
Multi-objective Ranking and Selection: Optimal Sampling Laws and
Tractable Approximations via SCORE

Eric A. Applegate1, Guy Feldman2, Susan R. Hunter1, and Raghu Pasupathy2

1School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
2Department of Statistics, Purdue University, West Lafayette, IN 47907, USA

Abstract

Consider the context of selecting a set of Pareto-optimal systems from a finite set of systems
based on three or more stochastic objectives. We characterize the exact asymptotically opti-
mal sample allocation that maximizes the rate of decay of the probability of a misclassification
event, and we provide a multi-objective Sampling Criteria for Optimization using Rate Estima-
tors (SCORE) allocation for use when the number of non-Pareto systems is large relative to the
number of Pareto systems. The SCORE allocation has three salient features: (a) it simulta-
neously controls the probabilities of misclassification by exclusion and inclusion; (b) it exploits
phantom Pareto systems for computational efficiency, which we find using a dimension-sweep
algorithm; and (c) it models dependence between the objectives. The SCORE allocation is fast
and accurate for problems with three objectives or a small number of systems. For problems
with four or more objectives and a large number of systems, where modeling dependence has di-
minishing returns relative to computational speed, we propose independent SCORE (iSCORE).
Our numerical experience is promising: SCORE and iSCORE successfully solve MORS problems
involving several thousand systems in three and four objectives.

Key words: multi-objective, ranking and selection, simulation optimization

1 Introduction

We consider multi-objective ranking and selection (MORS), in which a decision-maker wishes to

select the set of “best” systems among a finite set of r systems whose expected performances can only

be observed with stochastic error. A system refers to one of the r decision variable configurations

under consideration. Each system’s performance is assessed on the basis of a d-dimensional vector of

objectives defined implicitly, for example, through a Monte Carlo simulation model that is capable

of generating unbiased estimates of the objective vector. The solution to the MORS problem is the

Pareto set, that is, the set of all non-dominated systems. A system is non-dominated if no other

system is at least as good on all objectives and strictly better on at least one objective.

MORS problems arise abundantly when designing stochastic systems. Diverse examples of appli-

cations include plant breeding [Hunter and McClosky, 2016], earthmoving operations [Zhang, 2008],

and supply chain management [Ding et al., 2006]; see Hunter et al. [2018] for additional application

areas. In fact, a widely held viewpoint is that a substantial fraction of optimization problems in

Preprint compiled Sunday 29th July, 2018 at 4:07pm. Corresponding author: susanhunter@purdue.edu.

2 APPLEGATE ET AL.

the “real world” involve more than one competing objective, and multi-objective optimization to

identify a Pareto set is a fruitful and disciplined way to handle such contexts [Eichfelder, 2008].

Despite their widespread occurrence, and in contrast to single-objective ranking and selection

(R&S) which has a long history of development [Fu and Henderson, 2017], MORS problems have

received relatively little attention in the literature to date (see Table 1 and §2). The MOCBA

framework [Lee et al., 2010] is the most well-known and, to our knowledge, one of only a few known

fixed-budget procedures (see §2.1) designed to estimate the entire Pareto set when the number of

objectives is three or greater. MOCBA is an insightful algorithm that performs well in a variety

of MORS problem instances; however, a number of important MORS questions remain unresolved,

leaving room for designing algorithms that improve on MOCBA.

Table 1: Key fixed-budget MORS procedures are classified by their contributions.

Dependence d = 2 Stochastic Objectives d ≥ 2 Stochastic Objectives

No Hunter and McClosky [2016];
M-MOBA† [Branke and Zhang, 2015,
Branke et al., 2016]

MOCBA† [Lee et al., 2010] and its variants
by Teng et al. [2010], Li et al. [2018];
Choi and Kim [2018]†

Yes Feldman and Hunter [2018] This work, and some versions of MOCBA
in Li et al. [2018]

† Requires a normality assumption on the random objective vectors.

1.1 Commentary on the Proposed Algorithm

To understand features of the proposed algorithm, let us first discuss the main challenge associated

with solving the MORS problem. Imagine a scenario in which r systems are to be classified as

Pareto or non-Pareto on d objectives, after expending a total of n simulation replications across

all systems. Each system is deemed Pareto or non-Pareto once the objectives corresponding to

each system have been estimated using the simulation budget assigned to it. And, since deeming

a system Pareto or non-Pareto is a straightforward task, virtually all of the difficulty in solving

the MORS problem lies in identifying how much of the simulation budget n should be allocated to

each system toward minimizing the probability of misclassifying a Pareto system as non-Pareto, or

vice versa. To define terminology, we say a misclassification (MC) event occurs if, after all of the

simulation budget n has been expended, the estimated Pareto set is not equal to the true Pareto

set. An MC event can happen in two ways: a truly Pareto system is estimated as non-Pareto, or a

truly non-Pareto system is estimated as Pareto. Like Hunter and McClosky [2016], we call these MC

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 3

events misclassification by exclusion (MCE) and misclassification by inclusion (MCI), respectively;

Lee et al. [2010] refer to these same events as Type II error and Type I error, respectively.

It is easy to construct simulation budget allocation schemes that ensure the MC probabilities

decay to zero as the simulation budget increases — since the number of systems r is finite, one

only needs to ensure that as n → ∞, each of the r systems is allocated a positive fraction of n.

For example, equally allocating the simulation budget across all systems trivially ensures the MC

probability decays to zero as n → ∞. However, such schemes are known to be naïve because the

resulting decay rate of the MC probability tends to be slow, a fact that is often reflected unam-

biguously during implementation. Thus, as we see it, the fundamental question in solving MORS

problems is that of deciding the simulation budget allocation across the r systems which maximizes

the MC probability decay rate. Identifying such allocations is a theoretically and computationally

challenging question, leading to sophisticated procedures like MOCBA and our procedure, multi-

objective Sampling Criteria for Optimization using Rate Estimators (SCORE). We now discuss the

salient aspects of multi-objective SCORE that allow it to resolve the theoretical question of optimal

allocation while keeping the resulting algorithm computationally efficient.

1. (Exact characterization of the MC probability decay rate.) We provide what appears to be the

first exact characterization of the MC probability decay rate for MORS problems with three

or more objectives; we call this characterization the brute force rate. Such characterization

has been elusive due to the difficulty of analyzing the MC event, which includes the possibility

of both MCE and MCI events. For example, faced with this challenge, (a) MOCBA assumes

independence of the objectives and heuristically chooses the probability of one of the two

events, MCE or MCI, as the sole criterion for allocating the remaining budget; and (b) Li

et al. [2018] provide bounds on the rate. We resolve the question of identifying the decay rate

expression while incorporating both MCE and MCI events and retaining dependence between

the objectives. The brute force rate forms the basis for our approximations, and enables us

to assess their quality for small problem instances.

2. (Phantom Pareto systems for approximating the brute force rate.) Computing the brute force

rate for problems with more than a few systems turns out to be an especially difficult task. To

facilitate such computation, leading to an implementable algorithm, we characterize phantom

Pareto systems for three or more objectives. Phantom Pareto systems are fictitious systems

4 APPLEGATE ET AL.

constructed by combining the objectives of strategically chosen Pareto systems. The phantom

Pareto systems enable us to approximate the brute force rate in a certain asymptotic regime;

we call the resulting rate the phantom rate.

3. (Identifying the phantom Pareto systems.) The phantom Pareto systems are integral to ap-

proximating the brute force rate as a function of the simulation budget allocation fractions

across systems. However, identifying the phantom Pareto systems for a given set of systems

is itself a non-trivial problem. We present an algorithm that identifies all phantom Pareto

systems efficiently in O(logd−1 p) computing time, where p is the number of Pareto systems.

4. (Approximation to the optimal budget allocation.) Identifying the simulation budget alloca-

tion across systems that maximizes the MC probability decay rate expression involves solving

a multistage optimization problem, a severe impediment to implementation on a large scale.

A series of strategic approximations to the original multistage optimization problem, including

the limiting SCORE regime, the phantom approximation to the brute force rate, and strategic

constraint reduction, resolves this issue and allows efficient solution within SCORE.

5. (Effect of dependent objectives.) SCORE models dependence between the objective estimates

within a system. The effect of modeling dependence reveals itself most clearly by comparing

the MC probability decay rate of an allocation that models dependence versus one that does

not. When there are three objectives or the number of systems is small, modeling dependence

requires little cost and provides moderate gains in efficiency. However, for large problems with

four or more objectives, the gains in efficiency diminish relative to the computational cost of

solving for the SCORE allocation. Thus we also propose the independent SCORE (iSCORE)

allocation for large problem instances in four or more objectives.

6. (Efficient computation.) Extensive numerical experimentation suggests SCORE’s stable and

efficient performance on a variety of MORS problems. For example, due mainly to the approx-

imations, SCORE is able to solve MORS problems having many thousands of systems within

seconds on a standard laptop computer, reflecting speeds that are appreciably faster than

MOCBA when the Pareto set is small relative to the total number of systems. We find that

the effect of the introduced approximations on the optimality gap of the resulting sampling

allocation is negligible in the vast majority of problem instances.

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 5

1.2 Organization

After preliminary topics, the paper is organized according to the elements listed in the previous

section. Our preliminary topics include notation and convention in §1.3, related R&S literature

beyond Table 1 in §2, and our problem statement in §3. Then, we characterize the brute force rate

and the optimal allocation in §4. We approximate the optimal allocation in the limiting SCORE

regime in §5, and define the phantom Pareto systems in §5.2. We define the phantom approximation

to the brute force rate in §6, and the SCORE framework appears in §7. We investigate computational

complexity in §8, describe a sequential algorithm for implementation in §9, and conduct numerical

experiments on the sequential algorithms in §10.

1.3 Notation and Convention

With few exceptions, constants are denoted by lower-case letters (a), random variables by capital

letters (G), sets by script capital letters (S), vectors by bold (g), random vectors by capital bold

(G), and operators by blackboard bold (P{·}). When comparing two d-dimensional vectors x =

(x1, . . . , xd) and y = (y1, . . . , yd), we use the notation x 5 y to signify that xk ≤ yk for all

k ∈ {1, . . . , d}, and we use x ≤ y to signify that x 5 y but x 6= y. (The notation for vector orderings

“≤” and “5” are standard in the multi-objective optimization literature; see, e.g., Ehrgott [2005],

Wiecek et al. [2016].) We let 0d×p and 1d×p denote a d-by-p matrices containing zeros and ones,

respectively. The symbol I{·} denotes the indicator function. Finally, although we broadly follow

the multi-objective optimization convention that the term “efficient” corresponds to the decision

space and “Pareto optimal” corresponds to the objective vector space [see, e.g., Ehrgott, 2005], in

R&S, the system indices may be arbitrarily assigned. Thus we work entirely in the objective vector

space, and we refer to systems with non-dominated objective vectors as Pareto systems.

2 Related R&S Literature

In what follows, we review related concepts and literature in three areas: (a) the notion of fixed-

budget versus fixed-precision in R&S procedures; (b) asymptotically optimal allocations within R&S

procedures; (c) other MORS procedures. Due to the infancy of MORS, most of the references in

our discussion of (a) and (b) are in the context of single-objective R&S. This, however, serves our

purposes of introducing the reader to the main issues underlying (a) and (b).

6 APPLEGATE ET AL.

2.1 Fixed Budget and Fixed Precision Procedures for R&S

In the single-objective context, R&S has a long history and many efficient procedures exist [see Kim

and Nelson, 2006, for an overview]. Broadly, single-objective R&S procedures consist of obtaining

one or more simulation replications from every system, constructing estimators of the expected

system performances, and using these estimators to declare one system as the estimated best.

Usually, R&S procedures provide some form of guarantee on the quality of the returned solution

or on the simulation efficiency of the procedure. Hunter and Nelson [2017] classify R&S methods

as fixed-precision procedures if their primary objective is to provide some form of probabilistic

guarantee on the quality of the returned solution. Fixed-precision procedures usually attempt to

expend as few simulation replications as possible while providing the probabilistic solution quality

guarantee upon termination, executing until a certain termination criterion is met and for which

the probabilistic guarantee holds. Hunter and Nelson [2017] classify R&S methods as fixed-budget

procedures if, given some total simulation budget to expend, the procedure expends the simulation

budget in a way that guarantees simulation efficiency. Fixed-budget procedures usually attempt

to maximize the probability of correctly selecting the best systems while expending only as many

simulation replications as the fixed simulation budget allows. For single-objective R&S, notable

procedures exist in both categories, including fixed-precision procedures NSGS [Nelson et al., 2001],

KN [Kim and Nelson, 2001], BIZ [Frazier, 2014], and GSP [Ni et al., 2017], and fixed-budget

procedures Optimal Computing Budget Allocation (OCBA) [Chen et al., 2000], Expected Value of

Information (EVI) [Chick et al., 2010], Knowledge Gradient (KG) [Frazier et al., 2008], and SCORE

[Pasupathy et al., 2015], some of which are related [Ryzhov, 2016].

2.2 Previous Work on Asymptotically Optimal Allocations

Asymptotically optimal allocations provide a theoretical basis for one class of fixed-budget pro-

cedures that includes OCBA and SCORE. For single-objective, unconstrained R&S, Glynn and

Juneja [2004] provide a large-deviations based asymptotically optimal allocation that maximizes

the false selection probability decay rate. The false selection probability is the probability that a

system other than the true best system will be estimated as best when the total simulation budget

is expended. Glynn and Juneja [2004] also show that, under a normality assumption and assuming

the allocation to the best system is much larger than the allocation to each suboptimal system, the

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 7

asymptotically optimal allocation corresponds to OCBA.

Pasupathy et al. [2015] provide insight into the types of problems for which allocating a much

larger proportion of the simulation budget to the best system than to each suboptimal system is

an optimal strategy. They show that fixing the objective value of the best system and sending

the total number of systems r to infinity under appropriate regularity conditions results in an

asymptotically optimal allocation to each suboptimal system that is Θ(1/r) and an asymptotically

optimal allocation to the best system that is Θ(1/
√
r). The allocations to the suboptimal systems

that result from this limiting regime are the SCORE allocations, which also correspond to OCBA

under a normality assumption. (While the primary focus of Pasupathy et al. [2015] is on single-

objective, stochastically constrained R&S, their results hold for unconstrained R&S.)

Building on this work, Feldman and Hunter [2018] demonstrate that for a fixed Pareto set

with exactly two objectives, as the total number of systems goes to infinity under a normality

assumption and appropriate regularity conditions — including that the non-Pareto systems are

added “evenly” with respect to the Pareto systems — the asymptotically optimal allocation to each

non-Pareto system is Θ(1/r), and the asymptotically optimal allocation to each Pareto system is

Θ(1/
√
r). Feldman and Hunter [2018] provide SCORE allocations for bi-objective R&S that account

for correlation between the objectives. They show that the bi-objective SCORE allocations are fast

and accurate for up to ten thousand systems. Feldman and Hunter [2018] provide the theoretical

background and proof-of-concept for our work on multi-objective SCORE.

