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Introduction

Progression of ambition in the phonological
modeling research

Build models that capture the categorical phenomena: Things that always
happen or never happen.

Optimality Theory is pretty good at it.

Build models that capture variation: Things that sometimes happen and
sometimes don’t.

Optimality Theory can be bent to serve this purpose: e.g. Multiple Grammars
Theory (Kiparsky 1993, Anttila 1997).
Among others are Stochastic OT (Boersma and Hayes 2001) and Noisy
Harmonic Grammar (Pater 2009).

Build models that capture relative frequency of the variable phenomena:
Things that happen 70% of the time, and don’t happen 30% of the time.

There is some exciting research happening (or waiting to happen) here, mostly
focusing, for empirical reasons, on within-language variation.
Various models with quantitative element arrive at frequency distribution in
different ways.
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Introduction

Preview

In this talk we will propose a method of phonological modeling based on the
concept of weighted rather than ranked constraints.

Which goes beyond the current use of weights in phonological modeling in a
way that seems very natural to us and which can be applied for modeling
phonological frequency.

Along the way, we will raise several “big picture” issues related to the current
state of phonological theory: Optimality Theory, Harmonic Grammar, and
their relation to each other, in particular.
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Introduction

Big Picture

Optimality Theory, a currently dominant framework for modeling
phonological systems, implements a particular way of selecting the “optimal”
output from the set of competing candidates.

From a purely mathematical perspective, this particular selection method is
just one among many and it’s choice seems fairly arbitrary.

The question is: What is so special or particulary natural about this selection
mechanism, which makes it appropriate for linguistic modeling? Should we at
least consider other options?
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Introduction

Big Picture

If we choose to embrace weighted constraint approach as an alternative to
OT, what are the advantages we will harvest?

This question cannot be answered without exploring the formal differences
between the two approaches. It is one of the goals of this talk to outline those
differences.

Does the current use of weights in phonological modeling explores the full
potential of this approach? What are its limitations and what is a natural
pathway for development in this area?

We will argue that a model proposed here preserves the advantages inherent
in the weighted constraints approach and remedies some of the disadvantages
present in the current implementation of this method.
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Optimality Theory

Optimality Theory

Basic architecture: ranked constraints, candidates, violations.

Output selection process is based on the absolute priority of higher ranked
constraints.

Crucially, in OT, the analysis is only as good as the constraints.

What evidence can we offer for the validity of the constraints we propose? A
couple of options here:

“Independently motivated constraints” - constraints that have proven
themselves worthy elsewhere.
Factorial typology - whether a reasonable typology arises from all possible
permutations of your constraints.

Factorial typology is important as the only validity check we have at the
moment.
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Optimality Theory

Variation and Frequency

Although not originally designed for this purpose, an advantage of OT is that
it can be used in a fairly straightforward way to model variable phenomena
and even their relative frequencies.

Within-language variation:
Relax the assumption that constraints are strictly ranked and establish the rate
with which variable outputs win in the resulting grammars.

From Anttila 2012, based on Kiparsky 19938 / 45



Optimality Theory

Variation and Frequency

Between-language variation:

This has already been provided for in standard OT: constraints are freely
re-rankable across languages.

What about relative frequency of language types? We know that not every
possible ranking result in a distinct output pattern (language).

If we assume that languages correspond to output patterns, not rankings,
every language will be derived by a different number of rankings.

Assuming that the probability of each ranking is equal, probability of each
language increases as the number of rankings deriving it increases.
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Optimality Theory

Variation and Frequency

Modeling crosslinguistic vowel inventories (Coetzee 2002)

Rounding tends to co-occur with backness.

Constraints: *FrRd, *BkUnRd, Ident(rnd)
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Optimality Theory

Properties of the Selection Process

Two abstract properties of the selection process OT relies on are of special
importance:

1 Harmonic Bounding:

If candidate’s A violations are a proper superset of candidate’s B violations,
candidate A is harmonically bounded by candidate B: it can never win against
it.

From Samek-Lodovici and Prince 1999.
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Optimality Theory

Properties of the Selection Process

Two abstract properties of the selection process OT relies on are of special
importance:

1 Compatibility with uniform violation addition:

Addition of the same violations to each candidate does not change the
winning output.
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Optimality Theory

Properties of the Selection Process

Importantly, many selection processes have these properties. The process
used by OT is just one of them.

Every such selection process corresponds to a monomial order.

‘
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Monomials, Polynomials and Rings

Monomials, Polynomials and Rings

Using one variable: X (univariate case).

Monomials: 1,X ,X 2,X 3, . . .

Terms: a term is a monomial times a number.
e.g.: 5X , 7X 5, 10X 2.

Polynomials: a polynomial is a finite sum of terms.
e.g.: 5X + 7X 5 + 10X 2.

