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We present an overview of existing methods to generate pseudorandom numbers from a nonhomo-

geneous Poisson process. We start with various definitions of the nonhomogeneous Poisson process,

present theoretical results (sometimes with a proof) that form the basis of existing generation al-

gorithms, and provide algorithm listings. Whenever available, we also provide links to sources

containing computer codes. With the intent of guiding users seeking an appropriate algorithm for

a given setting, we emphasize computationally burdensome operations within each algorithm. Our

treatment includes both one-dimensional and two-dimensional Poisson processes.
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Recall that a counting process {Nt, t ≥ 0} is a stochastic process defined on a sample space Ω

such that for each ω ∈ Ω, the function Nt(ω) is a “realization” of the number of “events” happening

in the interval (0, t], with N0(ω) = 0. By this definition, Nt(ω) is automatically integer valued,

non-decreasing, and right-continuous for each ω. A nonhomogeneous Poisson process is a type of

counting process that is characterized as follows.

Definition 1. A counting process {Nt, t ≥ 0} is called a nonhomogeneous Poisson process if:

(i) ∀t, s ≥ 0, and 0 ≤ u ≤ t, Nt+s −Nt is independent of Nu;

(ii) ∀t, s ≥ 0,Pr{Nt+s −Nt ≥ 2} = o(s); and

(iii) ∀t, s ≥ 0,Pr{Nt+s −Nt = 1} = λ(t)s + o(s), where λ(t) is some positive-valued function.

Definition 1 has been adopted from Billingsley [1, pp. 297], with the notation o(s) used in the usual

sense — to denote a function v(s) that satisfies lims→0 v(s)/s = 0 [19, pp. 1]. The function λ(t)

appearing in Definition 1, called the rate function, completely characterizes the Poisson process.

Various other definitions of a Poisson process are available and quite prevalent. See for instance Cox

and Lewis [4], Ross [16], Gnedenko and Kovalenko [6], and Çinlar [3]. (Section 23 in [1] discusses

the equivalence of various definitions of the Poisson process.) For example, Çinlar [3] provides the

following definition based on the sample-paths of Nt that is particularly relevant to the current

context.

Definition 2. A counting process {Nt, t ≥ 0} is called a nonhomogeneous Poisson process if:
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(i) ∀t, s ≥ 0, and 0 ≤ u ≤ t, Nt+s −Nt is independent of Nu;

(ii) ∀t ≥ 0 and for almost all ω, the mapping t → Nt(ω) has jumps of unit magnitude only, i.e.,

Nt(ω)− lims↑t Ns(ω) = 0 or 1 ∀t ≥ 0 and for almost all ω.

It is worth noting that Definitions 1 and 2 are not equivalent — the latter definition allows (unit)

jumps of positive probability in the sample-paths, in which case the rate function λ(t) appearing in

Definition 1 simply does not exist.

In what follows, we discuss existing methods to generate pseudorandom numbers from a non-

homogeneous Poisson process. By this we mean generating, on a digital computer, a realization

of event times {ti, i = 1, 2, . . .} from a Poisson process. The Poisson process is specified either

through its rate function λ(t) (when it exists), or more generally through its expectation function

Λ(t) ≡ E[Nt]. When the rate function λ(t) exists, Λ(t) =
∫ t

0 λ(y) dy.

1 Generating Nonhomogeneous Poisson Processes

As discussed in “Generating Homogeneous Poisson Processes,” homogeneous Poisson processes can

be generated very efficiently and in a fairly straightforward fashion. This is in some contrast with

nonhomogeneous Poisson processes, where generation methods tend to be much less straightforward.

We categorize the available methods for generating nonhomogeneous Poisson processes into three

broad groups: (i) inversion methods, (ii) order-statistics methods, and (ii) acceptence-rejection

methods. We discuss each of these in what follows.

1.1 Inversion

The earliest known inversion method seems to be the technique devised by Çinlar [3, pp. 96].

It is based on an interesting property of nonhomogeneous Poisson processes with a continuous

expectation function Λ(t).