Although we discuss the key papers that lead to our work above, a few other papers exist on this

topic. We categorize these papers by some of their differences in Table 2. In particular, we categorize

the papers by the number of stochastic objectives (d) and stochastic constraints (c) for which they

were designed, whether they account for dependence between the objectives and constraints, the

distributions for which they provide a characterization of the asymptotically optimal allocation, the

distributions for which they provide an implementation or example, and whether they contain an

asymptotically optimal allocation obtained through a limiting SCORE regime. Finally, while we are

aware of results in Glynn and Juneja [2011, 2015] regarding estimating rate functions, our numerical

experience has been positive when estimating only the parameters of an assumed normal family.

8 APPLEGATE ET AL.

Table 2: Some key papers on asymptotically optimal allocation are classified by their contributions.

Stochastic Depen- Dist’n Rate Pf. / SCORE limit,
Paper Obj. / Con. dence Implementationa r →∞a

Glynn and Juneja [2004] d = 1, c = 0 N/A G / N, Bernoulli No
Szechtman and Yücesan [2008] d = 0, c ≥ 1 No G / N, Bernoulli No
Hunter and Pasupathy [2013]b d = 1, c ≥ 1 No G / N No
Pasupathy et al. [2015]c d = 1, c ≥ 0 Yes G / N Yes for G

Hunter and McClosky [2016] d = 2, c = 0 No G / N, Chi-Squared No
Feldman and Hunter [2018]d d = 2, c = 0 Yes G / N Yes for N, G by C
Li et al. [2018] d ≥ 2, c = 0 Yes –e/ N, Bernoulli No
This workf d ≥ 2, c = 0 Yes G / N N by C, G by C
a G stands for General and light-tailed; N stands for Normal; C stands for Conjecture.
b Subsumes preliminary work in the WSC paper Hunter and Pasupathy [2010] and thesis Hunter [2011].
c Subsumes preliminary work in the WSC papers Hunter et al. [2011], Pujowidianto et al. [2012].
d Subsumes preliminary work in the WSC paper Hunter and Feldman [2015].
e Provides bounds on the rate of decay of P{MC}.
f Subsumes or replaces preliminary work in the WSC paper Feldman et al. [2015] and thesis Feldman [2017].

2.3 Other Work on MORS

Several other approaches to MORS exist, including fixed-precision procedures that identify the

entire Pareto set and methods that identify only a subset of the Pareto systems by requesting the

decision-maker to specify preferences in advance, e.g., through a utility function. Early work on

fixed-precision procedures that identify the entire Pareto set include Batur and Choobineh [2010],

Lee [2014], Wang and Wan [2017]. MORS procedures that identify a subset of the Pareto set, often

by requiring the decision-maker to specify a utility function in advance, include the fixed-budget

and fixed-precision procedures of Dudewicz and Taneja [1978, 1981], Butler et al. [2001], Frazier

and Kazachkov [2011], Merrick et al. [2015], Mattila and Virtanen [2015].

3 Problem Setting and Formulation

We provide a formal problem statement and assumptions required in the remainder of the paper.

3.1 Problem Statement

We write the MORS problem as

Problem M : Find argmins∈S g(s) := (g1(s), . . . , gd(s)) , (1)

where g(s) ∈ Rd is a vector representing the expected performance of system s on each of the d

objectives, S := {1, . . . , r} is a finite set of system indices, and D := {1, . . . , d} is a finite set of

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 9

objective indices. The minimum is taken with respect to the vector ordering ≤, where we say that

system s dominates system s′ and write g(s) ≤ g(s′) if and only if gk(s) ≤ gk(s
′) for all k ∈ D

and g(s) 6= g(s′). The solution to Problem M is the set of indices of the Pareto optimal systems,

P := {i ∈ S : @ system s ∈ S such that g(s) ≤ g(i)}.

For all systems s ∈ S, let Gm(s) := (G1m(s), . . . , Gdm(s)) be the performance vector of system s

on the mth simulation replication. Define the vector of sample means after observing n samples

from system s as G(s, n) = (G1(s, n), . . . , Gd(s, n)) := n−1
∑n

m=1Gm(s). Let αs be the proportion

of the simulation budget n allocated to system s ∈ S, and define Ĝ(s) := G(s, nαs) and Ĝk(s) :=

Gk(s, nαs) for all s ∈ S, k ∈ D. Using these estimators, after the budget n has been expended,

construct the estimated Pareto set P̂ := {i ∈ S : @ system s ∈ S such that Ĝ(s) ≤ Ĝ(i)}.

Ideally, at the end of sampling, P̂ = P. If P̂ 6= P, we say that a misclassification (MC) event

occurs. We seek a simulation budget allocation α = (α1, . . . , αr),
∑r

s=1 αs = 1 that maximizes the

rate of decay of the probability of an MC event as the simulation budget n increases, thus providing

an efficiency guarantee for solving Problem M .

3.2 Assumptions

First, we require that each Pareto system is distinguishable from every other system on each objec-

tive, which is a standard assumption in the asymptotically optimal allocation literature.

Assumption 1. There exists δ > 0 such that min{|gk(s)− gk(i)| : s ∈ S, i ∈ P, s 6= i, k ∈ D} > δ.

For brevity and simplicity in presenting our results, throughout the remainder of the paper, we

assume that for each system s ∈ S, the performance vectors Gm(s),m = 1, 2, . . . are independent

and identically distributed (i.i.d.) multivariate normal random variables. We further assume that all

systems are simulated independently of each other. Notice that all results in §4 hold more generally

under the standard assumptions for the Gärtner-Ellis Theorem [Dembo and Zeitouni, 1998]; see,

e.g., Feldman and Hunter [2018] for assumptions similar to those we require.

Assumption 2. For each system s ∈ S, Gm(s),m = 1, 2, . . . are i.i.d. MVN(g(s),Σ(s)) random

vectors, where Σ(s) is a positive definite covariance matrix with diagonal entries σ2
1(s), . . . , σ2

d(s) and

off-diagonal entries ρk1k2(s)σk1(s)σk2(s) in the (k1, k2) position, ρk1k2(s) ∈ (−1, 1) and k1, k2 ∈ D.

Further, the systems are simulated independently, thus {Gm(s) : s ∈ S,m = 1, 2, . . .} are mutually

independent.

10 APPLEGATE ET AL.

This assumption guides the model that we use for sampling, but does not preclude the use of

our methods in scenarios that violate these assumptions, such as when using common random

numbers. Our algorithms technically are suboptimal in such a case, but may still provide significant

improvement over naïve methods. The assumption of normality is widely used with success in

the R&S literature; some discussion of the violation of such assumptions appears in Hunter and

Pasupathy [2013] and Pasupathy et al. [2015].

Under Assumption 2, the probability measures governing G(s, n) and Gk(s, n) obey a large

deviations principle for all s ∈ S, k ∈ D. For all s ∈ S, let the large deviations rate function

corresponding to the random vector G(s, n) be Is(x) for x ∈ Rd, and let the large deviations rate

function corresponding to the random variable Gk(s, n) be Jsk(x) for x ∈ R. Under Assumption 2,

Is(x) = (1/2)(g(s)− x)ᵀΣ(s)−1(g(s)− x) and Jsk(x) = (gk(s)− x)2/(2σ2
k(s)) for all s ∈ S, k ∈ D.

4 An Exact Characterization of the Asymptotically Optimal Allocation

To obtain the MC probability decay rate, we formulate the MC event in terms of a brute-force

enumeration of all the ways an MC event can occur. The optimal allocation strategy follows from

optimizing the MC probability decay rate as a function of the simulation budget allocation α.

4.1 The “Brute-Force” Misclassification Probability Decay Rate

We begin by writing the MC event, MC := (P̂ 6= P), in a way that facilitates analysis. Recall that

there are two ways an MC event can occur: misclassification by exclusion (MCE), in which a truly

Pareto system is falsely excluded from P̂, and misclassification by inclusion (MCI), in which a truly

non-Pareto system is falsely included in P̂. Thus the MC event can be written as MC = MCE∪MCI.

Feldman [2017] shows that MC = MCEP∪MCI, where MCEP denotes the event that a truly Pareto

system is estimated as dominated by another Pareto system, MCEP := ∪i∈P ∪i′∈P Ĝ(i′) ≤ Ĝ(i), and

MCI := ∪j∈Pc ∩i∈P ∪k∈D Ĝk(j) ≤ Ĝk(i). Then assuming the limits exist, the P{MC} decay rate is

− limn→∞
1
n logP{MC} = min

(
− limn→∞

1
n logP{MCE},− limn→∞

1
n logP{MCI}

)
. We obtain an

expression for the P{MC} decay rate in parts, where the easiest part to obtain is the decay rate for

P{MCE}. Thus we obtain an expression for this rate first. Then, we spend the remainder of this

section obtaining an expression for the P{MCI} decay rate.

Using an analysis similar to Glynn and Juneja [2004], Feldman [2017] shows that the P{MCE}

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 11

decay rate equals the minimum among the pairwise decay rates of the probability that one Pareto

system dominates another Pareto system [see also Li, 2012, Li et al., 2018]. That is, define the

pairwise decay rates of the probability that Pareto system i′ dominates Pareto system i as

RMCE
i′i (αi′ , αi) := inf

xi′≤xi
αiIi(xi) + αi′Ii′(xi′) for all i, i′ ∈ P, i 6= i′.

Then the P{MCE} decay rate is − limn→∞
1
n logP{MCE} = mini∈P mini′∈P, i′ 6=iR

MCE
i′i (αi′ , αi).

Now, consider the P{MCI} decay rate. To be falsely included in the estimated Pareto set, a

non-Pareto system j must be estimated as better than each Pareto system on some objective. This

event contains dependence, which makes it more difficult to analyze. In the context of exactly two

objectives, Hunter and McClosky [2016], Feldman and Hunter [2018] overcome this difficulty by re-

formulating the MCI event as an MCE-like event involving phantom Pareto systems. Unfortunately,

the re-formulation that works with two objectives does not work when there are three or more

objectives, for reasons we briefly discuss in §6. We take a different approach to analyzing the

P{MCI} decay rate, which we call the brute force formulation. This formulation, which involves a

brute force enumeration of all possible ways that a non-Pareto system j can “beat” every Pareto

system on at least one objective, enables an easier analysis of the rate of decay of P{MCI}.

To specify the brute force formulation, without loss of generality, let the system labels {1, . . . , p}

correspond to the Pareto systems. Since we have at least one Pareto system, system 1 is Pareto, and

P = {1, . . . , p}. Recall that for any non-Pareto system to be falsely included in the Pareto set, it

must beat each Pareto system j ∈ P on some objective. Specifically, for such a false inclusion event

to happen, the non-Pareto system needs to beat the Pareto system 1 along some objective κ1 ∈

{1, 2, . . . , d}, beat the Pareto system 2 along some objective κ2 ∈ {1, 2, . . . , d}, and so on, beating the

Pareto system p along along some objective κp ∈ {1, 2, . . . , d}. The set K = {κ = (κ1, κ2, . . . , κp) ∈

{1, 2, . . . , d}p} thus represents “all possible ways” for a non-Pareto system to be falsely included in

the Pareto set. Now define the brute force MCI event as MCIbf := ∪j∈Pc∪κ∈K∩i∈P Ĝκi(j) ≤ Ĝκi(i).

By the definition of K, the following proposition holds.

Proposition 1. MCI = MCIbf.

Since the MCIbf event reformulates MCI as a union over all non-Pareto systems and all objective

index vectors, the P{MCI} decay rate can be expressed as the minimum decay rate of the probabil-

12 APPLEGATE ET AL.

ities that a non-Pareto system j is falsely included via the objectives specified by κ. The following

lemma states the P{MCI} decay rate using the brute force MCI event; for brevity, define

RMCI
jκ (αj ,αP) := inf

xjκi≤xiκi∀i∈P
αjIj(xj) +

∑
i∈P

αiJiκi(xiκi),

where αP := (α1, . . . , αp) is the vector of simulation budget allocations for the Pareto systems. A

complete proof appears in Feldman [2017]; we provide a proof sketch.

Lemma 1. The P{MCI} decay rate is − lim 1
n logP{MCI} = minj∈P minκ∈KR

MCI
jκ (αj ,αP).

Proof sketch. Using the brute force formulation, if the limits exist, we have that the P{MCI}

decay rate is − limn→∞
1
n logP{MCI} = minj∈P minκ∈K

(
− limn→∞

1
n logP{MCIbf(j,κ)}

)
, where

MCIbf(j,κ) := ∩i∈P Ĝκi(j) ≤ Ĝκi(i). To derive the rate of decay of P{MCIbf(j,κ)}, we consider

the random variables involved in the expression MCIbf(j,κ), which are Ĝ(j) and Ĝκ1(1), . . . , Ĝκp(p).

Since the Pareto systems are sampled independently, the random variables Ĝκ1(1), . . . , Ĝκp(p) are

mutually independent, and each of these random variables is independent of Ĝ(j). Thus the rate

functions corresponding to these random variables add up in the expression for RMCI
jκ (αj ,αP).

Combining the decay rates for P{MCE} and P{MCI}, we present this section’s main theorem.

Theorem 1. The P{MC} decay rate, which we call the brute force rate, is

zbf(α) := − lim
n→∞

1

n
logP{MC} = min

(
min
i∈P

min
i′∈P,i 6=i′

RMCE
i′i (αi′ , αi),min

j∈Pc
min
κ∈K

RMCI
jκ (αj ,αP)

)
.

Theorem 1 states that the overall P{MC} decay rate is found by considering the decay rates

of the probabilities of the most likely events among (a) the pairwise false exclusion events between

Pareto systems, and (b) all possible ways a non-Pareto system can be falsely included in the Pareto

set by being estimated as better than every Pareto system on at least one objective.

4.2 The Optimal Allocation Strategy

Maximizing the P{MC} decay rate in Theorem 1 involves solving the following Problem Q, having

solution α∗:

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 13

Problem Q : maximize zbf s.t.

RMCE
i′i (αi′ , αi) ≥ zbf for all i, i′ ∈ P such that i 6= i′,

RMCI
jκ (αj ,αP) ≥ zbf for all j ∈ Pc,κ ∈ K,∑r

s=1 αs = 1, αs ≥ 0 for all s ∈ S.

As in previous work on asymptotically optimal allocations, Problem Q is a concave maximization

problem in the decision variable α [e.g., Glynn and Juneja, 2004, Hunter and Pasupathy, 2013,

Pasupathy et al., 2015, Feldman and Hunter, 2018]. However, solving Problem Q is especially

computationally burdensome. To compute the values of the constraints corresponding to controlling

the P{MCI} decay rate, we must calculate |Pc|dp rates corresponding to the number of non-Pareto

systems times the total number of κ vectors.