Polynomial ring: the set of all polynomials.
It is denoted by R[X ].
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Monomials, Polynomials and Rings

Monomials, Polynomials and Rings

Using several variable: X1,X2, . . . ,Xn (multivariate case).

Monomials: a monomial is a product of variables.
e.g.: X3, X1X2, X 2

1 X5.

Terms: a term is a monomial times a number.
e.g.: 5X 2

1 X 4
7 , X 4

3 .

Polynomials: a polynomial is a finite sum of terms.
e.g.: 5X 2

1 X 4
7 + X 4

3 .

Polynomial ring: the set of all polynomials in the variables X1, . . . ,Xn.
It is denoted by R[X1, . . . ,Xn].

There are several branches of Mathematics which study polynomials, rings and
other similar structures. Two of such branches are:

Algebra

Algebraic Geometry.
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Algebra and Algebraic Geometry

Algebra and Algebraic Geometry

The following are two examples of typical (classical) problems:
(A) Find the set of ”roots” (solutions) of a given polynomial f in R[X ]

(i.e. solve f = 0.)
e.g.: X 2 − 5X + 6 = 0 solutions: x = 3, x = 2.

(B) Find the common solutions of a set of polynomials: f1, . . . , fr of
R[X1, . . . ,Xn].
Study the geometrical properties of such set of solutions.

16 / 45



Algebra and Algebraic Geometry

In general these problems are very hard to solve.
We will focus on (B), keeping in mind that (A) is just a special case of (B).

The typical (modern) way to study (B) is:

Start with f1, . . . , fr polynomials in R[X1, . . . ,Xn].

Construct an infinite set I of polynomials by using f1, . . . , fr . This set is called
the ideal generated by f1, . . . , fr .

Find a (possibly) different set g1, . . . , gs of polynomials generating I , and
with some extra properties. This set is called a Gröbner basis.

Study properties of g1, . . . , gs and (sometimes) properties of an even simpler
set consisting of s monomials.
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Algebra and Algebraic Geometry

The steps outlined in the previous slide rely (crucially!) on:

The definition, the existence and the computation of the Gröbner Basis
g1, . . . , gs .

.... and for them one needs:

The notion of monomial orders, some theorems and an algorithm due to
Bruno Buchberger.
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Algebra and Algebraic Geometry

Buchberger’s algorithm

The actual computation of Gröbner bases is possible, in general, thanks
to an algorithm discovered by Bruno Buchberger (1965).

“Every set of polynomials can be transformed into a Gröbner basis. This
process generalizes three familiar techniques: Gaussian elimination for
solving linear systems of equations, the Euclidean algorithm for
computing the greatest common divisor of two univariate polynomials,
and the Simplex Algorithm for linear programming.”
[B. Sturmfels]
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Algebra and Algebraic Geometry

Monomial Orders

In 1927 Macaulay was perhaps
the first to consider monomial
orderings.

He used these orderings to characterize all possible Hilbert functions of
graded ideals by comparing them to monomial ideals.
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Algebra and Algebraic Geometry

Monomial Orders

We denote a monomial X a1
1 · · ·X an

n of R[X1, . . . ,Xn] simply by Xa,
where a = (a1, . . . , an).
E.g. X 2

1 X2X3 in R[X1,X2,X3] can be written as Xa with a = (2, 1, 1).

A monomial order is a total order < on the set of all monomials of R (where total
means that every two monomials are comparable) such that:

(1) 1 < Xa for all monomials Xa 6= 1.

(2) It is compatible with multiplication: whenever Xa < Xb and Xc is another
monomial, then XaXc < XbXc. (equivalently Xa+c < Xb+c.)

These properties, after the correct reinterpretation, are identical to the properties
of Harmonic Bounding and Compatibility with uniform violation addition in OT.
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Algebra and Algebraic Geometry

Monomial Orders (some examples)

Some examples:

For R[X ] there is only one monomial order, the one induced by the degree:
1 < X < X 2 < . . . .

For R[X1, . . . ,Xn] there are infinitely many monomial orders
(already with n = 2).

The two most relevant theoretically and computationally are the
lexicographic order (Lex) and the reverse lexicographic order (revLex).
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Monomial Orders

Lexicographic Order (Lex)

Consider R[X1, . . . ,Xn].
Think of the variables X1,X2, . . . ,Xn as letters of an alphabet where:
X1 is the first letter,
X2 is the second letter,
... and so on...

A monomial is now simply a word.
E.g.: X 3

1 X2X 2
3 is ”X1X1X1X2X3X3”.

The Lexicographic order is obtained by ordering the monomials as words in a
dictionary.
For example: X1X1 > X1X2 > X1X3 > X2X2 > X2X3 > X3X3.
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Monomial Orders

Reverse Lexicographic Order (RevLex)

Consider R[X1, . . . ,Xn].
Think of the variables X1,X2, . . . ,Xn as letters of an alphabet where:
Xn is the first letter,
Xn−1 is the second letter,
... and so on...