Theorem 1 (Çinlar, 1975). Let Λ(t), t ≥ 0 be a positive-valued, continuous, nondecreasing func-

tion. Then the random variables T1, T2, . . . are event times corresponding to a nonhomogeneous

Poisson process with expectation function Λ(t) if and only if Λ(T1), Λ(T2), . . . are the event times

corresponding to a homogeneous Poisson process with rate one.

Theorem 1 provides a method to generate event times from a nonhomogeneous Poisson process

that is straightforward in principle. First generate event times from a homogenous Poisson process

with rate one, and then invert Λ(·) to obtain the event times of the required process.
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Algorithm 3 (Çinlar’s Method)

(0) Initialize s = 0.

(1) Generate u ∼ U(0, 1).

(2) Set s← s− log(u).

(3) Set t← inf{v : Λ(v) ≥ s}.

(4) Deliver t.

(5) Go to Step (1).

When the expectation function Λ(t) falls in a particular family of functions that facilitates

efficient analytic inversion in Step (3), Algorithm 3 tends to be very fast. This happens only

infrequently, however, and implementation often involves employing expensive numerical quadra-

ture for inversion [14] in Step (3). Adoption of Çinlar’s method should thus be considered ac-

cordingly. Code for a rudimentary version of Çinlar’s method can be found through the website

<https://filebox.vt.edu/users/pasupath/pasupath.htm>.

Theorem 1 assumes the continuity of the expectation function Λ(t). When Λ(t) has discontinu-

ities, Algorithm 3 can be adapted in a somewhat straightforward fashion. See, for instance Çinlar [3,

pp. 100] and Resnick [15] for different treatments.

Another inversion approach to generating nonhomogeneous Poisson processes stems from the

distribution of inter-event times. Specifically, consider the ith inter-event time Xi = Ti+1 − Ti

conditional on the first i event times T1 = t1, T2 = t2, . . . , Ti = ti. We can derive the cdf of Xi

(conditional on T1, T2, . . . , Ti) as follows.

Fti(x) = Pr{Xi ≤ x|Tj = tj , j = 1, 2, . . . , i}

= Pr{Nti+x −Nti ≥ 1|Tj = tj , j = 1, 2, . . . , i}

= Pr{Nti+x −Nti ≥ 1}

= 1− Pr{Nti+x −Nti = 0}

= 1− exp(−Λ(ti + x) + Λ(ti)), (1)

where the third equality is from the independent increments property of the Poisson process. (We

again note here that Equation (1) is not true in general if Λ(t) has jumps. It can, however, be shown

that (1) will still hold if the location of the jumps has a Poisson number of events with mean equal

to the value of the jump [15].)
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The cdf appearing in (1) provides a natural method of generating a nonhomogeneous Poisson

process — given the previous i event times, generate the (i + 1)th event time as the sum of the ith

event time and the ith inter-event time distributed according to Fti .

Algorithm 4

(0) Initialize t = 0.

(1) Generate x ∼ Ft given by (1).

(2) Set t← t + x.

(3) Deliver t.

(4) Go to Step (1).

Like Çinlar’s method, Algorithm 4 is direct, exact, and elegant. However, and again like Çinlar’s

method, Algorithm 4 is efficient only when the form of the expectation function Λ(t) renders easy

generation from Ft. Specifically, suppose the cdf-inverse method is used to generate from Ft in

Step (1). If the nonhomogeneous Poisson process is specified through the rate function λ(t), this

amounts to finding x satisfying
∫ t+x

t

λ(y) dy = − ln(1− u), where u ∼ U(0, 1). (2)

In general, the problem appearing in (2) can be solved only using numerical quadrature [14], and

can hence be computationally expensive. (Public domain software is available for this purpose [9].)

By contrast, if enough structure is present and known, efficient tailor-made techniques can be

devised to solve (2). One such example is the piecewise-linear rate function considered by Klein and

Roberts [8], and by Lee and Wilson [10], with success. Specifically, Klein and Roberts [8] assume

that λ(t) is a continuous, piecewise-linear function connecting the points (0, λ0), (t1, λ1), (t2, λ2), . . .

