds a second type of medium parameter,
depth to curved interfaces. . ' g

There have been several approaches to dealing with reflected arrivals, First, the
interface shape and depth can be assumed a priori. Reflected travel times can then be
used in a tomographic inversion for velocity alone. This approach was taken by
Nercessian et al. (1984) who used reflections from the Moho to illuminate a shallower
target. The second approach is to use velocities from a previous inversion and then
invert for reflector shape. This approach was followed by Lutter and Nowack (1990
who used layer stripping to invert travel times for interfaces at progressively greater
depth.

A third alternative In using reflected arrivals is to invert simultaneously for interfaces
and. velocities. In the seismic reflection geometry, this approach has been taken by
Bishop et al. (1985), Stork and Clayton (1986), Farra and Madariaga (1988), and
Williarson {1990). These studies show that care must be taken in such joint inversions.
Farra and Madariaga (1988) allowed slownesses in each layer to vary only horizontally.
Williamson (1990) used. a multistage approach, in which successively shorter scale
lengths were. included. A simultaneous inversion for velocities and jnterfaces using
refracted and wide-angle reflected travel times was presented by Zelt and Smith (1992)
based on the forward modeling technigue of Zelt and Ellis (1988).

A final alternative in using reflected arrivals is to. alternate between imaging the
reflectors by wavefield migration methods znd imaging the velocities using a to-
mographic travel time inversion (Stork and Clayton, '1987;:Bording et al., 1987). This
technique has the advantage of using more of the seismic wavefield data in the
migration step. However, it has the disadvantage that two different types of data must
be used for the inversion of the different model parameters.

Examples of inversions of refraction and wide-angle reflection data to obtain interface
and velocity parameters are given by Chiu et al. (1986), Huang et ol (1986), Lutter and
Nowack {1990), and Zelt and Smith (1992). Lutter and Nowack (1990} used wide-angle
reflection travel times from the 1986 Ouachita PASSCAL experiment to image deep
crustal reflectors. The travel times of wide-angle refiections were picked manually and
checked with reciprocity of travel times between shot gathers. For the inversion, a layer
stripping approach was taken where successively deeper interfaces were inverted while
shallower structure was held fixed. The shallow crustal velocities were obtained from
the first arrival travel time inversion of Lutter et al, (1990). The average velocities in the
deeper layers were obtained wsing from —p and ray-trace analysis (Lutter and Nowack,
1990; Lyslo and Nowack, 1990). The crustal interfaces were then inverted at sequentially

greater depths using reflected arrival times.

Figure 26.7 shows inversions for the top of the lower crustal layer as well as the
Moho. For each interface, the observed and predicted travel times are shown, as well
as the ray diagrams and the lateral resolution along the interface. Fach interface is
paramcterized using bicubic splines to give smoothly curved boundaries. The resulting
model is shown in Figure 26.8, incorporating both inverted upper crustal velocities and
deeper interface depths. Inversion results for the central and southern portion of the
profile indicate a depth of 10-12 km for a mid-crustal layer, a lower crustal layer with
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Figure 26.8 Velocity and interface model from inversion of first arrivals and wide-angle reflected
arrivals of the 1986 QOuachita PASSCAL experiment. The distances are measured from the
northern end of the line. Boundaries are dashed where diagonals of the resolution matrix are less
than 0.5 (Lutter and Nowack, 1990).

- an average thickness of 12km, and a Moho depth of approximately 30km. In the
northern 50 km of the profile, the Moho shallows from 40 to 30 km.

Zelt and Smith (1992) provide a second example of the inversion of wide-angle data
for velocity and interface parameters using {iata from ‘the 1986 Nevada PASSCAL

_ seismic experiment. Velocity parameters were defined by trapezoidal cells and interface
parameters were linearly interpolated: Figure 26.9(a) shows. a ray ‘diagram for the PmP
phasc along the N-S profile of this experiment. Figure 26.9(b) shows a comparison of
the observed and computed travel times. The observed travel times are shown by
vertical bars indicating twice the estimated uncertainty of the pick. The computed travel
times are shown by the solid curves. Figure 26.9(c) shows the inverted velocity and
interface model for the N-8 profile. The size of the solid squares gives the resolution of
each interface node.