As before monomial can be view as a word.
E.g.: X 3

1 X2X 2
3 is ”X1X1X1X2X3X3”.

The Reverse Lexicographic order is obtained by ordering the monomials as words in
a dictionary (with our new alphabet!), and then reading the dictionary backwards!

For example we have X3X3,X3X2,X3X1,X2X2,X2X1,X1X1.
Reading it backwards we obtain: X1X1 < X1X2 < X2X2 < X1X3 < X2X3 < X3X3.
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Monomial Orders

Notice: Lex and RevLex looks similar,
for instance they induce the same order on the variables:
X1 <Lex X2 <Lex X3 <lex · · · and X1 <RevLex X2 <RevLex X3 <RevLex · · ·

But they are not the same!
Lex: X 2

1 < X1X2 < X1X3 < X 2
2 < X2X3 < X 2

3 .
RevLex: X 2

1 < X1X2 < X 2
2 < X1X3 < X2X3 < X 2

3 .
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Monomial Orders

Initial monomial

Consider R[X1, . . . ,Xn] and fix a monomial order.
Let f ∈ R a polynomial.
Write f as sum of monomials with nonzero coefficients.
Denote by in(f ) the first monomial appearing in the summation.
We call it the initial monomial of f .

For instance using RevLex:
let f = 5X1X3 + 4X 3

2 + 3X1X 2
3 , then inRevLex(f ) = X 3

2 .
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Applications

Computations and Implementations

Many invariants which are important in Commutative Algebra, and Algebraic
Geometry can be computed using Gröbner bases. (often the most efficient
monomial order for computing such bases is RevLex!).

Todays Buchberger’s algorithm is implemented in many computer-algebra
programs, such as: CoCoA, Macaulay2, Magma, Maple, Mathematica, or
Singular.

The pioneering work (in the late 70’s) of actually implementing Buchberger’s
algorithm was done by D.Bayer - M.Stillman and by R. Robbiano.
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Applications

Use of Gröbner bases in the sciences

“In summary, Gröbner bases and the Buchberger Algorithm for finding
them are fundamental notions in algebra. They furnish the engine for
more advanced computations in algebraic geometry, such as elimination
theory, computing cohomology, resolving singularities, etc. Given that
polynomial models are ubiquitous across the sciences and engineering,
Gröbner bases have been used by researchers in optimization, coding,
robotics, control theory, statistics, molecular biology, and many other
fields.”
[Sturmfels, American Mathematica Society Notices 2005]
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Applications

Back to OT:
The selection process is done by the RevLex!

We can associate to each candidate a monomial corresponding to the
product (with multiplicity) of the constraints it violates. In the above
example a is associated to C1C4, b to C2C3 and c to C 2

1 C3. Moreover we can
associate to the Tableau the polynomial: C1C4 + C2C3 + C 2

1 C3.

inrevLex(C1C4 + C2C3 + C 2
1 C3) = C 2

1 C3.
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Applications

Monomial orders

Given that there does not appear to be a strong motivation for using RevLex
order to the exclusion of others, why not allow constraints to interact in every
possible order?

Interestingly, a such a model already exists in phonological theory, although
in our understanding it has not been used to its full potential: Weighted
constraints implemented in Harmonic Grammar.

Moreover, OT itself was originally inspired by connectionist theory.

Optimality Theory traces its origin to an effort by Prince and Smolensky
to combine generative grammar and optimization ideas operative in
certain forms of connectionism. (Tesar, Grimshaw, Prince 1999)
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Applications

Weighted Constraints

The most significant difference between Optimality Theory and
connectionist theory is the nature of the harmony function.
Connectionist theory uses numerical optimization: the constraints are
assigned numeric weights, so the relative strength of different constraints
is determined by the relative magnitudes of their respective numeric
weights. Optimality Theory uses strict domination optimization (Tesar,
Grimshaw, Prince 1999)

The possible relationships between connectionist numeric optimization
and Optimality theoretic strict domination optimization is a wide open
topic, the subject of much future research. (Tesar, Grimshaw, Prince
1999)
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Weighted Constraints

Weighted Constraints

What is the relationship between numeric weight-based selection and strict
domination of OT?

We claim that from a mathematical point of view the answer to this question
is given by a theorem of Robbiano:

The choice of the output in OT is determined by the reverse lexicographic
monomial orders.
The choice of the output in the weighted constraints model is determined by
every possible monomial order.
Thus, weighted constraints models can produce the same patterns as the
traditional OT and often more.

More can be done with weights than with standard OT machinery.

