Northward thinning of Tibetan crust revealed by virtual seismic profiles

Tai-Lin Tseng,1,2 Wang-Ping Chen,1 and Robert L. Nowack3

Received 11 August 2009; revised 26 October 2009; accepted 20 November 2009; published 18 December 2009.

1A new approach of constructing deep-penetrating seismic profiles reveals significant, regional variations in crustal thickness under near-constant elevation of Tibet. Over distances of hundreds of kilometers, the crust is as thick as 75 km in southern Tibet but shoals to just over 60 km under the Qiangtang terrane in central Tibet where the deviation from Airy isostasy is equivalent to a thickness of over 10 km in missing crust. Northward thinning of crust occurs gradually over a distance of about 200 km where mechanical deformation, instead of pervasive magmatism, also seems to have disrupted the crust-mantle interface. Citation: Tseng, T.-L., W.-P. Chen, and R. L. Nowack (2009), Northward thinning of Tibetan crust revealed by virtual seismic profiles, Geophys. Res. Lett., 36, L24304, doi:10.1029/2009GL040457.

1. Introduction

[2] Tibet is the highest and largest plateau on the Earth. At least part of its high topography (≈5 km above sea-level) is supported by buoyancy of a greatly thickened crust, or Airy isostasy [Jimenez-Munt et al., 2008; Owens and Zandt, 1997]. However, it is the deviation from Airy isostasy that provides additional constraints on the dynamics of continental collision, such as effects of plate flexure [Jiang et al., 2004; Jin et al., 1996], convective instability [Molnar et al., 1993], or deep-seated thermal buoyancy [Jimenez-Munt et al., 2008; Owens and Zandt, 1997].

[3] In tectonically active regions, it is generally difficult to predict crustal thickness, or equivalently the depth to the Moho from topography. For instance, the actively extending Basin and Range province of western U.S. has high topographic relief but the Moho is remarkably flat in places where reliable data exist [e.g., Klemperer et al., 1986]. For Tibet, using manmade sources near Lhasa, deep seismic reflection profiles in southern Tibet could not always detect the Moho [Alsdorf et al., 1998; Hauck et al., 1998]. Such negative results stood in contrast with that of Hirn et al. [1984], who used wide-angle seismic reflections generated by a small number of explosions and reported many large, abrupt offsets of the Moho, up to about 20 km in amplitude, despite low relief of the elevated surface. Discordant results regarding the Moho from deep seismic reflection and refraction have also been noted in many parts of the world [e.g., Eaton, 2006; Hale and Thompson, 1982; Mooney et al., 1987], necessitating new approaches to constrain such a fundamental issue in geology.

[4] Using observations that were hundreds of kilometers apart, Owens and Zandt [1997] analyzed waveforms arising from conversions between compression- and shear-waves (P- and S-waves, respectively) across the Moho. Although the observations are too far apart to delineate regional characteristics, there seems to be a difference of about 10 km in crustal thickness between the Lhasa and the Qiangtang terranes in southern and central Tibet, respectively (see Figure 1b for locations of terranes). In contrast, over a distance of about 400 km in east-central Tibet where data from seismic arrays were available, recent studies using similar principles seemed to indicate smooth variations in crustal thickness across the two terranes [Kind et al., 2002; Shi et al., 2004].

[5] In this study, we use a novel approach to systematically investigate how thickened crust under Tibet varies over a large distance of about 550 km (Figure 1). The foundations of our work are the unprecedented resolution of dense-spaced, broadband seismic data from Project Hi-CLIMB [Chen et al., 2007] and strong signal of reflections off the Moho from large earthquakes – a feature that cannot be replicated readily by manmade seismic sources. Interestingly, also using data from Hi-CLIMB, the latest results of seismic imaging showed a wide zone of disrupted Moho under central Tibet (R. Nowack et al., Application of Gaussian beam migration to multi-scale imaging of the lithosphere beneath the Hi-CLIMB array in Tibet, submitted to Bulletin of the Seismological Society of America, 2009), raising the question of how to evaluate the contribution from crustal isostasy to the overall support of Tibet’s high elevation.

