

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. © 2021 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 1017–1048

ADAPTIVE SEQUENTIAL SAMPLE AVERAGE APPROXIMATION
FOR SOLVING TWO-STAGE STOCHASTIC LINEAR PROGRAMS∗

RAGHU PASUPATHY† AND YONGJIA SONG‡

Abstract. We present adaptive sequential SAA (sample average approximation) algorithms
to solve large-scale two-stage stochastic linear programs. The iterative algorithm framework we
propose is organized into outer and inner iterations as follows: during each outer iteration, a sample-
path problem is implicitly generated using a sample of observations or “scenarios,” and solved only
imprecisely, to within a tolerance that is chosen adaptively, by balancing the estimated statistical
error against solution error. The solutions from prior iterations serve as warm starts to aid efficient
solution of the (piecewise linear convex) sample-path optimization problems generated on subsequent
iterations. The generated scenarios can be independent and identically distributed, or dependent,
as in Monte Carlo generation using Latin-hypercube sampling, antithetic variates, or randomized
quasi-Monte Carlo. We first characterize the almost-sure convergence (and convergence in mean)
of the optimality gap and the distance of the generated stochastic iterates to the true solution
set. We then characterize the corresponding iteration complexity and work complexity rates as a
function of the sample size schedule, demonstrating that the best achievable work complexity rate
is Monte Carlo canonical and analogous to the generic O(ε−2) optimal complexity for nonsmooth
convex optimization. We report extensive numerical tests that indicate favorable performance, due
primarily to the use of a sequential framework with an optimal sample size schedule, and the use
of warm starts. The proposed algorithm can be stopped in finite time to return a solution endowed
with a probabilistic guarantee on quality.

Key words. two-stage stochastic programming, sample average approximation, retrospective
approximation, sequential sampling

AMS subject classifications. 90C15, 90C06

DOI. 10.1137/19M1244469

1. Introduction. The two-stage stochastic linear program (2SLP) is that of min-
imizing the real-valued function c>x + E[Q(x, ξ)] with respect to decision variables
x ∈ Rn1

+ over a set of linear constraints X := {x ∈ Rn1
+ : Ax = b}, where Q(x, ξ) is it-

self the optimal value of a random linear program (LP) parameterized by x. Crucially,
in 2SLPs, the term E[Q(x, ξ)] appearing in the objective function is not observable
directly; instead, E[Q(x, ξ)] can only be estimated to requested precision as the sam-
ple mean Qn(x) := n−1

∑n
i=1Q(x, ξi) of optimal values Q(x, ξi), i = 1, 2, . . . , n, from

randomly sampled LPs. The generation of the random LPs to estimate E[Q(x, ξ)] is
usually accomplished through Monte Carlo sampling, by generating identically dis-
tributed “scenarios” ξi, i = 1, 2, . . . , n, that may or may not be independent.

It appears that 2SLPs were originally introduced by [17] and, owing to their
usefulness, have been extensively studied over the last few decades [9]. The sample

∗Received by the editors February 13, 2019; accepted for publication (in revised form) December
1, 2020; published electronically March 30, 2021.

https://doi.org/10.1137/19M1244469
Funding: The first author acknowledges support provided by the Office of Naval Research

(ONR) through ONR Grant N000141712295, and by the National Science Foundation through the
grant CMMI 1538050. The second author acknowledges partial support by the National Science
Foundation (NSF) under grant CMMI 1854960. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the
views of ONR or NSF.
†Department of Statistics, Purdue University, West Lafayette, IN 47907 USA (pasupath@purdue.

edu).
‡Department of Industrial Engineering, Clemson University, Clemson, SC 29634 USA (yongjis@

clemson.edu).

1017

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/19M1244469
mailto:pasupath@purdue.edu
mailto:pasupath@purdue.edu
mailto:yongjis@clemson.edu
mailto:yongjis@clemson.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1018 RAGHU PASUPATHY AND YONGJIA SONG

average approximation (SAA) method seems to have emerged as a popular approach
to solving 2SLPs by constructing a solution estimator as follows:

(i) generate an implicit approximation of the objective function using a specified
number of scenarios ξ1, ξ2, . . . , ξn obtained, e.g., using Monte Carlo sampling;

(ii) replace the 2SLP by a sample-path optimization problem [35, 61] having the
objective function obtained in (i) and having the known constraint set X , and
solve it using one of a variety of decomposition approaches that have been
proposed in the literature, e.g., [1, 51, 77].