Therefore, generating from the distribution Ft in Step (1) of Algorithm 4 amounts to identifying

x such that − log(1 − u) = Λ(ti, x) where Λ(ti, x) ≡ Λ(ti + x) − Λ(ti). Through straightforward

integration of the piecewise-linear function, Klein and Roberts [8] come up with an expression for

the function Λ(ti, x) and the corresponding root x that satisfies − log(1− u) = Λ(ti, x).

One important point needs to be noted in implementing the inversion methods that we have

discussed. Depending on the nature of the expectation function Λ(t), the distribution of the time

until the next event may not be well defined. In particular, there may be a positive probability of

observing no events past a particular point in time, i.e., there exists δ > 0 such that Pr{Xi > x} > δ

for all x > 0. In such a case, Step (3) in Çinlar’s method may have no solution, and Ft in (1) may

not be a proper cdf.
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1.2 Order Statistics

Let us now state a general result on the distribution of the event times of a nonhomogeneous Poisson

process with expectation function Λ(t).

Theorem 2 (Cox and Lewis, 1962). Let T1, T2, . . . be random variables representing the event

times of a nonhomogeneous Poisson process with continuous expectation function Λ(t), and let Nt

represent the total number of events occurring before time t in the process. Then, conditional on

the number of events Nt0 = n, the event times T1, T2, . . . , Tn are distributed as order statistics from

a sample with distribution function F (t) = Λ(t)/Λ(t0) for t ∈ [0, t0].

Theorem 2 is a generalization of the result for homogeneous Poisson processes that was used in

Algorithm 2. It naturally gives rise to Algorithm 5 for generating random variates from a nonhono-

geneous Poisson process with expectation function Λ(t) in a fixed interval [0, t0].

Algorithm 5

(1) Generate n ∼ Poisson(Λ(t0)).

(2) Independently generate n random variates t′1, t
′
2, . . . , t

′
n from the cdf F (t) = Λ(t)/Λ(t0).

(3) Order t′1, t
′
2, . . . , t

′
n to obtain t1 = t′(1), t2 = t′(2), . . . , tn = t′(n).

(4) Deliver t1, t2, . . . , tn.

The efficiency of Algorithm 5 depends critically on Step (2), where n random variates are to be

generated from the cdf F (t). If λ(t) is assumed to be log-linear (λ(t) = λeα1t) as in [11], Algorithm

5 becomes very efficient since F (t) = (eα1t − 1)/(eα1t0 − 1), t ∈ [0, t0], α1 6= 0 is easily invertible.

Lewis and Shedler, in the same article [11], provide an even faster variant based on gap statistics.

This is extended to the case of second degree exponential polynomial rate functions (i.e., λ(t) =

exp(α0 + α1t + α2t
2)) in [13].

1.3 Acceptance-Rejection

Currently the most popular method for generating nonhomogenous Poisson processes is the “process

analogue” of acceptance-rejection called thinning [12]. The intuitive idea behind thinning is to first

find a constant rate function λu(t) = λu which dominates the desired rate function λ(t), next

generate from the implied homogeneous Poisson process with rate λu(t) = λu, and then reject an

appropriate fraction of the generated events so that the desired rate λ(t) is achieved. The following

theorem is the basis for this procedure.
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Theorem 3 (Lewis and Shedler, 1979). Consider a nonhomogeneous Poisson process with rate

function λu(t), t ≥ 0. Suppose that T ∗
1 , T ∗

2 , . . . , T ∗
n are random variables representing event times

from the nonhomogeneous Poisson process with rate function λu(t), and lying in the fixed interval

(0, t0]. Let λ(t) be a rate function such that 0 ≤ λ(t) ≤ λu(t) for all t ∈ [0, t0]. If the ith event time

T ∗
i is independently deleted with probability 1 − λ(t)/λu(t) for i = 1, 2, . . . , n, then the remaining

event times form a nonhomogeneous Poisson process with rate function λ(t) in the interval (0, t0].