2. Virtual Seismic Profiles

[6] A direct, pragmatic approach is to determine average crustal properties from wide-angle reflections – prominent signals that, at periods longer than 5 s or so, are not particularly sensitive to fine details of the Moho interface (see Figure S3 and Text S1). Figure 2 shows an example of how a clear seismic profile, comprised of consistently robust signals from the Moho (the seismic phase SsPmp), can be constructed over distances of hundreds of kilometers from a single earthquake source (Figure 1).

[7] SsPmp originates as the direct S-wave (Ss phase) reflects under the free surface and partially converts to P-wave, which, in turn, reflects off the top of the Moho

Copyright 2009 by the American Geophysical Union.

0094-8276/09/2009GL040457S05.00

1Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
2Now at Department of Geosciences, National Taiwan University, Taipei, Taiwan.
3Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana, USA.
and 2

H reported by S.-H. Hung remains large at all stations, making it
SsPmp depends on both
from when
conversion under the free-surface is a virtual
is the ray-parameter (horizontal slowness) of the
across long profiles. The main difference
T
is between 420 and 550 km). Zhao et al.
p
is as large as 14 s
Ss
V
is unimportant
varies by
¼
/C0
the crustal thickness, and
T
in the crust are tightly constrained by
L24304
(Figure 2). Thin, solid
(inverted triangles). The
(a) A schematic diagram illustrating ray-paths of
key crustal phases associated with a planar S-wave from a
distant earthquake source. Notice that for SsPmp, the
conversion from S- to P-waves under the free surface is a virtual
source for subsequent P-reflection off the Moho. (b) A map
showing the locations of Hi-CLIMB stations (solid triangles)
used in this study and the corresponding points of reflections
off the Moho associated with SsPmp (inverted triangles). The
latter are calculated based on the location of the deep earth-
quake whose signals are used to construct the seismic profile
along the solid line marked as BB’ (Figure 2). Thin, solid
curves are key geologic boundaries on the surface: BNS, the
Bangong-Nujiang Suture; IYS, the Indus-Yarlung Suture; and
MCT, the Main Central Thrust.

before finally arriving at a seismic station (Figure 1a). For the
simple case of a crustal layer over a mantle half-space, the
differential timing between SsPmp and Ss is

\[T_{SsPmp-Ss} = 2H \left(\frac{1}{V_P^2} - p^2 \right)^{1/2}, \]

where \(p \) is the ray-parameter (horizontal slowness) of the
incoming S-wave, \(H \) the crustal thickness, and \(V_P \) the average
P-wave speed in the crust. In essence, the difference in travel-
times between SsPmp and direct S-wave (\(T_{SsPmp-Ss} \)) is simply
the two-way travel-time of obliquely reflected P-wave in the
crust (Figure 1 and auxiliary material). Note that SsPmp
undergoes total reflection (and a phase shift of \(\pi/2 \)) at the
bottom of the crust when \(p \) is greater than the reciprocal of the
P-wave speed in the uppermost mantle.

[s] In Figure 2b, seismograms are aligned by direct
S-wave pulses. For each seismogram, the corresponding arrival
time of wide-angle P-reflection, or SsPmp, is marked by
a triangular pointer in red. This type of seismic profile
provides a powerful tool to probe the Moho even under
greatly thickened crust. Notice that \(T_{SsPmp-Ss} \) is as large as 14 s
near the southern end of the profile and gradually changes
northward to values around 12 s – direct evidence for varying
average crustal thickness, \(H \), and/or average P-wave speed in
the crust, \(V_P \), on a regional scale (Figure S2).