5 Approximating the Optimal Allocation in the Limiting SCORE Regime

The total number of rates to compute when solving Problem Q becomes prohibitively large relatively

fast: for d = 3 dimensions and r = 30 total systems, p = 10 of which are Pareto systems, we must

compute over one million rates. Considering this computational complexity, we provide heuristics

that approximate the solution to Problem Q and require far less computational resources. Inspired

by the SCORE family of allocations [Pasupathy et al., 2015, Feldman and Hunter, 2018], in this

section, we consider an approximately optimal allocation for MORS problems with three or more

objectives and many non-Pareto systems. While the bi-objective SCORE allocations provided by

Feldman and Hunter [2018] are rigorously derived as a limiting solution to Problem Q in which the

number of sub-optimal systems tend to infinity, for simplicity, we instead assume the existence of a

limiting SCORE regime like the one in Feldman and Hunter [2018]. We discuss the conditions under

which such a regime is likely to exist and the limiting optimal allocations that result. Then, we

simplify the limiting optimal allocations by showing that the brute force rate can be approximated

by a formulation involving phantom Pareto systems.

5.1 Approximating the Allocation to the Non-Pareto Systems

In this section, we simplify finding the optimal allocation as the solution to Problem Q by pre-

determining the relative allocations between the non-Pareto systems. Since the constraints that

correspond to controlling the rate of decay of P{MCE} in Problem Q do not involve the non-Pareto

14 APPLEGATE ET AL.

systems, we relax Problem Q to consider only constraints that correspond to controlling the P{MCI}

decay rate. That is, we instead consider

Problem Q̃ : maximize z̃ s.t.

RMCI
jκ (α̃j , α̃P) ≥ z̃ for all j ∈ Pc,κ ∈ K,∑r

s=1 α̃s = 1, α̃s ≥ 0 for all s ∈ S.

Under Assumption 2, we write the rate RMCI
jκ (αj ,αP) as the solution to

Problem RMCI
jκ : minimize

αj
2

[
g(j)−xj

gP(κ)−xκ

]ᵀ [Σ(j)−1 0d×p
0p×d ΣP(αj ,αP)−1

] [
g(j)−xj

gP(κ)−xκ

]
s.t. [A(κ) Ip×p]

[
g(j)−xj

gP(κ)−xκ

]
≤ [gP(κ)−gj(κ)] ,

which is a quadratic program with linear constraints in the decision variables xj and xκ, and the

notation is described as follows: gP(κ) := (gκ1(1), . . . , gκp(p)) is a p-dimensional vector of Pareto

system objective values; xκ := (x1κ1 , . . . , xpκp) is a p-dimensional vector of decision variables;

Σ(j) is the covariance matrix from Assumption 2; ΣP(αj ,αP) is a diagonal matrix with entries

(αj/α1)σ2
κ1(1), . . . , (αj/αp)σ

2
κp(p); A(κ) is a p-by-d matrix in which the (i, k)th entry is −I{κi=k};

Ip×p is a p×p identity matrix; and gj(κ) := (gκ1(j), . . . , gκp(j)) is a p-dimensional vector containing

the objective values of system j on the objectives specified by κ. In the context of Problem Q̃, the

solution to Problem RMCI
jκ is a function of α̃. We denote the solution as (x∗j (α̃j , α̃P),x∗κ(α̃j , α̃P)).

We now make the following assumption on the existence of a regime in which the optimal

allocation that results from solving Problem Q̃, which we call α̃∗ = (α̃∗1, . . . , α̃
∗
r), is such that

α̃∗j/α̃
∗
i → 0 in ΣP(αj ,αP) for all non-Pareto systems j ∈ Pc and Pareto systems i ∈ P as the

number of non-Pareto systems |Pc| → ∞. Further, this regime sends x∗κ(α̃∗j , α̃
∗
P) → gP(κ) in all

Problems RMCI
jκ , thus implying that the Pareto systems receive so many samples at optimality that,

relative to the non-Pareto systems, their objective values appear “fixed.”

Assumption 3. There exists a regime in which, by holding the Pareto systems fixed and adding

non-Pareto systems so that |Pc| → ∞ according to certain regularity conditions (see Feldman and

Hunter [2018] for the regularity conditions in the bi-objective case), we have α̃∗j/α̃
∗
i → 0 for all

j ∈ Pc, i ∈ P in such a way that α̃∗j = Θ(1/|Pc|) for all j ∈ Pc, α̃∗i = Θ(1/
√
|Pc|) for all i ∈ P, and

lim|Pc|→∞Rjκ(α̃∗j , α̃
∗
P)/α̃∗j = infxjκi≤gκi (i) ∀i∈P Ij(xj) for all j ∈ Pc,κ ∈ K.

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 15

This regime is likely to hold when non-Pareto systems are added “evenly” behind the existing

Pareto systems, subject to a uniform upper bound on their true objective vector values. For readers

interested in the regularity conditions and detailed mathematics surrounding such a regime, we

suggest reading the bi-objective case presented by Feldman and Hunter [2018]. We re-emphasize that

assuming this regime is useful for designing allocation polices that are close to optimal. Practically

speaking, our allocation policy should work well for a variety of problems, which we explore in the

numerical section.

Using the regime in Assumption 3, for each non-Pareto system j ∈ Pc, set the score equal to

Sj := minκ∈K
(

infxjκi≤gκi (i) ∀i∈P Ij(xj)
)
. Theorem 2 below provides the limiting relative optimal

allocations between the non-Pareto systems. We simplify the score expressions in the next section.

Theorem 2. Under Assumption 3, for all non-Pareto systems j, j′ ∈ Pc,

α̃∗j′

α̃∗j
=

Sj
Sj′

=
minκ∈K infxjκi≤gκi (i) ∀i∈P Ij(xj)

minκ∈K infxj′κi≤gκi (i) ∀i∈P
Ij′(xj′)

.

5.2 The Phantom Pareto System Simplification

The allocations in Theorem 2 still require the brute force computation of all the ways a non-Pareto

system j can be falsely included in the Pareto set. In this section, we simplify the score calculation

by removing unnecessary κ vectors. In the end, we will be left with a much more manageable

calculation: instead of taking the minimum score over all of the κ vectors, we take the minimum

score over all of the phantom Pareto systems. Phantom Pareto systems were introduced in Hunter

and McClosky [2016] in the context of bi-objective R&S problems, where they are easy to identify.

In three or more objectives, the phantom Pareto systems are harder to identify, but as we show

below, they may be found by removing the redundant κ vectors.

To begin, we require additional notation. First, notice that we have not written the constraints

of the infimum in the score calculation using vectors since xj is a d-dimensional vector, while

gP(κ) := (gκ1(1), . . . , gκp(p)) is a p-dimensional vector of Pareto system objective values specified

by the objectives in κ ∈ K. Using new notation, we can write these constraints with vectors, as

follows. Define the kth element of the d-dimensional vector

16 APPLEGATE ET AL.

gbf
k (κ) :=

 min{i∈P: κi=k} gk(i) if k ∈ {k ∈ D : ∃ i ∈ P such that κi = k}

∞ otherwise.

This notation essentially goes objective-by-objective and specifies the minimum values that the

decision vector xj must not exceed in the infimum in the score calculation. Then by construction,

the following Lemma 2 holds; we characterize redundant κ vectors in Lemma 3.

Lemma 2. The score Sj(κ) = infxj≤gbf
d (κ) Ij(xj) for all j ∈ Pc,κ ∈ K.

Lemma 3. If κ,κ′ ∈ K are such that gbf
d (κ′) ≤ gbf

d (κ), then Sj(κ) ≤ Sj(κ′).

Proof. Suppose κ,κ′ ∈ K are two vectors of objective indices such that gbf
d (κ′) ≤ gbf

d (κ). Let

X′ := {x′ : x′ 5 gbf
d (κ′)} and X := {x : x 5 gbf

d (κ)}. Then X′ ⊆ X. Since g(j) /∈ X, using Lemma 2,

Sj(κ) = infxj≤gbf
d (κ) Ij(xj) ≤ infxj≤gbf

d (κ′) Ij(xj) = Sj(κ′).

Figure 1: For d = 3, black circles
represent Paretos and white circles
represent phantom Paretos. Arrows
imply the phantoms are located at
infinity in that direction. (Figure
inspired by Lacour et al. [2017].)

Now we define a minimal set of d-dimensional brute force

points in the objective space as Gph := {gbf
d (κ) : κ ∈ K, @ κ′ ∈

K such that gbf
d (κ) ≤ gbf

d (κ′)}. That is, the set Gph keeps only

the points gbf
d (κ),κ ∈ K that do not dominate any other points

gbf
d (κ′),κ′ ∈ K. The set Gph defines the phantom Pareto systems

in d dimensions. We let the points in Gph be denoted as gph(`) =

(gph
1 (`), . . . , gph

d (`)) := (g1(i1(`)), . . . , gd(id(`))), where ik(`), k ∈

D is the index of the Pareto system that contributes the kth

objective value to the phantom Pareto system `, and the letter `

is an index reserved for the phantom Pareto systems. The set Pph denotes the indices of the phantom

Pareto systems, so that ` ∈ Pph. An illustration containing phantom Pareto systems appears in

Figure 1. Using the phantom Pareto systems, the simplified score can be calculated without brute

force enumeration, as in the following Theorem 3.

Theorem 3. Under Assumption 3, for all non-Pareto systems j, j′ ∈ Pc,

α̃∗j′

α̃∗j
=

Sj
Sj′

=
min`∈Pph infxj≤gph(`) Ij(xj)

min`∈Pph infxj′≤gph(`) Ij′(xj′)
.

For notational simplicity, define Sj(`) := infxj≤gph(`) Ij(xj) for all j ∈ Pc, ` ∈ Pph. We have only

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 17

specified simplified calculations for the relative allocations between the non-Pareto systems; the

allocations to the Pareto systems are determined heuristically in §7.

To calculate the scores, we must find the locations of the phantom Pareto systems. The problem

of finding the phantom Pareto systems is related to Klee’s measure problem for grounded boxes [see,

e.g., Chan, 2013, Yildiz and Suri, 2012], and more specifically, to the problem of calculating the

hypervolume indicator, which is a common performance metric in the deterministic multi-objective

optimization literature [Lacour et al., 2017]. We provide an efficient algorithm for locating the

phantom Pareto systems in the Online Supplement. Our algorithm is similar to the procedure

described in Kaplan et al. [2008]. Importantly, Kaplan et al. [2008] prove that the number of

phantom Pareto systems associated with a set of p Pareto systems in d-dimensional Euclidean

space is O(pbd/2c); the query and storage/pre-processing complexities of their procedure, identical

to our algorithm, are shown to be O(logd−1 p) and O(pbd/2c logd−1 p), respectively.

6 The Phantom Rate: An Approximation to the Brute Force Rate

Recall that our original expression for the rate of decay of P{MCI} required the brute force enu-

meration of all possible ways a non-Pareto system can be falsely included in the Pareto set. Now

we consider a simplified and approximate overall rate of decay of P{MCI} defined by the phan-

tom Pareto systems instead of the brute force enumeration vector κ. To specify this rate, let

P(`) = {ik(`) ∈ P : ∃k 3 gk(i) ∈ {gph
1 (`), . . . , gph

d (`)}} denote the indices of all the Pareto sys-

tems ik(`) ∈ P that contribute objective function value k to phantom Pareto system ` ∈ Pph.

Further, define the d-dimensional vector of variables xph
` = (xph

`1 , . . . , x
ph
`d). Then for each j ∈ Pc and

` ∈ Pph, define the approximate rate of decay of P{MCI} using the phantom Pareto systems as

Rph
j` (αj ,αP(`)) := inf

xj≤xph
`

αjIj(xj) +
∑
k∈D

αik(`)Jik(`)k(x
ph
`k), (2)

where αP(`) is the vector of proportional allocations for the Pareto systems in P(`). Using this

approximation, we approximate the P{MC} decay rate in Theorem 1 as the phantom rate

zph(α) := min
(

min
i∈P

min
i′∈P,i 6=i′

RMCE
i′i (αi′ , αi),min

j∈Pc
min
`∈Pph

Rph
j` (αj ,αP(`))

)
≈ − lim

n→∞

1

n
logP{MC}. (3)

When there are two objectives, Feldman and Hunter [2018] prove that the rate in equation (3) is

equal to the P{MC} decay rate. When there are three or more objectives, the rate in equation (3)

18 APPLEGATE ET AL.

is not necessarily equal to the P{MC} decay rate, as described in the following example.

Consider Problem N , which we define as a version of Problem M with two Pareto systems at

g(1) = (2, 2.5, 5) and g(2) = (5, 3, 2), and one non-Pareto system at g(3) = (6, 5.3, 8), as shown in

Figure 2. Each system’s covariance matrix is the identity matrix, and all rates are calculated under

equal allocation. The rates RMCE
12 (1/3, 1/3) = 0.7708, and RMCE

21 (1/3, 1/3) = 0.7500. The pairwise

brute force and phantom P{MCI} rates are reported in Table 3. In this example, the overall brute

force rate is zbf = 0.7367, while the overall phantom rate is zph = 0.6533.

This discrepancy in rates occurs because in three or more dimensions, the phantom rate zph

does not account for the ordering of the Pareto systems in the absence of an MCE event. The

minimum in the brute force rate occurs at κ = (2, 1), which corresponds to non-Pareto system 3

being estimated as better than Pareto system 1 on objective 2 and better than Pareto system 2 on

objective 1. Since the Pareto systems have similar values on objective 2, if they were to “switch

places” on this objective, as shown in Figure 3, the estimated phantom Pareto system Ĝph(4) would

not correspond to the location of gph(4) from Figure 2. The non-Pareto system could be falsely

included in the Pareto set if it were estimated as dominating Ĝph(4). The brute force rate accounts

for this possibility, while the phantom rate does not — the minimum in the phantom rate results from

the possibility that the non-Pareto system is falsely estimated as dominating gph(5) = (∞, 2.5,∞),

without considering the Pareto ordering on objective 2. Now, notice that this phenomenon does

Figure 2: The figure shows the objective vector val-
ues for the systems in Problem N . We omit arrows
from the phantoms with coordinates at infinity.

Figure 3: The figure shows estimated values for the
Pareto systems in Problem N in which Pareto sys-
tems 1 and 2 have “switched places” on objective 2.

Table 3: The table reports the pairwise rates for Problem N under equal allocation, to four decimal places.

κ vectors for RMCI
3κ (1/3,1/3) ` values for Rph

3` (1/3,1/3)
(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 1 2 3 4 5

1.3333 1.7422 4.3333 0.7367 0.7433 3.6533 0.8333 1.1908 3.0000 1.3333 0.8333 3.0000 1.1908 0.6533

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 19

not occur in any two-dimensional projections of this problem. Considering only objectives 2 and 3,

if the Pareto systems switch places on objective 2, one dominates the other. Thus the MCI event

probability in which the Pareto systems switch places on objective 2 is bounded below by the MCE

event probability. Considering only objectives 1 and 2, system 2 is dominated by system 1.