SAA’s popularity stems from its simplicity and its obvious utility within distributed
settings, where its structure lends to easy parallelization. Over the last two decades,
SAA as described through (i) and (ii) has been extensively analyzed in settings that
are much more general than just 2SLPs. For example, results on the consistency and
rates of convergence of optimal values/solutions, large and small sample properties,
and other special properties are now available through standard textbooks [68] and
surveys [34, 35].

It is important to note that SAA is a paradigm and not an algorithm in that
important components within the SAA framework still need to be chosen before im-
plementation can occur. To implement the SAA paradigm as stated in (i) and (ii),
a practitioner needs to select a sample size and a Monte Carlo generation mecha-
nism in (i), and an appropriate solver/stopping mechanism in (ii). For instance, the
question of sample size choice for generating the sample-path problem in (i) has some-
times been a vexing issue, with practitioners often making this choice through trial
and error, using minimum sample size bounds that have been noted to be conserva-
tive [35, 41, 64], and, more recently, using multiple sample sizes and solving multiple
sample-path problems.

A premise of this paper is that SAA’s effective implementation depends crucially
on the disciplined customization (to narrowly defined problem classes, e.g., 2SLPs) of
choices internal to SAA. Such customization involves answering specific algorithmic
questions that arise during implementation. For instance,

(a) is it best to generate and solve (to machine precision) a single sample-path
problem with a large Monte Carlo sample size or is it better to progressively
and roughly solve a sequence of sample-path problems generated with increas-
ing sample size? If the latter strategy is better, what schedule of sample sizes
should be used?

(b) recognizing that any generated sample-path problem suffers from sampling
error and hence suggests not solving to machine precision, to what extent
should a sample-path problem be solved?

(c) what type of solvers should be used in solving the generated sample-path
problems, given that the solution information to previously solved sample-
path problem(s) can be fruitfully used as a warm start to a subsequent sample-
path problem?

In this paper, we rigorously investigate questions (a)–(c) for the specific case of 2SLPs.
And, consistent with our earlier comments, our answers to (a)–(c) seem to be vital to
attaining the encouraging numerical experience we describe in section 7.

1.1. Summary and insight on main results. The essence of our proposed
framework is the construction of a sequential SAA framework for solving 2SLPs,
where a sequence of approximate 2SLPs are generated and solved to progressively
increasing precision across iterations. The framework is such that the early iterates
are obtained with little computational burden since, by design, the generated sample-

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1019

path problems tend to have small sample sizes and are solved imprecisely; and the later
iterates can be expected to be obtained with ease as well since they tend to benefit
from the warm starts using solution information obtained in previous iterations. The
schedule of sample sizes and the adaptive optimality-tolerance parameters are chosen
to be in lockstep, ensuring that no particular sample-path problem is “oversolved.”
The framework we provide is an algorithm in the strict sense of the word in that
we make specific recommendations for choosing (i) the schedule of sample sizes to
generate the sample-path problems to approximate the 2SLP, (ii) the schedule of
error-tolerance parameters to which each of the generated sample-path problems is to
be solved, and (iii) the solver to use when solving the sample-path problems. We also
demonstrate that our framework can exploit existing results on finite-time stopping to
provide solutions with probabilistic guarantees on optimality. Our extensive numerical
experience on solving large-scale 2SLPs suggests that the proposed algorithm yields
competitive computational performance compared with existing methods.

We present a number of results that form the theoretical basis for the proposed
algorithm. We present sufficient conditions under which the optimality gap and the
distance (from the true solution set) of the algorithm’s stochastic iterates converges
to zero almost surely and in expectation. We also derive the corresponding iteration
complexity and work complexity rates, that is, we provide upper bounds (in expec-
tation) on the number of iterations and the number of Monte Carlo oracle calls to
ensure that the solution resulting from the framework is ε-optimal. The derived work
complexity leads to an optimal sample size schedule which is shown to achieve the
fastest possible convergence rate in a Monte Carlo setting. Last, we demonstrate
that using sample size schedules that deviate from the proposed schedule will lead to
inferior convergence rates.