[9] Figure 2b is akin to a conventional seismic reflection
profile in that although true illumination is from below, the
point of S-to-P conversion under the free-surface is a virtual
source for the subsequent reflection of P-wave off the top of
the Moho [Tseng and Chen, 2006] (Figure 1a). As such, the
SsPmp phase is equivalent to the prominent “PmP” phase in
conventional seismic profiles [e.g., Meissner et al., 2004].
Furthermore, for earthquake sources that are several thou-
sand kilometers away, angles of incidence of the incoming
S-wave are nearly constant across the entire profile (Table S1),
so the geometry between each virtual source and its corre-
spending station remains essentially unchanged. Consequently
the amplitude of SsPmp remains large at all stations, making it
an easy task to precisely determine the relative timing between
SsPmp and Ss across long profiles. The main difference
between Figure 2b and traditional seismic reflection is that
we trade near-vertical ray-paths for high amplitudes from
wide-angle reflections.

[10] In the following analysis, we first set the mean \(V_P \)
across the entire profile. This baseline value is about 6.3 km/s,
consistent with previous studies in central and eastern Tibet
[Owens and Zandt, 1997; Zhao et al., 2001] (see auxiliary
material and notice that the precise value of \(V_P \) is unimportant
for detecting first-order, relative changes in crustal thickness
among different stations.) We then calculate \(H \) from \(T_{SsPmp-Ss} \)
using laterally varying values of \(V_P \) reported by S.-H. Hung
et al. (First multi-scale, finite-frequency tomography illumina-
tes 3-D anatomy of the Tibetan plateau, submitted to
Geophysical Research Letters, 2009). For the case at hand,
even though \(T_{SsPmp-Ss} \) depends on both \(H \) and \(V_P \), detailed
P-wave travel-time tomography showed that \(V_P \) varies by
less than ±2% over the entire length of the profile [Hung et al.,
2008; also submitted manuscript, 2009]. Such fluctuations
lead to small changes of about ±3 km in estimated crustal
thickness, so observed differences in \(T_{SsPmp-Ss} \), largely reflect
changes in average crustal thickness (Figure 2b). Never-
thelss, we allow a generous error of ±0.1 km/s in \(V_P \), when
calculating the crustal thickness (error-bars in Figure 2c).

3. Deviation From Airy Isostasy and Implications

[11] The very thick crust under Tibet is by no means
uniform; instead there is an overall trend of northward
thinning (Figures 2b and 2c). Figure 3 compares average
crustal thickness estimated from this study with detailed
seismic imaging based on a rigorous treatment of scattered
S-wavefield resulted from P-waves incident from below
(Gaussian beam imaging of the phase \(P_s \) (Nowack et al.,
submitted manuscript, 2009)). As expected, near both ends of
the profile where the Moho is sharp and smooth-varrying, the
two approaches give consistent results in crustal thickness.
Notice that the Moho reaches its deepest depth, up to 73–
77 km, beneath the southern Lhasa terrane (distances, \(x \),
between 0 and 200 km) but shoals to around 60–64 km
beneath the southern Lhasa terrane (distances,
\(x \) between 420 and 550 km). Along these two segments of the profile, both the average
thickness and \(V_P \) in the crust are tightly constrained by
waveform modeling (discussed further in the auxiliary
material); and it is evident that while the southern portion of
the Lhasa terrane is close to Airy isostasy, deviation from
crustal isostasy beneath the Qiangtang terrane is consider-
able, equivalent to a thickness of over 10 km in missing crust
(Figure 2c).