Despite the potential discrepancies between the rates, the approximation in equation (3) is likely

to be good under the limiting score regime, when the number of non-Pareto systems is large relative

to the number of Pareto systems. This regime provides so many samples to the Pareto systems that

they appear fixed relative to the non-Pareto systems. Thus the phantom Pareto systems also appear

fixed, and events in which the Pareto systems are estimated “out of order” are highly unlikely.

Using the approximate rate of decay of P{MC} in equation (3), we can formulate a new version

of Problem Q as Problem Qph, having solution αph:

Problem Qph : maximize zph s.t.

RMCE
i′i (αi′ , αi) ≥ zph for all i, i′ ∈ P such that i 6= i′,

Rph
j` (αj ,αP(`)) ≥ zph for all j ∈ Pc, ` ∈ Pph,∑r

s=1 αs = 1, αs ≥ 0 for all s ∈ S.

Since calculating the truly optimal allocation via Problem Q is often difficult, in the numerical

sections (§8 and §10), we often approximate the rate of decay of P{MC} using equation (3) and

approximate the asymptotically optimal allocation by solving Problem Qph.

7 The SCORE Allocation Framework

We are now ready to present the SCORE allocation framework. In this framework, we calculate the

relative allocations to the non-Pareto systems using the scores in Theorem 3. We also calculate the

rate of decay of P{MCI} using the phantom approximation in equation (2). Then, we approximate

Problem Qph by strategically dropping constraints to reduce the computational complexity. Finally,

we formulate the iSCORE allocation for large problems with four or more objectives.

7.1 The SCORE Allocation for Three Objectives or Small Problems

To begin, first, we implement the relative allocations to the non-Pareto systems specified by the

scores in Theorem 3. For all non-Pareto systems j ∈ Pc, define λSj := S−1
j /

∑
j′∈Pc S

−1
j′ , and let

20 APPLEGATE ET AL.

αj = λSj (1 −
∑p

i=1 αi) be the allocation to non-Pareto system j as a function of the allocation to

the Pareto systems. Everywhere an αj appears in Problem Qph, we substitute this allocation.

To dramatically reduce the number of constraints in Problem Qph, first, we strategically drop

constraints corresponding to P{MCI}. To keep only the most relevant constraints, for each phan-

tom Pareto system, we create a special set of non-Pareto systems, J∗(`), that are most likely

to falsely exclude phantom `. To create this set, first, for each phantom Pareto system, notice

that there are at most d Pareto systems that contribute objective values to the phantom. Thus

for each phantom Pareto system ` ∈ Pph and each Pareto system i ∈ P(`) that contributes ob-

jective value k∗(i) to phantom Pareto system `, calculate j∗i (`) = argminj∈Pc
{
Sj(`) : Sj(`) 6=

inf
xjk≤gph

k (`) ∀k 6=k∗(i)
(
infxjk∗(i) Ij(xj)

)}
as the “closest” non-Pareto system that competes with Pareto

system i via phantom Pareto system `. Then J∗(`) = ∪i∈P(`){j∗i (`)} is the set of up to d “closest”

non-Pareto systems to phantom Pareto system `; we keep only constraints corresponding to con-

trolling the P{MCI} decay rate involving these systems.

For further computational speed, we strategically drop constraints corresponding to controlling

the P{MCE} decay rate as well. To see which Pareto system pairs have the highest probabilities

of creating MCE events, we define a score for each Pareto system. For all Pareto systems i ∈ P,

define the MCE score as Ti := mini′∈P, i 6=i′ infxi≤g(i′) Ii(xi), and, for notational convenience, define

Ti(i′) := infxi≤g(i′) Ii(xi) for all i ∈ P, i′ ∈ P, i 6= i′. Now we select constraints to keep by creating

a special set of Pareto systems that are at risk of excluding Pareto system i, M∗(i) = M1(i) ∪

M2(i) ∪M3(i), where given a Pareto system i ∈ P, each set is defined as follows. First, to define

M1(i), just as we did for the non-Pareto systems above, we wish to retain constraints for up to d

of the “closest” Pareto systems, while ensuring we retain at least one constraint corresponding to

a Pareto system i′ competing with Pareto system i on each objective k. Then for each objective

k ∈ {1, . . . , d}, define i′∗k(i) := argmini′∈P
{
Ti′(i) : Ti′(i) 6= infxi′k′≤gk′ (i) ∀k′ 6=k

(
infxi′k Ii′(xi′)

)}
as

the “closest” Pareto system that competes with Pareto system i on objective k, and let M1(i) :=

∪k∈{1,...,d}{i′
∗
k(i)} be the set of up to d “closest” Pareto systems to Pareto system i. Since the scores

in this context may not accurately reflect the true P{MCE} decay rate and Ti′(i) 6= Ti(i′) for Pareto

systems i, i′ ∈ P, we retain symmetric constraints as well. That is, for all i ∈ P, we let M2(i) :=

{i′ ∈ P : i ∈ M1(i′), i 6= i′}. Finally, to account for “clusters” of Pareto systems that may influence

allocations, we include constraints corresponding to any Pareto systems i′ whose scores are less than

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 21

the 25th percentile p25 among the set of Pareto-with-Pareto MCE scores {Ti(i′) : i, i′ ∈ P, i 6= i′}.

Thus we define M3(i) := {i′ ∈ P : Ti(i′) < p25}. Recall that a small score implies the systems are

“close,” so loosely speaking, we ensure they receive adequate samples by retaining these constraints.

Our SCORE allocation framework results from solving

Problem QS : maximize z s.t.

RMCE
i′i (αi′ , αi) ≥ z for all i ∈ P, i′ ∈M∗(i)

Rph
j∗`(λ

S
j∗(1−

∑p
i=1 αi),αp) ≥ z for all ` ∈ Pph, j∗ ∈ J∗(`),∑p

i=1 αi ≤ 1, αi ≥ 0 for all i ∈ P,

and setting αj = λSj (1−
∑p

i=1 αi) for all j ∈ Pc. When there are three objectives or few systems, our

experience with the SCORE allocation framework indicates that modeling dependence between the

objectives has a mild implementation cost and also may yield mild benefits in terms of the P{MC}

decay rate. Thus we tend to recommend modeling the dependence in these cases.

7.2 The iSCORE Allocation for Four Objectives and Large Problems

For large problems with four or more objectives, modeling the dependence between the objectives

begins to incur some computational cost and reduced benefits in terms of the P{MC} decay rate.

Thus in this section, we outline a further simplification of the SCORE framework that we call the

independent SCORE (iSCORE) framework, which models the objectives as if they were independent.

Our computational experience is that this framework is much faster to calculate — we must solve

only one convex optimization problem and no quadratic programs under our normality assumption.

To approximate the rates in Problem QS using an independence assumption, first, notice that

the rate of decay of P{MCE} can be approximated as follows:

RMCE
i′i (αi′ , αi) = inf

xi′≤xi
αiIi(xi) + αi′Ii′(xi′) ≈ inf

xi′≤xi

∑
k∈D

αiJik(xik) + αi′Ji′k(xi′k)

≥
∑
k∈D

inf
xi′k≤xik

αiJik(xik) + αi′Ji′k(xi′k) =
∑
k∈D

(
(gk(i)−gk(i′))2I{gk(i′)>gk(i)}

2(σ2
k(i)/αi+σ2

k(i′)/αi′)

)
,

where the last step follows by Glynn and Juneja [2004] under our normality assumption. Similar

steps can be used to approximate the rate of decay of P{MCI}. Thus we approximate the rates of

22 APPLEGATE ET AL.

decay of the probabilities of MCE and MCI, respectively, as

LMCE
i′i (αi′ , αi) :=

∑
k∈D

(
(gk(i)−gk(i′))2I{gk(i′)>gk(i)}

2(σ2
k(i)/αi+σ2

k(i′)/αi′)

)
for all i, i′ ∈ P, i 6= i′,

LMCI
j` (αj ,αP(`)) :=

∑
k∈D

(
(gk(j)−gph

k (`))2I{gk(j)>gph
k (`)}

2(σ2
k(j)/αj+σ2

k(ik(`))/αik(`))

)
for all j ∈ Pc, ` ∈ Pph;

recall that ik(`) is the index of the Pareto system that contributes the kth objective function value

to phantom Pareto system `. We also approximate the score calculations using independence. Let

Sindep
j (`) :=

∑
k∈D

(
(gk(j)−gph

k (`))2I{gk(j)>gph
k (`)}

2σ2
k(j)

)
, Tindep

i (i′) :=
∑
k∈D

(
(gk(i)−gk(i′))2I{gk(i)>gk(i′)}

2σ2
k(i)

)
,

and Sindep
j := min`∈Pph Sindep

j (`). We form reduced constraint sets that are identical to J∗(`) and

M∗(i), except that we use Sindep
j (`) and Tindep

i (i′); thus we call the iSCORE reduced constraint sets

Jindep(`) and Mindep(i). Then our proposed iSCORE allocation results from solving

Problem Qindep
S : maximize z s.t.

LMCE
i (αi, αi′) ≥ z for all i ∈ P, i′ ∈Mindep(i)

LMCI
j∗` (λindep

j∗ (1−
∑p

i=1 αi),αP(`)) ≥ z for all ` ∈ Pph, j∗ ∈ Jindep(`)∑p
i=1 αi ≤ 1, αi ≥ 0 for all i ∈ P,

and setting αj = λindep
j (1−

∑p
i=1 αi) for all j ∈ Pc, where λindep

j = (Sindep
j)−1/

∑
j′∈Pc(S

indep
j′)−1.

8 Time to Compute Proposed Allocations versus Optimality Gap

In this section, we assume we have access to the true rate functions and investigate the time it

takes to solve for each proposed allocation on a suite of randomized test problems. When possible,

we also investigate how close each allocation is to the asymptotically optimal allocation. The

results in this section give us a sense of how long one update of the optimal allocation takes in the

sequential implementation described in §9. We compare the following allocation strategies under

the normality Assumption 2: (a) MVN True, which results from solving Problem Q and requires

computing brute force rates; (b) MVN Indep., which results from solving Problem Q under the

assumption of independence between the objectives; (c) MVN Phantom, which results from solving

Problem Qph; (d) SCORE, which results from solving Problem QS; (e) iSCORE, which results

from solving Problem Qindep
S ; (f) MOCBA [Lee et al., 2010]; and (g) equal allocation. Solving

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 23

Problems Qph, Problem QS, and Problem Qindep
S requires locating the phantom Pareto systems,

which we locate using the algorithm in the Online Supplement.

Several of our proposed allocations require solving a bi-level optimization problem where, at

each step in the “outer” optimization problem, we solve many quadratic problems that appear in

the constraints. To speed up these computations, for the MVN phantom and SCORE allocations

with d = 3 objectives, we pre-compute a look-up table of closed-form expressions for the solutions to

the quadratic programs and feed gradients to the “outer” optimization routine. For d ≥ 4 objectives

and all allocations that require brute force enumeration via the κ vectors, our SCORE code solves as

many quadratic programs as we have constraints at every step in the “outer” optimization routine,

which is considerably slower than the closed-form expressions.

We generate a randomized test problem suite by two different methods, as follows. In the fixed

Pareto method, we generate p Pareto systems uniformly on a d-sphere of radius 6 at center 100×1d×1.

Then, we generate non-Pareto systems by generating points uniformly in the d-ball of radius 6,

rejecting any points that are not dominated by the p Pareto systems. In the variable Pareto method,

we generate systems uniformly inside the d-ball of radius 6 until the desired total number of systems r

is achieved. Thus the variable Pareto method results in a random number of Pareto systems. In both

methods, as in Assumption 1, we ensure min{|gk(s)− gk(i)| : s ∈ S, i ∈ P, s 6= i, k ∈ D} > 1× 10−4.

This separation ensures the rate functions are not too shallow for the solver. In each test problem,

all systems have multivariate normal rate functions with unit variances and a common correlation

between all objectives. To ensure positive semi-definite covariance matrices, the correlation is chosen

uniformly at random between -0.4 and 1 for each test problem.

For each number of objectives d ∈ {3, 4, 5} and number of systems r, we generate 10 MORS

problems using the fixed and variable Pareto methods. For each set of problems, Tables 6–11 in the

Online Supplement report: the median number of Pareto systems p; the median number of phantom

Pareto systems |Pph|; the median and 75th percentiles of the wall-clock time required to solve for

each allocation α, where the percentiles are taken across each set of random problems; the median

brute force rate of decay of the P{MC}, when possible; and the median phantom rate of decay of

the P{MC} across each set of random problems. Tables 4 and 5 report a subset of these results.

We make the following observations about our proposed allocations. First, the relatively small

difference in the median rates of decay of P{MC} for the MVN True, MVN Phantom, and SCORE

24 APPLEGATE ET AL.

Table 4: For 10 MORS problems generated by the fixed Pareto method, each with d objectives and r
systems, the table reports: the median number of Paretos and phantoms, sample quantiles of the wall-
clock time T to solve for each allocation α in minutes (m) and seconds (s); the median rate of decay of
the P{MC} calculated by brute force (Zbf

0.5(α)×104) or by the phantom approximation (Zph
0.5(α)×104).

Med. MVN MVN MVN
d r p |Pph| Metric True Indep Phantom SCORE iSCORE MOCBA† Equal

3

10 5 11

Median T 1m 41s 1m 45s 0.05s 0.03s 0.023s 0.005s 0s
75th %-ile T 1m 55s 2m 2s 0.05s 0.05s 0.026s 0.006s 0s
Zbf
0.5(α)×104 950.316 702.155 950.297 924.602 695.678 393.455

Zph
0.5(α)×104 948.024 702.155 950.297 924.602 695.678 393.455

500 10 21
Median T – – 1m 37s 0.15s 0.09s 3.41s 0s

75th %-ile T – – 2m 38s 0.17s 0.10s 3.45s 0s
Zph
0.5(α)×104 – – 0.171 0.167 0.170 0.0009

10,000 10 21
Median T – – – 0.64s 0.31s 25m 6s 0s

75th %-ile T – – – 0.70s 0.33s 25m 13s 0s
Zph
0.5(α)×104 – – – 0.0004 0.0003 0.0000003

4

5,000 10 42
Median T – – – 1m 4s 0.30s 7m 43s 0s

75th %-ile T – – – 1m 28s 0.36s 7m 44s 0s
Zph
0.5(α)×104 – – – 0.0013 0.0011 0.000002

10,000 10 44
Median T – – – 1m 52s 0.57s 31m 5s 0s

75th %-ile T – – – 2m 20s 0.61s 31m 9s 0s
Zph
0.5(α)×104 – – – 0.00009 0.00009 0.0000001

5 10,000 10 90
Median T – – – 8m 52s 1.15s 38m 16s 0s

75th %-ile T – – – 11m 13s 1.21s 38m 31s 0s
Zph
0.5(α)×104 – – – 0.0001 0.0001 0.0000002

Computed in MATLAB R2017a on a 3.5 Ghz Intel Core i7 processor with 16GB 2133 MHz LPDDR3 memory.
The symbol ‘–’ indicates no data due to large computational time or memory limitations.
†We do not report rates for MOCBA since it alternates between allocations.

allocations indicate that our three primary simplifications, the SCORE limit, the phantom MCI

rates, and the reduced number of MCE and MCI constraints in Problem QS, are good approxima-

tions that make larger problem instances more computationally tractable. Further, although the

smallest problems in Table 6 in the r = 10, |P| = 5 row suffer a relatively large penalty for modeling

the objectives as independent, this penalty seems to decrease as the number of systems increases,

as assessed by the median phantom rates for SCORE, iSCORE, and equal allocation in rows where

MVN True and MVN Phantom allocations cannot be calculated.