An example of elementary wavefield processing of wide-angle reflection data is given
by Plappert (1987) for the 1986 Ouachita PASSCAL experiment. Plappert (1987)
constructed a stacked equivalent zero-offset record section from wide-angle refiection
data. The AGC corrected wavefield data were muted, normal move-out corrected, and
then plotted at the mid-point distance between each source and receiver. The normal
move-out correction was computed from a smoothly varying background velocity. The
wavefield data from all shot gathers were processed in a similar manner and then binned
into varying mid-point positions. Fraces in different mid-point bins were then stacked
to obtain the approximate zero-offset record sections. Figure 26.10 shows the middle
part of the record section, from 80-180 km along the pofile. The Moho can be seen at
a depth of about 30 km. In addition, mid-crustal reflections can also be seen. See Figure
26.8 for a comparison with the travel time inversion results.

One issue that needs to be addressed in wavefield processing of wide-angle reflection
data is the variation in amplitude from precritical to postcritical. For posteritical
reflections, the reflection amplitude approaches unity and is, therefore, no longer
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proportional to the direct impedance contrast at the interface. Howsgver, the increase in
amplitudes past the critical distance also gives rise to large postcritical signal strength.
If there are no adjustments for variations in amplitude, wavefield processing of
precritical and posteritical reflections will be biased toward the larger signal amplitndes,
Further work on wavefield processing of wide-offset data for lateraily varying structures
is required. ) .

Because the Earth is in reality three dimensional, 3-D seismic inversions are preferred,
We present the work of Ankeny et al. (1986) as an example of a 3-D inversion of
refraction data. Other examples are Thurber (1983), Benz and Smith (1984), and
Thurber and Aki (1987). Ankeny et al. {1986) inverted for the upper crustal structure of
the Jemez Mountains volcanic field, New Mezico using travel times from both
explosions and earthquakes. Figure 26.11(a) shows a map location of the shot points,
seismic stations, and ray-path coverage for the explosion data. Figure 26.11(c) shows
N-S and E~-W cross-sections through the velocity model determined by 3-D inversion.
The two cross-sections display strong 3-D variations in the inverted velocity model.

The most prominent feature on the derived 3-D velocity model of the Jemez region
is the zone of low (5.6-5.8 km s~ !} upper crustal velocities which extends to depths of
about 10km or more beneath the southern half of the Valles caldera. (Low velocities
to the east beneath the Rio Grande rift are at least partially explained by rift fill and
also extend into a region of the model where resolution is poorer due to limited source
and receiver coverage). The low velocities beneath the Valles caldera are interpreted to

“be caused by the combined effects of a silicic intrusion in the upper crust and velocity |
reduction caused by clevated temperature (Ankexny et al,, 1986).

Further extensions and applications of refraction tomography include current work
on the inversion for anisotropy (Hirahara and Ishikawa, 1984; Jech and Péencik, 1992),
attenuation inversion using spectral ratios (Evans and Zucca, 1988), or amplitudes and
pulse broadening (Nowack and Trehu, 1989), and simultaneous inversion of Pand S
travel times for shiear velocity structure and Poisson’s ratio (Holbraok et al., 1988). Tn
addition, further work on 3-D inversions using earthquake data and controlled sources
is needed to invert simultaneously for hypocentral and subsurface medium parameters
(Thurber, 1983, Chapter 20 of this volume; Sambridge, 1990).

26.5 CONCLUSIONS

The use of wide-angle seismic data has the advantage of a larger angular ray-path
coverage as compared with other types of seismic data and can provide increased
resolution of subsurface Earth structure, A number of inversion methods have been used
to image wide-angle seismic data. These techniques are characterized by differing model
complexity, model parameterization, source and receiver geometry, and solution
method.

Recent applications of seismic tomography have emphasized the imaging of laterally
varying structure which s of major importance in the geologic mapping of the Earth’s
interior. For smoothly varying media, ray-theoretical methods and their various
extensions are applicable. Ray methods also can be applied to media with a small -
number of smoothly curved interfaces. Estimation of fine-scale structure of the subsur-
face is aided by full wavefield methods.

In the design of experiments for seismic Imaging using refraction and wide-angle
reflection data, recording geometries consisting of multiple sources and receivers and
which result in many crossing ray-paths will provide better resolution of derived
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velocity models. The increased resolution produced by favorable ray coverage pertains
to both 2-D and 3-D models. However, the number of source and receiver locations
required for the 3-D geometry is significantly greater. A fow examples of 2-D and 3-D
inversions from recent, mostly crustal structure, studies have been considered in this
paper. In future experiments, significant improvements in capability to image velocity
structure can be achieved with appropriate attention to design considerations (geometry
and ray-path coverage). However, these design criteria will generally imply substantially
increased observational effort — larger numbers of sources and receivers, and therefore,
seismograms to be used in the tomographic inversion,
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