A thinning algorithm for generating random variates from a nonhomogeneous Poisson process

follows immediately.

Algorithm 6

(0) Initialize t = 0.

(1) Generate u1 ∼ U(0, 1).

(2) Set t← t− 1
λu

log u1.

(3) Generate u2 ∼ U(0, 1) independent of u1.

(4) If u2 ≤ λ(t)/λu then deliver t.

(5) Goto Step (1).

In the above thinning algorithm, at any time t, a variate generated from the majorizing rate function

λu(t) = λu is accepted with probability λ(t)/λu. The efficiency thus depends critically on how

“snugly” λu approximates λ(t) — rate functions λ(t) that exhibit heavy fluctuations in time will

render the thinning algorithm inefficient. A proof that the thinning algorithm in fact produces the

desired stochastic process can be found in [12].

Ross [17] provides a straightforward modification to the thinning method with the objective of

mitigating excessive rejection. (Also see [2, pp. 179].) The intuitive idea behind this extension is

piecewise thinning — majorize the desired rate function using an appropriately chosen piecewise

constant function having k pieces, and then perform regular thinning within each piece. Specifically,

first divide the horizon of interest [0, t0] into k intervals [sj−1, sj), j = 1, 2, . . . , k, and choose con-

stants λj satisfying λj ≥ supt∈[sj−1,sj){λ(t)}. Random variates from a homogeneous Poisson process

are then generated in the interval [sj−1, sj), j = 1, 2, . . . , k by generating exponential random vari-

ates with mean 1/λj , j = 1, 2, . . . , k. The resulting event times are each accepted independently with

probability λ(t)/λj , j = 1, 2, . . . , k. Certain simple edge corrections are required when a generated

exponential inter-event time straddles two pieces of the majorizing function. A complete algorithm

listing can be found in [17, pp. 85].
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While piecewise thinning alleviates excessive rejection, it can still be inefficient depending on

how well the majoring step function approximates the rate function. Modern methods thus go one

step further than piecewise thinning and construct a majorizing function λu(t) that is both a good

approximation of the rate function and has a form that lends itself to easy generation. This results

in a method that is a hybrid of two methods — usually an inversion method such as Algorithm 4

used to generate random variates from the constructed majorizing function λu(t), and a thinning

method to reject a correct fraction of the generated random variates. We now state this in the form

of an algorithm.

Algorithm 7

(0) Initialize t = 0.

(1) Generate x ∼ Ft where Ft(x) is given in (1) with Λ(t) =
∫ t

0 λu(t) dt.

(2) Set t← t + x.

(3) Generate u ∼ U(0, 1) independent of x.

(4) If u ≤ λ(t + x)/λu(t + x) then deliver t.

(5) Goto Step (1).

Such a hybrid algorithm has been used with much success to generate a nonhomogeneous Poisson

process on a fixed interval [0, t0] in [10]. The majorizing function λu(t) used in [10] is a continuous

piecewise-linear function that is optimal in a certain precise sense.

2 Generating Two-Dimensional Poisson Processes

A counting process {N(t), t ≥ 0} is said to constitute a two-dimensional nonhomogeneous Poisson

process on C ⊆ IR2 with rate function λ(x, y) > 0 if

(i) The number of events in a region R ⊆ C is Poisson distributed with parameter Λ(R) =∫∫
R

λ(x, y) dx dy.

(ii) The number of events occurring in any finite set of nonoverlapping regions are mutually

independent.

(We do not go into details about the complete characterization of the nature of C or the subsets R for

which (i) and (ii) should be satisfied. See [15, pp. 303] for a more rigorous treatment.) The Poisson

process is said to be a homogeneous Poisson process if λ(x, y) in the above definition is constant on
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C, i.e., λ(x, y) = λ for (x, y) ∈ C [7]. For generation from a two-dimensional homogeneous Poisson

process, consult “Generation of Homogeneous Poisson Processes.”