Further, notice that in nearly all 3-objective rows and nearly all rows with problems generated

via the fixed Pareto method, the median times for SCORE and iSCORE are clearly faster than those

MOCBA, although for small problem instances when computations are fast, SCORE, iSCORE, and

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 25

Table 5: For 10 MORS problems generated by the variable Pareto method, each with d objectives and
r systems, the table reports: the median number of Paretos and phantoms, the sample quantiles of the
wall-clock time T to solve for each allocation α in minutes (m) and seconds (s); the median rate of decay
of the P{MC} calculated by brute force (Zbf

0.5(α)×104) or by the phantom approximation (Zph
0.5(α)×104).

Med. Med. MVN MVN MVN
d r p |Pph| Metric True Indep Phantom SCORE iSCORE MOCBA† Equal

3

250 31 62
Median T – – 80s 1s 1s 0.93s 0s

75th %-ile T – – 2m 14s 3s 2s 0.94s 0s
Zph
0.5(α)×104 – – 0.946 0.932 0.714 0.011

5,000 165 330
Median T – – – 12s 8s 5m 55s 0s

75th %-ile T – – – 13s 10s 5m 56s 0s
Zph
0.5(α)×104 – – – 0.000008 0.000008 0.0000003

10,000 245 490
Median T – – – 47s 35s 23m 56s 0s

75th %-ile T – – – 1m 6s 38s 23m 59s 0s
Zph
0.5(α)×104 – – – 0.00001 0.00001 0.0000002

4

50 21 89
Median T – – 6m 3s 56s 0.24s 0.055s 0s

75th %-ile T – – 9m 42s 1m 11s 0.26s 0.056s 0s
Zph
0.5(α)×104 – – 16.659 16.252 12.460 1.269

1,000 133 686
Median T – – – – 12s 18.60s 0s

75th %-ile T – – – – 53s 18.65s 0s
Zph
0.5(α)×104 – – – – 0.015 0.00006

2,000 208 1,062
Median T – – – – 33s 1m 13.3s 0s

75th %-ile T – – – – 34s 1m 13.7s 0s
Zph
0.5(α)×104 – – – – 0.00006 0.000004

5,000* 374 2,064
Median T – – – – 2m 36s 8m 32s 0s

75th %-ile T – – – – 2m 42s 8m 38s 0s
Zph
0.5(α)×104 – – – – 0.00005 0.000002

5

50 30 278
Median T – – 18m 18s 4m 38s 2s 0.08s 0s

75th %-ile T – – 21m 44s 23m 6s 7s 0.08s 0s
Zph
0.5(α)×104 – – 7.394 7.326 5.461 0.641

2,000* 356 5,618
Median T – – – – 13m 31s 1m 45.2s 0s

75th %-ile T – – – – 24m 25s 1m 45.8s 0s
Zph
0.5(α)×104 – – – – 0.0007 0.00002

Computed in MATLAB R2017a on a 3.5 Ghz Intel Core i7 processor with 16GB 2133 MHz LPDDR3 memory.
The symbol ‘–’ indicates no data due to large computational time or memory limitations.
†We do not report rates for MOCBA since it alternates between allocations.
* This row computed in MATLAB R2017a on a high performance computing cluster node with two 10-core Intel
Xeon-E5 processors and 128GB of memory.

MOCBA are computationally comparable. Interestingly, in terms of computational time, MOCBA

suffers a penalty for a large total number of systems, while iSCORE suffers a penalty only for a large

Pareto set. This penalty is especially noticeable in the 5-objective, 2,000-system row of Table 5,

in which iSCORE must contend with a median number of phantom Pareto systems equal to 5,618,

26 APPLEGATE ET AL.

which require a median time of 8 minutes and 54 seconds to retrieve. These results make sense in

light of our complexity results for both the number of phantom Pareto systems and the algorithm

that locates them.

9 A Sequential Algorithm for Implementation

Throughout the paper so far, we have assumed that we have access to the rate functions of all

systems, which we certainly do not have in practice. In this section, we provide a sequential

algorithm, listed as Algorithm 1, that is suitable for implementation of our proposed allocations.

Algorithm 1 is similar in spirit to the sequential allocation algorithm provided by Hunter and

Pasupathy [2013], although it differs slightly in the details. Like the previous algorithm, to estimate

the rate functions, we use plug-in estimators for the parameters of the assumed distributional

family in Step 8 and solve an optimization problem in Step 9. We also use the estimated optimal

allocation α̂∗ as a probability mass function from which to select the next system to simulate in

Steps 13 and 14, and implement a minimum-sample proportion 0 < αε � 1/r in Step 4 to ensure all

systems are sampled infinitely often when the total simulation budget is infinite. We differ slightly

in how the minimum-sampling requirement is implemented. In Hunter and Pasupathy [2013], the

Algorithm 1: A sequential algorithm for implementing the proposed allocations
Input: initial sample size δ0 > d ≥ 2; sample size between allocation vector updates δ ≥ 1; a

minimum-sample proportion 0 < αε � 1/r where r = |S| is the total number of systems and
S is the set of system indices; total simulation budget b ≥ r × δ0 + δ

1 Initialize: collect δ0 replications from each system s ∈ S; n← r × δ0, ns ← δ0 for all s ∈ S

2 repeat
3 Initialize: δε = 0, Sε ← ∅, S← {1, . . . , r}
4 foreach s ∈ S if ns/n < αε then Sε ← Sε ∪ {s} /find systems needing simulation
5 if 0 ≤ |Sε| < δ then
6 if |Sε| ≥ 1 then foreach sε ∈ Sε do
7 collect one simulation replication from system sε, nsε ← nsε + 1, δε ← δε + 1

8 Calculate: update the rate function estimators for all systems s ∈ S by updating plug-in
estimators for parameters in the assumed distributional family

9 Solve: an estimated version of Problem Qph, QS, or Q
indep
S , to obtain estimated allocation α̂∗

10 else
11 S← Sε, α̂∗ ← (1/|Sε|, . . . , 1/|Sε|) /simulate only systems in Sε with equal pr.

12 for m = 1, . . . , δ − δε do /spend δ − δε replications left
13 Sample: randomly select a system index Xm from S, where for each m, Xm is an i.i.d.

random variable with probability mass function α̂∗ supported on S

14 Simulate: collect one simulation replication from system Xm and nXm
← nXm

+ 1

15 Update: n← n+ δ and ᾱn ← (n1/n, n2/n, . . . , nr/n)

16 until n ≥ b or other termination criteria met

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 27

sequential algorithm is written as non-terminating, and any systems not meeting the minimum-

sampling requirement are simulated beyond the “stage-wise” sampling budget δ. We write our

algorithm with optional termination criteria and ensure that the minimum-sampling requirement

is met within the stage-wise sampling budget δ. Thus the algorithm is easier to terminate at a

specific, known simulation budget, designed with multiples of δ in mind. Optionally, the algorithm

may be terminated by other criteria, such as a certain amount of wall-clock time having passed.

10 Numerical Performance of the Sequential Implementations

In this section, we implement our proposed simulation budget allocations using sequential Algo-

rithm 1, and compare their performances with MOCBA and equal allocation on two test problems.

10.1 Test Problem 1

Our first test problem, from Lee et al. [2010], has three objectives, 25 systems, 5 Pareto systems, and

appears in Figure 4. The objective vector values are listed in Table 12 of the Online Supplement.

We consider three versions of Test Problem 1: a version in which all objectives are independent

and the covariance matrix for all systems s ∈ S is Σ(s) = 64× I3×3, where I3×3 is a 3-by-3 identity

matrix, and two versions in which the variances are the same as the independent case, but there is

common correlation of ρ = −0.4 and ρ = 0.8 between all objectives across all systems.

We implement our sequential Algorithm 1 and MOCBA with the following parameters, respec-

tively. In Algorithm 1, we set the initial sample size to δ0 = 5, the number of samples between

allocation updates to δ = 10, and the minimum-sample proportion αε = 1 × 10−8 � 1/r, and the

total simulation budget to b ≤ 75, 000. (Notice that given our values of δ0 and b, extra sampling

due to the minimum-sample proportion αε does not occur.) For MOCBA, using notation from Lee

et al. [2010], we set the number of initial samples N0 = 5, the number of samples between allocation

updates to ∆ = 10, and the maximum samples to a single system τ = ∆/2 = 5.

For each allocation scheme, let ᾱn = (n1/n, n2/n, . . . , nr/n) denote the vector of proportional

allocations expended by the sequential algorithm as a function of the sample size n. Figure 5 shows

sample quantiles of the approximate optimality gap of ᾱn, zph(αph) − zph(ᾱn), calculated across

5,000 independent replications of each sequential algorithm on Test Problem 1 with ρ = 0. There

is dependence across the values of n in Figure 5. From the perspective of the optimality gap of

28 APPLEGATE ET AL.

Figure 4: Test Problem 1: For d = 3, the figure
shows 5 Paretos in black, 11 phantom Paretos in
white (arrows omitted), and 20 non-Paretos in gray.

Figure 5: Test Problem 1, ρ = 0: Sample quantiles
(.25, .5, .75) of the optimality gap over 5,000 inde-
pendent runs of each sequential allocation strategy.

the allocation expended, SCORE and iSCORE appear to perform the best. MOCBA appears to

perform well initially, but eventually veers off into an allocation that is worse than equal. We believe

this event occurs because at some point, the bounds that MOCBA uses to determine whether to

control for P{MCE} or P{MCI} are both estimated to be zero, to the numerical precision of the

computer. By default in this case, MOCBA allocates to control P{MCE} only, which is suboptimal

with respect to the phantom rate in this test problem.

Figure 6 shows the estimated probability of misclassification as a function of n for each sequential

allocation strategy, calculated across 10,000 independent replications of each algorithm. Notably,

SCORE and iSCORE perform nearly identically to MVN Phantom. SCORE, iSCORE, and MVN

Phantom slightly out-perform MOCBA in terms of the overall estimated P{MC}. In this test

problem, correlation has a minor effect on the estimated P{MC}. Finally, we remark that by the

time the allocation scheme for MOCBA goes awry in Figure 5, the estimated P{MC} is already

very small for MOCBA, SCORE, and iSCORE — nearly zero, as shown in Figure 6.

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5
Equal
MOCBA
iSCORE
SCORE
MVN Ph.

Figure 6: Test Problem 1, with ρ = −0.4, ρ = 0, and ρ = 0.8: Estimated P{MC} for sequential allocation
strategies, calculated across 10,000 independent sample paths for each algorithm.

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 29

10.2 Test Problem 2

Our second test problem has four objectives, created by generating 500 true system objective vector

values as a multivariate normal cloud with center 100 × 14×1, all standard deviations equal to 10,

and all correlations equal to 0.5. The generated cloud is shown in three out of four objectives in

Figure 7; all other three-objective projections look similar. The minimum distance between any

two Pareto systems on any objectives is approximately 0.0953, and the minimum distance between

a Pareto system and a non-Pareto system on any objective is approximately 0.0129. Fixing the 500

systems with objective vector values shown in Figure 7, we set all systems’ covariance matrices to

the identity matrix. Due to the size of Test Problem 2, we implement only iSCORE and MOCBA

with the following parameters, respectively: iSCORE has δ0 = 15, δ = 150, αε = 1 × 10−8 � 1/r,

and total simulation budget b ≤ 15, 000; MOCBA has N0 = 15, ∆ = 150, and τ = ∆/2 = 75. As

in Test Problem 1, extra sampling due to αε does not occur in iSCORE.

Figures 8 and 9 display the results for Test Problem 2. On this test problem, Figure 8 shows

that the median optimality gap of the actual allocation for iSCORE is consistently smaller than

that of MOCBA. Notice that the sample size is not as large as for Test Problem 1, so it is not clear

if MOCBA turns suboptimal for larger n. The 75th percentile line for iSCORE appears to level

off slightly for larger sample sizes; we believe this performance is due to several bad sample paths

that would eventually be corrected by forcing samples to certain systems via the minimum-sample

vector αε. Figure 9 shows that MOCBA and iSCORE are close in terms of the estimated P{MC},

but iSCORE appears to perform slightly better.

80

100

120

140

12010080 14012060 10080

Figure 7: Test Problem 2: For
d = 4 total objectives, the figure
shows objectives 1, 2, and 3 with 8
Paretos in black.

0.8 1 1.2 1.4
104

2.1

2.2

2.3

2.4

2.5

2.6

10-3

Equal
MOCBA
iSCORE

Figure 8: Test Problem 2: Sample
quantiles (.25, .5, .75) of the op-
timality gap over 10,000 indepen-
dent runs per algorithm.

9,000 11,000 13,000 15,000
0

0.1

0.2

0.3

0.4

0.5
Equal
MOCBA
iSCORE

Figure 9: Test Problem 2: Esti-
mated P{MC}, calculated across
10,000 independent runs per algo-
rithm.

30 APPLEGATE ET AL.

11 Concluding Remarks

The question of efficiently identifying the entire Pareto set in MORS problems is challenging pri-

marily due to the need to decide how to dedicate a given simulation budget across the competing

systems so that the likelihood of misclassifying the systems is minimized. We demonstrate that

this latter question of simulation budget allocation can be posed (without approximation) as a con-

cave maximization problem through the introduction of fictitious systems constructed by combining

objectives from selected systems. Solving this concave maximization problem, however, becomes

prohibitively expensive even for MORS problems in three and four dimensions having a modest

number of competing systems. This computational issue becomes pronounced during implemen-

tation, when the simulation budget allocation optimization problem needs to be solved repeatedly

across iterations. SCORE and iSCORE are MORS solution algorithms that address the compu-

tational issue in a disciplined way. Through a series of approximations obtained by the strategic

relaxation of constraints and asymptotic approximation, the simulation budget allocation optimiza-

tion problem is reduced to a form that can be solved with dramatically less computational effort.

Extensive numerical implementation reveals that SCORE and iSCORE can reliably solve many

MORS problems with several thousand systems in three or greater number of dimensions.