It has inspired some to venture into the weighted constraints territory.
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Weighted Constraints

Robbiano’s Theorem

Consider R[X1, . . .Xn]. Let w be a vector (w1, . . . ,wn) with non-negative entries
(i.e. wi ≥ 0 for all i)
Every such vector induces a weight function w from Rn → R,
(a1, . . . , an) 7→ w1a1 + · · ·+ wnan.
For instance if w = (2, 3, 3) and a = (1, 1, 2), then w(a) = 2 · 1 + 3 · 1 + 3 · 2 = 11.

Every weight function induces a partial order on the monomials of R by setting
Xa <w Xb if w(a) < w(b).

Theorem (Robbiano)

For every monomial order < and every finite set of monomials S, there exists a
weight w such that < and <w agree on S . Moreover every partial order on the
monomials of R induced by a weight can be refined to be a monomial order.
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Weighted Constraints

Harmonic Grammar

Constraints are assigned a numerical weight rather than an order.

Candidate evaluation is based on the sum of the weights of the violated
constraints:

The candidate with the smallest resulting value wins.
Number of violated constraints becomes important.
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Weighted Constraints

Harmonic Grammar

Avoidance of voiced geminate co-occurrence with other voiced obstruents in
loan words in Japanese (from Pater 2009).
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Weighted Constraints

Variation in Harmonic Grammar

The variation in loanword emerges from gradual learning (HG-GLA), and
from stochastic evaluation (Noisy Exponential HG).
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Weighted Constraints

Weighted constraints

Most of the explorations of the weighted constraints approach focused on
finding a single weight for each constraint that would derive a desired pattern
(Pater, 2009)

Establishing whether such weights exist can be done through solving a system
of linear inequalities (Potts et al. 2010).

This essentially amounts to using a different monomial order.

How can one examine the unbounded space of possible weightings in
HG? The answer relates to the fact that even examining the space of
possible rankings becomes impractical when constraint sets get large
enough (and this happens very quickly, given that number of rankings is
the factorial of the number of constraints). (Pater 2009)
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Proposal

Weighted Constraints

We believe that this approach does not use the full potential of the weighted
constraints method:

To fully explore the typological implications of the proposed constraints and
provide justification for those constraints, in traditional OT, one needs to
consider all possible rankings.

Similarly, to fully explore the implications of weighted constraints, the space of
all possible weights needs to be considered.

An added advantage of this move is that we produce an equivalent of the
factorial typology in OT, where each possible language corresponds to an area
- a convex region - in the weight space.
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Proposal

How to Handle the Infinity

How can the unbounded space of possible weights be explored?

The weight space can be normalized: while it’s absolute size will be affected
by the normalization, the relative volumes of the convex regions will remain in
the same relationships to each other.

The weight space can be sampled: we do not need to run the algorithm
through every possible weight - a sufficiently high number of samples from the
normalized weight space will give us a good approximation of the resulting
typology.

The volume of the convex region in the normalized space can be computed with
precision. However, this task is computationally challenging.
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Proposal

Convex Regions and Typological Frequency

Another bonus of considering the whole weight space is that it has a very
natural extension into typological frequency through the relative volumes of
the convex regions.

If we assume that numerical weights for constraints, just as rankings in
standard OT, are chosen randomly and with equal probability,

The probability of landing inside a particular convex regions increases as the
volume of the convex region increases.

Thus, the relative frequency of languages confined to particular convex
regions corresponds to the relative volumes of these regions.
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Proposal

Convex Regions and Typological Frequency

In Pater 2009 analysis the two alternants in the Japanese loan are predicted
to occur with a 50-50 probability.

Convex region method estimates this relationship as a 33-66 probability, with
devoicing being the least common option.

With pattern under consideration being confined to a handful of loanwords it
is difficult to evaluate the predictions of the two models.

However, Kawahara and Shin-ichiroo Sano report the probability of devoicing
in their corpus study at 40%.
A value in-between the two predictions, but crucially deviating from the 50-50
distribution in the direction determined by the convex region analysis.
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Proposal

Convex Regions and Typological Frequency
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Summary and Conclusion

The core of our proposal:

Weighted constraints are a desirable alternative to strict domination in OT
since this approach removes the arbitrariness of the revlex selection process.
When weights are used, the whole weight space, not individually selected
weights, should be considered.

These approach preserves the existing advantages of weighted constraints:
The ability to generate patterns unattainable in OT.

It also provides additional advantages, such as well spelled-out typological
predictions of the analysis.

As well as quantitative predictions, based on the relative volumes of convex
regions.

Moreover, the geometry of the weight-space may give us an additional insight
into the way languages operate.

For instance, the possibility of variation between certain output types may be
related to the relative proximity of the corresponding convex regions in the
weight space.
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Summary and Conclusion

Thank you for your attention!
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