Figure 1. (a) A schematic diagram illustrating ray-paths of
key crustal phases associated with a planar S-wave from a
distant earthquake source. Notice that for SsPmp, the
conversion from S- to P-waves under the free surface is a virtual
source for subsequent P-reflection off the Moho. (b) A map
showing the locations of Hi-CLIMB stations (solid triangles)
used in this study and the corresponding points of reflections
off the Moho associated with SsPmp (inverted triangles). The
latter are calculated based on the location of the deep earth-
quake whose signals are used to construct the seismic profile
along the solid line marked as BB’ (Figure 2). Thin, solid
curves are key geologic boundaries on the surface: BNS, the
Bangong-Nujiang Suture; IYS, the Indus-Yarlung Suture; and
MCT, the Main Central Thrust.
Figure 2. North–south trending profile across southern and central Tibet, showing topography, a P-wave reflection profile constructed using the seismic phase $SsPmp$, and estimated crustal thickness. (a) Mean elevation (solid curve) and its standard deviation (gray shading) across a swath of about 200 km in width, or the approximate separation between each virtual seismic source and station for $SsPmp$, along the profile. (b) A wide-angle, P-wave seismic profile constructed from $SsPmp$ phases generated by an earthquake in 2005 (Table S1). The seismograms show broadband ground-velocity (vertical component data; zero-phase, Butterworth filter applied between 0.05 and 0.5 Hz). Due to total reflection off the top of the Moho, $SsPmp$ has a phase-shift of $\pi/2$ when compared with the direct S-wave arrival (Ss). Note that the differential timing between $SsPmp$ and Ss ($T_{SsPmp-Ss}$), a proxy for crustal thickness, decreases northward from \sim14 s to \sim12 s. (c) Estimated crustal thickness (red dots) based on $T_{SsPmp-Ss}$ and average P-wave speed in the crust (V_P), including perturbations to a background value of 6.30 km/s as determined from travel-time tomography (Hung et al., submitted manuscript, 2009). Vertical bars indicate generous estimate of errors in crustal thickness at representative stations (“H” followed by four-digit numerical codes). The solid curve shows predicted values from Airy isostasy (with the effect of one standard deviation from mean elevation marked by dashed curves.) IMF marks the horizontal position of the so-called Indian mantle front, or the leading (northern) edge of underthrust Indian mantle lithosphere [Chen and Özlalaybe, 1998; Hung et al., submitted manuscript, 2009]. Other labels are BNS, the Bangong-Nujiang Suture, and IYS, the Indus-Yarlong Suture.

Figure 3. A comparison between crustal thickness estimated from wide-angle P-wave reflections (red dots; Figures 2b and 2c) and an image of the Tibetan lithosphere obtained by Gaussian beam migration of direct P-to S-wave conversions (Nowack et al., submitted manuscript, 2009). The convention is that a scatterer representing an increase in impedance with depth results in a blue pixel centered on the position of the scatterer. Black curves (dashed when uncertain), highlighting particularly strong impedance contrasts, show interpretations of the Moho transition zone by Nowack et al. (submitted manuscript, 2009). Notice near-constant crustal thickness over distances of hundreds of kilometers when the Moho is a simple interface near both ends of the profile. In the intervening zone of disrupted Moho, average crustal thickness decreases gradually northward by more than 10 km, from as much as 75 km to just over 60 km. Notice that the IMF is offset from the onset of shoaled Moho near the BNS. “H1350” marks the location of station whose observed waveform is discussed in detail (Figure S3).
[12] For illustrative purposes, the average density of crust is taken to be 2,800 kg/m³, neglecting any lateral variations as corresponding changes in V_p are small [Campbell and Heinz, 1992; Hung et al., submitted manuscript, 2009]. The density increase across the Moho is assumed to be 450 kg/m³ with a reference crustal thickness of 38 km at sea-level [Jimenez-Munt et al., 2008]. Notice that isostatic supports below the Moho would have nearly identical effects on vertical positions of both the Moho and the free surface, so residual crustal thickness – the difference between observed and predicted values of crustal thickness from Airy isostasy (Figure 2e) – is a proxy for cumulative effects of isostasy in the mantle.