Acknowledgments

E. A. Applegate and S. R. Hunter were supported in part by the National Science Foundation under

grant CMMI-1554144.

References
D. Batur and F. F. Choobineh. Mean-variance based ranking and selection. In B. Johansson, S. Jain,

J. Montoya-Torres, J. Hugan, and E. Yücesan, editors, Proceedings of the 2010 Winter Simulation Con-
ference, Piscataway, NJ, 2010. IEEE.

J. Branke and W. Zhang. A new myopic sequential sampling algorithm for multi-objective problems. In
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, editors, Proceedings
of the 2015 Winter Simulation Conference, pages 3589–3598, Piscataway, NJ, 2015. IEEE.

J. Branke, W. Zhang, and Y. Tao. Multiobjective ranking and selection based on hypervolume. In T. M. K.
Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, editors, Proceedings of the
2016 Winter Simulation Conference, pages 859–870, Piscataway, NJ, 2016. IEEE.

J. C. Butler, D. J. Morrice, and P. Mullarkey. A multiple attribute utility theory approach to ranking and
selection. Management Science, 47(6):800–816, 2001.

T. M. Chan. Klee’s measure problem made easy. In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pages 410–419, Piscataway, NJ, 2013. IEEE. doi: 10.1109/FOCS.2013.51.

C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick. Simulation budget allocation for further enhancing the
efficiency of ordinal optimization. Discrete Event Dynamic Systems, 10(3):251–270, 2000. doi: 10.1023/A:
1008349927281.

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 31

S. E. Chick, J. Branke, and C. Schmidt. Sequential sampling to myopically maximize the expected value of
information. INFORMS Journal on Computing, 22(1):71–80, 2010.

S. H. Choi and T. G. Kim. Pareto set selection for multiobjective stochastic simulation model. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2018. doi: 10.1109/TSMC.2018.2846680.

A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer, New York, 2nd edition,
1998.

H. Ding, L. Benyoucef, and X. Xie. A simulation-based multi-objective genetic algorithm approach for
networked enterprises optimization. Engineering Applications of Artificial Intelligence, 19:609–623, 2006.
doi: 10.1016/j.engappai.2005.12.008.

E. J. Dudewicz and V. S. Taneja. Multivariate ranking and selection without reduction to a univariate
problem. In H. J. Highland, N. R. Nielsen, and L. G. Hull, editors, Proceedings of the 1978 Winter
Simulation Conference, pages 207–210, Piscataway, NJ, 1978. IEEE.

E. J. Dudewicz and V. S. Taneja. A multivariate solution of the multivariate ranking and selec-
tion problem. Communications in Statistics – Theory and Methods, 10(18):1849–1868, 1981. doi:
10.1080/03610928108828154.

M. Ehrgott. Multicriteria Optimization, volume 491 of Lecture Notes in Economics and Mathematical Sys-
tems. Springer, Heidelberg, 2nd edition, 2005.

G. Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin Heidelberg,
2008.

G. Feldman. Sampling laws for multi-objective simulation optimization on finite sets. PhD thesis, Purdue
University, 2017.

G. Feldman and S. R. Hunter. SCORE allocations for bi-objective ranking and selection. ACM Transactions
on Modeling and Computer Simulation, 28(1):7:1–7:28, January 2018. doi: 10.1145/3158666.

G. Feldman, S. R. Hunter, and R. Pasupathy. Multi-objective simulation optimization on finite sets: optimal
allocation via scalarization. In L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D.
Rossetti, editors, Proceedings of the 2015 Winter Simulation Conference, pages 3610–3621, Piscataway,
NJ, 2015. IEEE. doi: 10.1109/WSC.2015.7408520.

P. I. Frazier. A fully sequential elimination procedure for indifference-zone ranking and selection with tight
bounds on probability of correct selection. Operations Research, 62(4):926–942, 2014. doi: 10.1287/opre.
2014.1282.

P. I. Frazier and A. M. Kazachkov. Guessing preferences: a new approach to multi-attribute ranking and
selection. In S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, editors, Proceedings of the
2011 Winter Simulation Conference, pages 4324 – 4336, Piscataway, NJ, 2011. IEEE.

P. I. Frazier, W. B. Powell, and S. Dayanik. A knowledge-gradient policy for sequential information collection.
SIAM J. Control Optim., 47(5):2410–2439, 2008.

M. Fu and S. G. Henderson. History of seeking better solutions, aka simulation optimizaiton. In W. K. V.
Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, editors, Proceedings of the
2017 Winter Simulation Conference, pages 131–157, Piscataway, NJ, 2017. IEEE.

P. Glynn and S. Juneja. Ordinal optimization – empirical large deviations rate estimators, and stochastic
multi-armed bandits, 2015. URL http://arxiv.org/abs/1507.04564.

P. W. Glynn and S. Juneja. A large deviations perspective on ordinal optimization. In R. G. Ingalls, M. D.
Rossetti, J. S. Smith, and B. A. Peters, editors, Proceedings of the 2004 Winter Simulation Conference,
pages 577–585, Piscataway, NJ, 2004. IEEE. doi: 10.1109/WSC.2004.1371364.

P. W. Glynn and S. Juneja. Ordinal optimization: a nonparametric framework. In S. Jain, R. R. Creasey,
J. Himmelspach, K. P. White, and M. Fu, editors, Proceedings of the 2011 Winter Simulation Conference,
pages 4057 – 4064, Piscataway, NJ, 2011. IEEE. doi: 10.1109/WSC.2011.6148095.

S. R. Hunter. Sampling laws for stochastically constrained simulation optimization on finite sets. PhD thesis,
Virginia Polytechnic Institute and State University, 2011.

S. R. Hunter and G. Feldman. Optimal sampling laws for bi-objective simulation optimization on finite
sets. In L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, editors,
Proceedings of the 2015 Winter Simulation Conference, pages 3749–3757, Piscataway, NJ, 2015. IEEE.
doi: 10.1109/WSC.2015.7408532.

S. R. Hunter and B. McClosky. Maximizing quantitative traits in the mating design problem via simulation-
based Pareto estimation. IIE Transactions, 48(6):565–578, 2016. doi: 10.1080/0740817X.2015.1096430.

http://arxiv.org/abs/1507.04564

32 APPLEGATE ET AL.

S. R. Hunter and B. L. Nelson. Parallel ranking and selection. In A. Tolk, J. Fowler, G. Shao, and
E. Yücesan, editors, Advances in Modeling and Simulation: Seminal Research from 50 Years of Winter
Simulation Conferences, Simulation Foundations, Methods and Applications, chapter 12, pages 249–275.
Springer International, Switzerland, 2017. doi: 10.1007/978-3-319-64182-9.

S. R. Hunter and R. Pasupathy. Large-deviation sampling laws for constrained simulation optimization on
finite sets. In B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, editors, Proceedings
of the 2010 Winter Simulation Conference, pages 995–1002, Piscataway, NJ, 2010. IEEE. doi: 10.1109/
WSC.2010.5679092.

S. R. Hunter and R. Pasupathy. Optimal sampling laws for stochastically constrained simulation optimization
on finite sets. INFORMS Journal on Computing, 25(3):527–542, Summer 2013. doi: 10.1287/ijoc.1120.
0519.

S. R. Hunter, N. A. Pujowidianto, C.-H. Chen, L. H. Lee, R. Pasupathy, and C. M. Yap. Optimal sampling
laws for constrained simulation optimization on finite sets: the bivariate normal case. In S. Jain, R. R.
Creasey, J. Himmelspach, K. P. White, and M. Fu, editors, Proceedings of the 2011 Winter Simulation
Conference, pages 4294–4302, Piscataway, NJ, 2011. IEEE. doi: 10.1109/WSC.2011.6148116.

S. R. Hunter, E. A. Applegate, V. Arora, B. Chong, K. Cooper, O. Rincón-Guevara, and C. Vivas-Valencia.
An introduction to multi-objective simulation optimization. Optimization Online, 2018. URL http:
//www.optimization-online.org/DB_HTML/2017/03/5903.html.

H. Kaplan, N. Rubin, M. Sharir, and E. Verbin. Efficient colored orthogonal range counting. SIAM J.
Comput., 38(3):982–1011, 2008. doi: 10.1137/070684483.

S.-H. Kim and B. L. Nelson. A fully sequential procedure for indifference-zone selection in simulation. ACM
Transactions on Modeling and Computer Simulation, 11(3):251–273, 2001.

S.-H. Kim and B. L. Nelson. Selecting the best system. In S. G. Henderson and B. L. Nelson, editors,
Simulation, Handbooks in Operations Research and Management Science, Volume 13, pages 501–534.
Elsevier, Amsterdam, The Netherlands, 2006.

R. Lacour, K. Klamroth, and C. M. Fonseca. A box decomposition algorithm to compute the hypervolume
indicator. Computers & Operations Research, 79:347–360, March 2017. doi: 10.1016/j.cor.2016.06.021.

J. S. Lee. Advances in simulation: validity and efficiency. PhD thesis, Georgia Institute of Technology, 2014.
URL http://hdl.handle.net/1853/53457.

L. H. Lee, E. P. Chew, S. Teng, and D. Goldsman. Finding the non-dominated Pareto set for multi-objective
simulation models. IIE Transactions, 42:656–674, 2010. doi: 10.1080/07408171003705367.

J. Li. Optimal computing budget allocation for multi-objective simulation optimization. PhD thesis, National
University of Singapore, 2012.

J. Li, W. Liu, G. Pedrielli, L. H. Lee, and E. P. Chew. Optimal computing budget allocation to select the
non-dominated systems – a large deviations perspective. IEEE Transactions on Automatic Control, 2018.
doi: 10.1109/TAC.2017.2779603.

V. Mattila and K. Virtanen. Ranking and selection for multiple performance measures using incomplete
preference information. European Journal of Operational Research, 242:568–579, 2015. doi: 10.1016/j.
ejor.2014.10.028.

J. R. W. Merrick, D. Morrice, and J. C. Butler. Using multiattribute utility theory to avoid bad outcomes
by focusing on the best systems in ranking and selection. Journal of Simulation, 9(3):238–248, 2015. doi:
10.1057/jos.2014.34.

B. L. Nelson, J. Swann, D. Goldsman, and W. Song. Simple procedures for selecting the best simulated
system when the number of alternatives is large. Operations Research, 49(6):950–963, 2001.

E. C. Ni, D. F. Ciocan, S. G. Henderson, and S. R. Hunter. Efficient ranking and selection in parallel
computing environments. Operations Research, 65(3):821–836, May-June 2017. doi: 10.1287/opre.2016.
1577.

R. Pasupathy, S. R. Hunter, N. A. Pujowidianto, L. H. Lee, and C.-H. Chen. Stochastically constrained
ranking and selection via SCORE. ACM Transactions on Modeling and Computer Simulation, 25(1):
1:1–1:26, January 2015. doi: 10.1145/2630066.

N. A. Pujowidianto, S. R. Hunter, R. Pasupathy, L. H. Lee, and C.-H. Chen. Closed-form sampling laws for
stochastically constrained simulation optimization on large finite sets. In C. Laroque, J. Himmelspach,
R. Pasupathy, O. Rose, and A. M. Uhrmacher, editors, Proceedings of the 2012 Winter Simulation Con-
ference, pages 168–177, Piscataway, NJ, 2012. IEEE. doi: 10.1109/WSC.2012.6465141.

http://www.optimization-online.org/DB_HTML/2017/03/5903.html
http://www.optimization-online.org/DB_HTML/2017/03/5903.html
http://hdl.handle.net/1853/53457

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 33

I. O. Ryzhov. On the convergence rates of expected improvement methods. Operations Research, 64(6):
1515–1528, 2016. doi: 10.1287/opre.2016.1494.

R. Szechtman and E. Yücesan. A new perspective on feasibility determination. In S. J. Mason, R. R. Hill,
L. Mönch, O. Rose, T. Jefferson, and J. W. Fowler, editors, Proceedings of the 2008 Winter Simulation
Conference, pages 273–280, Piscataway, NJ, 2008. IEEE. doi: 10.1109/WSC.2008.4736078.

S. Teng, L. H. Lee, and E. P. Chew. Integration of indifference-zone with multi-objective computing budget
allocation. European Journal of Operational Research, 203:419–429, 2010. doi: 10.1016/j.ejor.2009.08.008.

W. Wang and H. Wan. Sequential probability ratio test for multiple-objective ranking and selection. In
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, editors, Proceedings
of the 2017 Winter Simulation Conference, pages 1998–2009, Piscataway, NJ, 2017. IEEE. doi: 10.1109/
WSC.2017.8247934.

M. M. Wiecek, M. Ehrgott, and A. Engau. Continuous multiobjective programming. In S. Greco, M. Ehrgott,
and J. R. Figueira, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, volume 233 of
International Series in Operations Research & Management Science, pages 739–815. Springer New York,
New York, 2016. doi: 10.1007/978-1-4939-3094-4_18.

H. Yildiz and S. Suri. On Klee’s measure problem for grounded boxes. In Proceedings of the Twenty-
Eighth Annual Symposium on Computational Geometry, pages 111–1120, New York, NY, 2012. ACM.
doi: 10.1145/2261250.2261267.

H. Zhang. Multi-objective simulation-optimization for earthmoving operations. Automation in Construction,
18:79–86, 2008. doi: 10.1016/j.autcon.2008.05.0023.

Online Supplement for
Ranking and Selection with Many Objectives: Optimal Sampling Laws and

Tractable Approximations via SCORE

Eric A. Applegate1, Guy Feldman2, Susan R. Hunter1, and Raghu Pasupathy2

1School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
2Department of Statisics, Purdue University, West Lafayette, IN 47907, USA

A Efficiently Locating the Phantom Pareto Systems

To solve for our proposed allocations, we require a way to identify the phantom Pareto systems;

preferably, we would do so without using brute force enumeration. That is, we would like to know

how to identify all phantom Pareto systems implicit to a set of Pareto objective vectors G∗ =

{g(1),g(2), . . . ,g(p)},g(i) ∈ Rd for all i ∈ {1, . . . , p} of p non-dominated points in d-dimensional

Euclidean space. Towards answering this question in our context, we present pair of algorithms

called Sweep and DimensionSweep, listed as Algorithms 2 and 3, respectively, that resemble the

procedure described in Kaplan et al. [2008].