For generating nonhomogeneous Poisson processes in a bounded region C, a simple first algo-

rithm is based on the idea that the location (X, Y ) of an event in C, conditional on the number of

events N = n that occur in C, is distributed over the region C according to the probability density

function

f(x, y) =
λ(x, y)∫∫

C
λ(x, y) dx dy

, (x, y) ∈ C. (3)

(See [15, Chapter 4] for more on this. Particularly, the above idea extends seamlessly even into

higher dimensions.) This, combined with the fact that the number of events N in C is Poisson

distributed with mean
∫∫

C
λ(x, y) dx dy, gives rise to a conceptually simple algorithm for generating

events.

Algorithm 8

(1) Generate n ∼ Poisson(
∫∫

C
λ(x, y) dx dy).

(2) If n = 0 then exit. Otherwise independently generate n events (xi, yi), i = 1, 2, . . . , n that are

distributed in C according to the density f(x, y) given in (3).

(3) Deliver (xi, yi), i = 1, 2, . . . , n.

Of course, the ease with which the above algorithm is implemented will depend on the nature of

the rate function λ(x, y). Particularly, it will depend on how easily λ(x, y) is integrated over C, and

whether f(x, y) lends itself to easy generation. A lot is known about generation from continuous

densities with arbitrary form — see [5] for more on this.

Another popular method for generating nonhomogeneous Poisson processes is the multidimen-

sional analogue of thinning, and stems from a theorem by Lewis and Shedler [12].

Theorem 4 (Lewis and Shedler, 1979). Let (Xi, Yi), i = 1, 2, . . . be the Cartesian coordinates of

a two-dimensional Poisson process on C ⊆ IR2 with rate function λ∗(x, y) ≥ 0. If the ith event

is independently deleted with probability 1 − λ(x, y)/λ∗(x, y) where 0 ≤ λ(x, y) ≤ λ∗(x, y) for all

(x, y) ∈ C, the resulting process is a Poisson process on C with rate function λ(x, y).

A basic thinning algorithm would thus involve identifying λu such that λu ≥ λ(x, y) for all

(x, y) ∈ C, generating random variates from a homogeneous Poisson process with rate λu (see

“Generation of Homogeneous Poisson Processes”), and then deleting events with probability 1 −

λ(x, y)/λu. As in one-dimensional thinning, such an algorithm would be very inefficient in contexts
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where the rate function λ(x, y) exhibits major fluctuations. Methods that are analogous to piecewise

thinning and the hybrid method for one-dimensional thinning, if devised, will potentially prove much

more efficient.

A more recent idea for generating nonhomogeneous Poisson processes is provided by Saltzman,

Drew, and Leemis [18], and is based on the idea of conditioning. (See also [15, Section 4.10]

for a deeper treatment of this idea.) Specifically, they note the following two facts about a two-

dimensional nonhomogeneous Poisson process with rate function λ(x, y) > 0 on C ⊂ IR2.

(i) If {(Xi, Yi)} are events corresponding to the two-dimensional process, then the abcissae {Xi}

correspond to a one-dimensional nonhomogeneous Poisson process with rate function λX(x) =∫
C(x) λ(x, y) dy, where C(x) = {y : (x, y) ∈ C}.

(ii) If (X, Y ) denotes the location of an event from the two-dimensional process, the conditional

random variable Y |X = x has the probability density function λ(x, y)/λX(x).

The above two facts give rise to a generation algorithm that first generates the abcissa of an event

and then generates its ordinate through the conditional density function provided in (ii). Like Al-

gorithm 8, the efficiency of the resulting algorithm depends on the tractability of the rate functions

λ(x, y) and λX(x). We summarize this as Algorithm 9 below.

Algorithm 9

(1) Initialize i = 0.

(2) Generate xi according to the one-dimensional nonhomogeneous Poisson process with rate

function λX(x).

(3) Generate yi according to the probability density function λ(xi, y)/λX(xi).

(4) Deliver (xi, yi).

(5) Set i = i + 1 and go to Step (2).
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