[13] Thinner crust under northern Tibet has been taken as evidence for full isostasy being achieved below the lithosphere, deep in the upper mantle where temperature is anomalously high [Jimenez-Munt et al., 2008; Owens and Zandt, 1997]. Supporting evidence for such a mechanism includes inefficient propagation of head-waves just below the Moho [McNamara et al., 1997; Ni and Barazangi, 1983], and large birefringence of S-waves [McNamara et al., 1994] (up to 2 s or more between fast- and slow-directions of polarization) that has been inferred as a result of east–west flow in the upper mantle [Owens and Zandt, 1997]. Following this line of reasoning, the observation that thinner crust already starts appearing near the Bangong-Nujiang suture (BNS, the surface join between Qiangtang and Lhasa terranes) implies that thermal isostasy in the mantle is at work immediately north of the Lhasa terrane.

[14] However, several independent pieces of evidences, including sudden drops of V_p and V_S in the upper mantle, abrupt increase in birefringence of S-waves, and modeling of gravity data indicate that the northern terminus of sub-horizontally advancing Indian mantle lithosphere apparently continues for at least 70 km further north of the BNS (Figure 3) [e.g., Chen and Özlüaybey, 1998; Jin et al., 1996; Hung et al., submitted manuscript, 2009]. In other words, there is a distinct offset between where significant deviation from Airy isostasy begins and where thermal isostasy of the mantle becomes a plausible explanation. It is tempting to attribute this offset to flexure strength of either the Indian or the Tibetan mantle lithosphere, or perhaps the buoyancy of a chemically refractory Indian mantle lithosphere [Jordan, 1981]. At the moment, gravity data collected from Tibet remain proprietary, prohibiting further tests of this hypothesis.

[15] Intriguingly, the transition from an exceedingly large crustal thickness of over 70 km to values 10 km less than those expected from Airy isostasy largely coincides with the zone of highly disrupted Moho from Gaussian beam imaging (Figure 3), strongly suggesting that process(es) which disrupted the Moho also affected crustal thickness. In this zone, results summarized in Figure 2 delineate the position of a “seismic Moho” as detected by wide-angle reflection of P-waves. When the Moho is not a sharp interface, the seismic Moho is approximately at the midpoint of a gradual transition from crust to mantle. (A specific example, including results of waveform modeling, is presented in the auxiliary material.)

[16] This feature is qualitatively discernible in Figure 3 over much of the zone of disrupted Moho, between distances of about 250 to 420 km. Judging from results of multi-scale travel-time tomography based on finite-frequency theory, perturbations in V_p near the zone of disturbed Moho is small in both spatial extent and in amplitude (Hung et al., submitted manuscript, 2009). As such, empirical rules [Birch, 1961; Campbell and Heinz, 1992] relating V_p to crustal density (“Birch’s law”) would indicate that bulk composition of the crust has not been altered considerably; so disruption of Moho seems mainly a result of mechanical deformation, not major magmatic activities.

[17] In the zone of disrupted Moho, the position of the seismic Moho shows that average thickness of the crust gradually decreases northward; meanwhile, the deviation from Airy isostasy progressively increases (Figure 2c). Over scales of tens of kilometers, there is no obvious, abrupt steps in overall crustal thickness; and the deviation from crustal isostasy is about half of that at the far northern end of the profile (Figures 2b and 2c). Furthermore, a thinner crust under the northern Qiangtang terrane, by as much as 12 km when compared with the southern Lhasa terrane (Figure 2c), is consistent with earlier studies based on sparse observations along the Yadong-Golmud transect which lies almost 600 km to the east of our profile [Mejía, 2000; Owens and Zandt, 1997], suggesting that an overall northward thinning of Tibetan crust, or equivalently increasing deviation from Airy isostasy, may be a prominent, regional feature.

Acknowledgments. The study was supported by U.S. National Science Foundation grants EAR99-09362 (Hi-CLIMB), EAR06-35419 and EAR06-35611 and U.S. Air Force contract FA8718-08-C-002.}

References