Sweep identifies “interior” phantom Pareto systems, that is, phantom Pareto systems whose

coordinates are all finite, through strategic and recursive projection onto lower dimensional hy-

perplanes that are orthogonal to the axes. The specific set of operations that lead to the iden-

tification of the interior phantom Pareto systems is as follows. Consider a set of d′-dimensional

points G∗ = {g(1),g(2), . . . ,g(p′)} with g(i) ∈ Rd′ for each i ∈ {1, . . . , p′}, where 1 ≤ d′ ≤ d and

1 ≤ p′ ≤ p. If d′ = 1, the set of phantoms is simply min1≤i≤p′ g1(i), and the procedure terminates. If

d′ > 1, then select an arbitrary dimension k∗ ∈ {1, 2, . . . , d′} and sort the points in G∗ in decreasing

order by their values on the k∗-th objective. By convention, we select k∗ = d′, and let the resulting

ordered set be denoted Gd′ = {g([1]),g([2]), . . . ,g([p′])}, where [1] = argmax1≤i≤p′ gk∗(i) denotes

the index of the system with the largest objective value on objective k∗. Assume, for ease of exposi-

tion, that the points {g([1]),g([2]), . . . ,g([p′])} have distinct values along the k∗-th dimension. Now

consider the (d′ − 1)-dimensional hyperplanes Y(i) := {y ∈ Rd′−1 : yk∗ = gk∗([i])}, i = 1, 2, . . . , p′,

each of which is orthogonal to the k∗-th axis. For each i = 1, 2, . . . , p′, project the p′ − i points

{g([i + 1]),g([i + 2]), . . . ,g([p′])} onto the (d − 1)-dimensional hyperplane Y(i), and calculate the

Pareto points to get a new ordered set G∗d′−1 containing up to p′ − i Pareto systems, each lying

Corresponding author: susanhunter@purdue.edu.

2 APPLEGATE ET AL.

in d − 1 dimensional Euclidean space. Now repeat the described procedure with each input set

G∗d′−1 ⊂ Rd
′−1, i = 1, 2, . . . , p′, in turn yielding several projected sets in (d′ − 2)-dimensional space.

In this way, the process is repeated to yield several sequences of sets projected onto hyperplanes in

successively lower dimensions, with the procedure stopping when the incumbent dimension of the

input set is 1, at which time the minimum of the input set, augmented with the sequence of pro-

jected coordinates, is returned as the potential phantom candidate. A phantom candidate is kept

in Step 11 only if it is dominated by the current sweep point. (Note that in the Sweep algorithm

Step 6, we iterate up to p′− (d′− 1) instead of p′ since we need at least d′− 1 points projected into

the hyperplane to make a phantom.)

Algorithm 2: Gph
sweep=Sweep(G∗)

Input: set of points, G∗ = {g(1),g(2), . . . ,g(p′)}, where g(i) = (g1(i), . . . , gd′(i)) for all i = 1, . . . , p′.
Output: a set of d′-dimensional phantom Pareto systems Gph

sweep
1 if d′=1 then
2 Gph

sweep ← min1≤i≤p′ g1(i)

3 else
4 k∗ ← d′ /choose k∗ as largest objective
5 Sort the points in G∗ in decreasing order on objective k∗, yielding the ordered set

Gd′ ← {g([1]),g([2]), . . . ,g([p′])}, where [1] = argmax1≤i≤p′ gk∗(i), . . . , [p
′] = argmin1≤i≤p′ gk∗(i).

6 for i = 1 to p′ − (d′ − 1) do
7 Initialize gmax ← gk∗([i]) and Gd′ ← {g([i+ 1]),g([i+ 2]), . . . ,g([p′])}
8 Gd′−1 ← {g′(j) : g′(j) = (g1(j), . . . , gd′−1(j)) for all j indexing points in Gd′}
9 G∗d′−1 =GetParetos(Gd′−1)

10 G
ph
d′−1 =Sweep(G∗d′−1) /points in G

ph
d′−1 are (d′ − 1)-dimensional phantoms

11 G
ph
d′−1 ← G

ph
d′−1 \ {g ∈ G

ph
d′−1 : (g1([i]), . . . , gd′−1([i]))6≤g}

12 G
ph
d′ ← {g′(j) : g′(j) = (g1(j), . . . , gd′−1(j), gmax) for all j indexing points in G

ph
d′−1}

13 Gph
sweep ← Gph

sweep ∪ G
ph
d′

14 return Gph
sweep

The Sweep procedure as listed in Algorithm 1 identifies all phantoms in a given finite set G∗

that is a subset of the d′-dimensional Euclidean space. Recall, however, that the procedure identifies

only phantoms whose coordinates are all finite. In other words, if the set G∗ has a phantom that

has i < d coordinates equal to infinity, then such a phantom needs to be identified by executing the

Sweep procedure with points constructed using the appropriate d′ = k− i coordinates. Identifying

all phantoms of a given set of Pareto points, each of which is in d-dimensional Euclidean space,

thus entails executing the Sweep procedure with all possible combinations of points constructed

from subsets of the d-coordinate choices. Such repeated calling of the Sweep procedure with all

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 3

possible combinations of points constructed from subsets of the d-coordinate choices is performed

using the “driver” procedure DimensionSweep, listed in Algorithm 3.

Algorithm 3: Gph=DimensionSweep(G∗)
Input: set of d-dimensional Pareto objective vectors G∗
Output: the set of objective vectors corresponding to the phantom Pareto points Gph

1 Initialize Gph = ∅ and determine number of Pareto points p and number of dimensions d from G

2 for i = 1 to d do
3 Projections m←

(
d
i

)
/i is the number of finite objectives in a phantom

4 Determine the m combinations of i-dimensional indices, store as C1, C2, . . . , Cm

5 for j = 1 to m do
6 Reduce points in G∗ to dimensions of Cj , store in set A
7 A∗ =GetParetos(A)

8 A
ph
i =Sweep(A∗)

9 Append ∞ to dimensions not in Cj for points in A
ph
i to create phantoms Aph

10 Gph = Gph ∪Aph

11 return Gph

Due to the similarity of the DimensionSweep procedure with the procedure outlined in Kaplan

et al. [2008], we omit a formal proof of the assertion that the DimensionSweep procedure, aided

crucially by the Sweep procedure, identifies all phantom Pareto systems associated with a given

finite set of Pareto systems.

B Time to Compute versus Optimality Gap: Supplemental Tables

In this section, we provide tables that show the complete numerical results from the experiments

described in §8. For all tables in this section, the metrics reported in the tables include the median

number of Pareto systems; the median number of phantom Pareto systems; the median and 75th

percentile wall-clock time T to solve for each allocation α in hours (h), minutes (m), and seconds

(s); the median P{MC} decay rate calculated by brute force (Zbf
0.5(α)×104), where available, and

by the phantom approximation (Zph
0.5(α)×104) otherwise. (If we are not able to calculate the brute

force rate, then this row is omitted from the table.) Further, the following notes apply to all tables

in this section: (a) Unless indicated otherwise, all computation was performed in MATLAB R2017a

on a laptop with a 3.5 Ghz Intel Core i7 processor with 16GB 2133 MHz LPDDR3 memory; (b) The

symbol ‘–’ indicates no data due to large computational time or memory limitations; and (c) We

do not report rates for MOCBA since it alternates between allocations. We remark that sometimes

the SCORE phantom rate is smaller than the iSCORE phantom rate. We believe this phenomenon

4 APPLEGATE ET AL.

is primarily due to the phantom rate approximation, although we also note here that all reported

rates are to the tolerance of our solver.

B.1 Tables for Problems Generated via the Fixed Pareto Method

We begin by considering the test problems generated by the fixed Pareto method. Limiting the

number of Pareto systems in this way limits the number of phantom Pareto systems, the number

of MCI constraints, and the total number of MCE constraints in the MVN Phantom, SCORE,

and iSCORE allocation strategies. Table 6 shows time and rate results for 3-objective problems

generated by the fixed Pareto method. Recall that we use hard-coded look-up tables for the score

and rate calculations with 3-objective problems. Tables 7 and 8 show similar time and rate results

for 4-objective and 5-objective problems with 10 fixed Pareto systems, except the score and rate

calculations in these tables required solving many quadratic programs.

The first row in Table 6 contains data on 10 problems, each with 5 Pareto systems and 5

non-Pareto systems. This row of small problems allows us to compare the MVN True and MVN

Independent allocation strategies with MVN Phantom, SCORE, and iSCORE. Recall that the MVN

True and MVN Independent allocation strategies involve calculating all of the brute force rates.

Running these strategies on anything other than a small problem is computationally infeasible.

We note that the median rates between MVN True, MVN Phantom, and SCORE show that the

simplifications in MVN Phantom and SCORE do not cause a great loss in the P{MC} decay rate. We

also see similar, yet lower, rates for MVN Independent and iSCORE, both of which treat objectives

as independent.

Unlike MVN True and MVN Independent, the MVN Phantom allocation strategy can be com-

puted for systems up to r = 500 in Table 6. Since MVN Phantom computes rate constraints for

all non-Pareto systems with all phantom Pareto systems, there exists a point at which the number

of constraints becomes too large for our solver to handle within memory limits. This happens for

problems with size r ≥ 1, 000. The increased number of rate constraints in MVN Phantom also

account for its slower computation times compared to SCORE and iSCORE.

Table 6 also shows that the median SCORE and iSCORE computation times are comparable to

MOCBA for problem sizes r ∈ {10, 20, 50} and faster than MOCBA for problem sizes greater than

r = 50. The computations involved in MOCBA and iSCORE are similar in the sense that all systems

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 5

Table 6: The table reports metrics for 10 MORS problems with d = 3 objectives generated randomly
using the fixed Pareto method.

Med. Med. MVN MVN MVN
r |P| |Pph| Metric True Indep. Phantom SCORE iSCORE MOCBA Equal

10 5 11

Median T 1m 41s 1m 45s 0.05s 0.03s 0.023s 0.005s 0s
75th %-ile T 1m 55s 2m 2s 0.05s 0.05s 0.026s 0.006s 0s
Zbf
0.5(α)×104 950.316 702.155 950.297 924.602 695.678 393.455

Zph
0.5(α)×104 948.024 702.155 950.297 924.602 695.678 393.455

20 10 21

Median T – – 0.17s 0.09s 0.05s 0.013s 0s
75th %-ile T – – 0.19s 0.15s 0.06s 0.017s 0s
Zbf
0.5(α)×104 – – 162.768 158.207 126.502 24.804

Zph
0.5(α)×104 – – 162.768 158.207 126.502 24.804

50 10 21

Median T – – 0.7s 0.09s 0.055s 0.044s 0s
75th %-ile T – – 0.8s 0.11s 0.058s 0.045s 0s
Zbf
0.5(α)×104 – – 45.618 44.755 44.305 3.944

Zph
0.5(α)×104 – – 45.618 44.755 44.305 3.944

100 10 21

Median T – – 2.1s 0.08s 0.06s 0.15s 0s
75th %-ile T – – 2.5s 0.11s 0.06s 0.16s 0s
Zph
0.5(α)×104 – – 17.481 16.987 16.424 0.474

250 10 21

Median T – – 11s 0.12s 0.07s 0.86s 0s
75th %-ile T – – 13s 0.16s 0.08s 0.88s 0s
Zph
0.5(α)×104 – – 5.944 5.713 4.666 0.126

500 10 21
Median T – – 1m 37s 0.15s 0.09s 3.41s 0s

75th %-ile T – – 2m 38s 0.17s 0.10s 3.45s 0s
Zph
0.5(α)×104 – – 0.171 0.167 0.170 0.0009

1,000 10 21
Median T – – – 0.17s 0.11s 13.6s 0s

75th %-ile T – – – 0.19s 0.12s 13.7s 0s
Zph
0.5(α)×104 – – – 0.096 0.093 0.0004

2,000 10 21
Median T – – – 0.22s 0.12s 54.3s 0s

75th %-ile T – – – 0.24s 0.18s 54.4s 0s
Zph
0.5(α)×104 – – – 0.034 0.032 0.00008

5,000 10 21
Median T – – – 0.47s 0.19s 6m 12s 0s

75th %-ile T – – – 0.49s 0.21s 6m 14s 0s
Zph
0.5(α)×104 – – – 0.007 0.006 0.000005

10,000 10 21
Median T – – – 0.64s 0.31s 25m 6s 0s

75th %-ile T – – – 0.70s 0.33s 25m 13s 0s
Zph
0.5(α)×104 – – – 0.0004 0.0003 0.0000003

are considered when determining the allocations in MOCBA and the proportional allocations for

the non-Pareto systems in iSCORE. MOCBA, however, also does additional calculations for each

system in the problem to determine systems most likely to dominate another and on which objective

that might happen. MOCBA also considers all systems in determining the ae1 and ae2 bounds.

We suspect that the increased number of these computations are what causes MOCBA to take

additional time on large problems.

Tables 7 and 8 show similar time and rate results for 4-objective and 5-objective problems

6 APPLEGATE ET AL.

Table 7: The table reports metrics for 10 MORS problems with d = 4 objectives
generated randomly using the fixed Pareto method.

Med. Med. MVN
r |P| |Pph| Metric Phantom SCORE iSCORE MOCBA Equal

20 10 44
Median T 18s 6s 0.07s 0.016s 0s

75th %-ile T 24s 8s 0.08s 0.019s 0s
Zbf
0.5(α)×104 174.471 172.541 147.024 29.961

Zph
0.5(α)×104 174.471 172.541 144.768 29.961

50 10 44
Median T 1m 15s 10s 0.10s 0.057s 0s

75th %-ile T 1m 39s 12s 0.11s 0.060s 0s
Zph
0.5(α)×104 4.656 4.515 3.156 0.214

100 10 44
Median T 1m 52s 12s 0.11s 0.198s 0s

75th %-ile T 4m 9s 16s 0.11s 0.203s 0s
Zph
0.5(α)×104 10.922 10.553 8.010 0.431

250 10 43
Median T – 17s 0.14s 1.14s 0s

75th %-ile T – 21s 0.20s 1.15s 0s
Zph
0.5(α)×104 – 0.976 0.882 0.011

500 10 43
Median T – 24s 0.16s 4.5s 0s

75th %-ile T – 29s 0.17s 4.5s 0s
Zph
0.5(α)×104 – 0.061 0.057 0.0003

1,000 10 44
Median T – 26s 0.18s 17.5s 0s

75th %-ile T – 39s 0.20s 17.6s 0s
Zph
0.5(α)×104 – 0.013 0.010 0.00005

2,000 10 43
Median T – 31s 0.21s 1m 10.0s 0s

75th %-ile T – 53s 0.23s 1m 10.2s 0s
Zph
0.5(α)×104 – 0.008 0.006 0.00001

5,000 10 42
Median T – 1m 4s 0.30s 7m 43s 0s

75th %-ile T – 1m 28s 0.36s 7m 44s 0s
Zph
0.5(α)×104 – 0.0013 0.0011 0.000002

10,000 10 44
Median T – 1m 52s 0.57s 31m 5s 0s

75th %-ile T – 2m 20s 0.61s 31m 9s 0s
Zph
0.5(α)×104 – 0.00009 0.00009 0.0000001

with 10 fixed Pareto systems. In these problems, we solve many quadratic programs, instead of

using hard-coded look-up tables to determine the scores and rate constraints in the MVN Phantom

and SCORE allocation strategies. We observe that iSCORE computation times are comparable

to MOCBA for problem sizes r ∈ {10, 20, 50, 100} and are faster than MOCBA for problem

sizes greater than r = 100 in both 4-objective and 5-objective problems of this type. While SCORE

suffers on computation time for smaller problems due to the quadratic programs calculations, it also

overtakes MOCBA on 4-objective problems larger than r = 1, 000 and 5-objective problems larger

than r = 2, 000. As mentioned above, we suspect that MOCBA takes longer for large problems due

to the increased number of computations between systems. Comparing Tables 6 and 7, we see that

an additional objective can add up to 1 minute of extra time in 5,000 system problems and around

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 7

Table 8: The table reports metrics for 10 MORS problems with d = 5 objectives
generated randomly using the fixed Pareto method.

Med. Med. MVN
r |P| |Pph| Metric Phantom SCORE iSCORE MOCBA Equal

20 10 87
Median T 52s 12s 0.1s 0.019s 0s

75th %-ile T 1m 3s 16s 0.2s 0.023s 0s
Zph
0.5(α)×104 73.662 72.232 59.983 10.867

50 10 85
Median T 3m 45s 26s 0.22s 0.068s 0s

75th %-ile T 6m 35s 28s 0.27s 0.071s 0s
Zph
0.5(α)×104 6.129 4.422 5.783 0.504

100 10 88
Median T 17m 21s 35s 0.26s 0.247s 0s

75th %-ile T 35m 24s 46s 0.32s 0.273s 0s
Zph
0.5(α)×104 1.158 1.143 1.043 0.037

250 10 85
Median T – 1m 1s 0.28s 1.41s 0s

75th %-ile T – 1m 16s 0.31s 1.42s 0s
Zph
0.5(α)×104 – 0.095 0.092 0.001

500 10 84
Median T – 57s 0.32s 5.53s 0s

75th %-ile T – 1m 8s 0.33s 5.55s 0s
Zph
0.5(α)×104 – 0.034 0.027 0.0002

1,000 10 89
Median T – 1m 28s 0.35s 21.91s 0s

75th %-ile T – 2m 2s 0.40s 21.94s 0s
Zph
0.5(α)×104 – 0.021 0.021 0.0001

2,000 10 95
Median T – 2m 55s 0.47s 1m 27.5s 0s

75th %-ile T – 3m 47s 0.52s 1m 27.8s 0s
Zph
0.5(α)×104 – 0.008 0.006 0.00002

5,000 10 83
Median T – 4m 15s 0.65s 9m 26s 0s

75th %-ile T – 4m 24s 0.68s 9m 32s 0s
Zph
0.5(α)×104 – 0.001 0.0006 0.0000008

10,000 10 90
Median T – 8m 52s 1.15s 38m 16s 0s

75th %-ile T – 11m 13s 1.21s 38m 31s 0s
Zph
0.5(α)×104 – 0.0001 0.0001 0.0000002

6 minutes of extra time in 10,000 system problems for MOCBA.

The MVN Phantom allocation strategy runs into memory limitations for problems larger than

r = 100 in both 4 and 5 objectives and has larger computation times for the small problems due to

the quadratic program calculations. Consider a 4-objective problem with 250 systems, 10 Pareto

systems, and 43 phantom Pareto systems. The MVN Phantom allocation strategy will include

10 ∗ 9 = 90 MCE rate constraints and 240 ∗ 43 = 10, 320 MCI rate constraints to consider in

fmincon. Additionally, each of the rates will need to be determined using a quadratic program.

B.2 Tables for Problems Generated via the Variable Pareto Method

We now consider the test problems generated by the variable Pareto method. In contrast to the

fixed Pareto method, the variable Pareto method implies each test problem has a different number

8 APPLEGATE ET AL.

of Pareto systems, which results in a greater variation in the number of phantom Pareto systems

for problems with the same overall size r. Thus, the number of MCE and MCI rate constraints

for the MVN Phantom, SCORE, and iSCORE allocation strategies can be much higher than those

in the fixed Pareto problems. Table 9 shows time and rate results for 3-objective problems with

variable Pareto systems. Recall that we use hard-coded score and rate calculations with 3-objective

problems. Tables 10 and 11 show time and rate results for 4-objective and 5-objective problems

with variable Pareto systems, respectively. To solve for our proposed allocations in these tables, we

Table 9: The table reports metrics for 10 MORS problems with d = 3 objectives generated randomly
using the variable Pareto method.

Med. Med. MVN MVN MVN
r |P| |Pph| Metric True Indep Phantom SCORE iSCORE MOCBA Equal

20 10 20

Median T – – 0.23s 0.09s 0.04s 0.017s 0s
75th %-ile T – – 0.24s 0.13s 0.06s 0.021s 0s
Zbf
0.5(α)×104 – – 17.997 17.951 15.081 3.497

Zph
0.5(α)×104 – – 17.997 17.951 15.081 3.497

50 11 23

Median T – – 1.0s 0.1s 0.07s 0.053s 0s
75th %-ile T – – 1.3s 0.2s 0.09s 0.056s 0s
Zbf
0.5(α)×104 – – – – – –

Zph
0.5(α)×104 – – 16.167 15.882 15.905 1.122

100 19 38

Median T – – 3s 0.4s 0.2s 0.166s 0s
75th %-ile T – – 8s 1.2s 0.5s 0.172s 0s
Zph
0.5(α)×104 – – 0.941 0.809 0.857 0.033

250 31 62
Median T – – 80s 1s 1s 0.93s 0s

75th %-ile T – – 2m 14s 3s 2s 0.94s 0s
Zph
0.5(α)×104 – – 0.946 0.932 0.714 0.011

500 43 87
Median T – – – 4s 3s 3.67s 0s

75th %-ile T – – – 7s 5s 3.71s 0s
Zph
0.5(α)×104 – – – 0.146 0.108 0.0011

1,000 62 125
Median T – – – 7s 2s 14.3s 0s

75th %-ile T – – – 11s 10s 14.4s 0s
Zph
0.5(α)×104 – – – 0.018 0.009 0.0001

2,000 93 187
Median T – – – 7s 2s 57.4s 0s

75th %-ile T – – – 9s 4s 57.6s 0s
Zph
0.5(α)×104 – – – 0.005 0.007 0.00002

5,000 165 330
Median T – – – 12s 8s 5m 55s 0s

75th %-ile T – – – 13s 10s 5m 56s 0s
Zph
0.5(α)×104 – – – 0.000008 0.000008 0.0000003

10,000 245 490
Median T – – – 47s 35s 23m 56s 0s

75th %-ile T – – – 1m 6s 38s 23m 59s 0s
Zph
0.5(α)×104 – – – 0.00001 0.00001 0.0000002

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 9

solve many quadratic programs.

In Table 9, notice that SCORE and iSCORE computation times are comparable to MOCBA for

problem sizes up to r = 500 and are faster than MOCBA for problem sizes greater than r = 500. The

MVN Phantom allocation strategy runs into memory limitations for problems larger than r = 250

and is slower than all other allocation strategies due to the increased number of rate constraints

considered. We include columns for MVN True and MVN Independent in this table to be consistent

with Table 6, but computing the brute force allocations was computationally infeasible.

Table 10 shows time and rate results for 4-objective problems with variable Pareto systems. Since

we solve many quadratic programs to determine our proposed allocations, the SCORE computation

Table 10: The table reports metrics for 10 MORS problems with d = 4 objectives
generated randomly using the variable Pareto method.

Med. Med. MVN
r |P| |Pph| Metric Phantom SCORE iSCORE MOCBA† Equal

20 10 42
Median T 26s 11s 0.07s 0.016s 0s

75th %-ile T 36s 13s 0.11s 0.022s 0s
Zph
0.5(α)×104 91.091 89.554 89.554 11.612

50 21 89
Median T 6m 3s 56s 0.24s 0.055s 0s

75th %-ile T 9m 42s 1m 11s 0.26s 0.056s 0s
Zph
0.5(α)×104 16.659 16.252 12.460 1.269

100 31 143
Median T – 3m 47s 0.7s 0.21s 0s

75th %-ile T – 16m 26s 1s 0.22s 0s
Zph
0.5(α)×104 – 0.703 0.703 0.023

250 59 274
Median T – 1h 38m 12s 1.20s 0s

75th %-ile T – 3h 54m 31s 1.20s 0s
Zph
0.5(α)×104 – 0.145 0.120 0.003

500 87 432
Median T – – 7s 4.67s 0s

75th %-ile T – – 37s 4.70s 0s
Zph
0.5(α)×104 – – 0.017 0.0003

1,000 133 686
Median T – – 12s 18.60s 0s

75th %-ile T – – 53s 18.65s 0s
Zph
0.5(α)×104 – – 0.015 0.00006

2,000 208 1,062
Median T – – 33s 1m 13.3s 0s

75th %-ile T – – 34s 1m 13.7s 0s
Zph
0.5(α)×104 – – 0.00006 0.000004

5,000* 374 2,064
Median T – – 2m 36s 8m 32s 0s

75th %-ile T – – 2m 42s 8m 38s 0s
Zph
0.5(α)×104 – – 0.00005 0.000002

10,000* 564 3,133
Median T – – – 32m 36s 0s

75th %-ile T – – – 32m 39s 0s
Zph
0.5(α)×104 – – – 0.0000002

∗ Computation for this row performed in MATLAB R2017a on a high performance computing
cluster node with two 10-Core Intel Xeon-E5 processors and 128GB of memory

10 APPLEGATE ET AL.

times are slower — in the range of hours for problems of size r = 250. Also, MVN Phantom begins

to run into memory limitations due to the large number of rate constraints for problems of size

r = 100. iSCORE is competitive with MOCBA for smaller problems and is faster than MOCBA

for problems of size r = 2, 000 and greater. Note, however, that iSCORE also succumbs to memory

limitations for problems of size r = 10, 000.

Table 11 shows time and rate results for 5-objective problems with variable Pareto systems. Since

we solve many quadratic programs to determine our proposed allocations, the SCORE computation

times are slower — in the range of hours for problems of size r = 100. Also, MVN Phantom begins

to have memory limitations due to the large number of rate constraints for problems of size r = 100.

iSCORE, while still faster than MVN Phantom and SCORE, is not as competitive with MOCBA

for problems in this table. This result is largely due to the computation of the phantom Pareto

Table 11: The table reports metrics for 10 MORS problems with d = 5 objectives
generated randomly using the variable Pareto method.

Med. Med. MVN
r |P| |Pph| Metric Phantom SCORE iSCORE MOCBA† Equal

20 16 123
Median T 1m 16s 1m 16s 0.31s 0.02s 0s

75th %-ile T 1m 34s 1m 55s 0.58s 0.03s 0s
Zph
0.5(α)×104 27.536 27.416 26.661 3.943

50 30 278
Median T 18m 18s 4m 38s 2s 0.08s 0s

75th %-ile T 21m 44s 23m 6s 7s 0.08s 0s
Zph
0.5(α)×104 7.394 7.326 5.461 0.641

100 48 536
Median T – 1h 40m 10s 0.24s 0s

75th %-ile T – 2h 37m 19s 0.24s 0s
Zph
0.5(α)×104 – 1.111 0.844 0.031

250 88 1,110
Median T – – 21s 1.38s 0s

75th %-ile T – – 39s 1.44s 0s
Zph
0.5(α)×104 – – 0.039 0.0005

500 146 1,997
Median T – – 1m 5s 5.35s 0s

75th %-ile T – – 3m 6s 5.38s 0s
Zph
0.5(α)×104 – – 0.014 0.0001

1,000 228 3,373
Median T – – 3m 56s 21.18s 0s

75th %-ile T – – 4m 5s 21.23s 0s
Zph
0.5(α)×104 – – 0.0001 0.00004

2,000* 356 5,618
Median T – – 13m 31s 1m 45.2s 0s

75th %-ile T – – 24m 25s 1m 45.8s 0s
Zph
0.5(α)×104 – – 0.0007 0.00002

5,000* 648 11,282
Median T – – – 9m 43s 0s

75th %-ile T – – – 9m 44s 0s
Zph
0.5(α)×104 – – – –

∗ Computation for this row performed in MATLAB R2017a on a high performance comput-
ing cluster node with two 10-Core Intel Xeon-E5 processors and 128GB of memory

MORS: OPTIMAL SAMPLING LAWS AND APPROXIMATIONS VIA SCORE 11

systems. Recall from §6 that the number of phantom Pareto systems, and the complexity of finding

them, increases with the number of dimensions and Pareto systems. Thus, while the score and rate

calculations with iSCORE are still quite fast, the bulk of the time spent to find an allocation is

in finding the phantom Pareto systems. Note that iSCORE succumbs to memory limitations for

problems of size r = 5, 000.

C Test Problem 1: Objective Values and Supplemental Results

The objective vector values for Test Problem 1 appear in Table 12. Systems with indices 1, 2, 4, 5,

and 9 are Pareto.

Table 12: Objective vector values for Test Problem 1 from Lee et al. [2010].

System Index s ∈ S

Obj. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

g1 8 12 14 16 4 18 10 20 22 24 26 28 30 32 26 28 32 30 34 26 28 32 30 32 30
g2 36 32 38 46 42 40 44 34 28 40 38 40 42 44 40 42 38 40 42 44 38 40 46 44 40
g3 60 52 54 48 56 62 58 64 68 62 64 66 62 64 66 64 66 62 64 60 66 62 64 66 64

Figure 10 shows the performance of each sequential allocation strategy on Test Problem 1 in

terms of the estimated probabilities of MC, MCE, and MCI events. Each row of the figure represents

a different correlation that was applied to the systems within the problem. Notice that MOCBA

and our proposed allocation strategies perform similarly with regards to estimated P{MCE}, with

MOCBA performing slightly better. Our proposed allocation strategies have a lower estimated

P{MCI} and lower estimated overall P{MC}.

D Test Problem 2: Supplemental Results

Figure 11 shows the performance of each sequential allocation strategy on Test Problem 2 in terms

of the estimated probabilities of MC, MCE, and MCI events. On this test problem, iSCORE and

MOCBA both do well, with iSCORE having a slightly better overall performance on the estimated

P{MC} and estimated P{MCI}. Both iSCORE and MOCBA perform significantly better than equal

allocation.

12 APPLEGATE ET AL.

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5
Equal
MOCBA
iSCORE
SCORE
MVN Phantom

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

Figure 10: Test Problem 1, with ρ = −0.4, ρ = 0, and ρ = 0.8: Estimated P{MC} for sequential allocation
strategies, calculated across 10,000 independent sample paths for each algorithm.

0.8 1 1.2 1.4
104

0

0.1

0.2

0.3

0.4

0.5

0.8 1 1.2 1.4
104

0

0.1

0.2

0.3

0.4

0.5

0.8 1 1.2 1.4
104

0

0.05

0.1
Equal
MOCBA
iSCORE

Figure 11: Test Problem 2: Average misclassification performance of sequential allocation strategies on Test
Problem 2, calculated across 10,000 independent sample paths for each algorithm.