We emphasize that the framework we propose is general in that it allows for the
use of a wide range of dependent sampling, e.g., Latin-hypercube sampling (LHS) [45],
antithetic variates [47], and randomized quasi-Monte Carlo [27, 42] within a generated
sample-path problem, and the reuse of scenarios across generated sample-path prob-
lems. While we do not attempt to demonstrate that the use of such variance reduction
measures is better than independent and identically distributed (i.i.d.) sampling, other
reports [15, 73] in the literature suggest the fruitfulness of such variance reduction
techniques.

1.2. Related literature. 2SLPs have been the subject of investigation for a
long time [8] and algorithms to solve 2SLPs can be conveniently classified based on
whether or not the probability space underlying the 2SLP is endowed with a sample
space having a finite number of outcomes. As noted in [78], an enormous amount of
work has been generated especially for the context where the sample space is finite,
resulting in various algorithm classes that directly exploit the finite sum structure—
see [8] and [14] for entry points into this substantial literature.

For 2SLPs with sample spaces having countably infinite or an uncountable number
of outcomes, or for that matter even sample spaces with large cardinality, Monte Carlo
sampling approaches appear to be a viable alternative [68, 69, 70]. In fact, sequential
Monte Carlo sampling methods such as what we propose here are not new and have
appeared in the stochastic programming (SP) and simulation optimization literature
for several decades now [54, 19, 23, 31, 33, 34, 69, 75]. For instance, [23] proposes
the stochastic quasi-gradient methods for optimization of discrete event systems, [69]
suggests the idea of solving a sequence of sample-path problems with increasing sam-
ple sizes as a practical matter, and [33] gives various sufficient conditions on how fast

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1020 RAGHU PASUPATHY AND YONGJIA SONG

the sample size should grow in order to ensure the consistency of the SAA estimator
with varying sample sizes. For SPs where the corresponding sample-path problems are
smooth optimization problems, [58, 62] study the sample size selection problem for the
sequential sampling procedure. They model the sequential sampling procedure as a
stochastic adaptive control problem, by finding the optimal sample size as well as the
number of iterations that one should apply to solve the sampled problems, so that the
total expected computational effort expended in the entire procedure is minimized. A
surrogate model is then proposed to approximate this adaptive control model so that
the sample size and the number of iterations to be employed at each iteration can
be found (relatively) easily according to results from previous iterations, by solving
the surrogate model. From an algorithmic perspective, the stochastic decomposi-
tion framework initially developed by [31] is perhaps the most well-known practical
approach that exploits the connections between statistical inference, sampling, and
stochastic LPs. In addition, [28] proposes a simulation-based Benders decomposition
approach as a variant of the stochastic subgradient method specifically for 2SLPs and
develops statistical confidence bounds for the optimal values.

Similarly to [33], [54, 56, 53] suggest retrospective approximation (RA) where a
smooth stochastic optimization problem is solved through a sequence of sample-path
problems generated with increasing sample sizes. Unlike in [33], RA methods solve
the sample-path problems imprecisely, until a generally specified error-tolerance pa-
rameter is satisfied. The methods presented here can be thought to be adaptive RA in
that the error-tolerance sequence in our current framework is adaptive since it depends
explicitly on a measure of sampling variability. We find that such adaptivity is crucial
for good numerical performance, although it brings additional technical difficulty due
to the need to handle stopping time random variables. Also, whereas the methods
in [54, 58, 62] do not apply to nonsmooth problems such as 2SLPs, the methods we
present here are tailored (through the choice of solver) to exploit the structure inher-
ent to 2SLPs. We note in passing that adaptive sampling as a strategy to enhance
efficiency of stochastic optimization algorithms has recently gained popularity; see,
for example, [10, 11, 29, 55, 71].

There has also been some recent work on the question of assessing solution quality
in general SPs that directly applies to the context we consider here. For example,
[4, 5] propose sequential sampling methods and study conditions under which their
employed optimality gap estimator is asymptotically valid in the sense of lying in a
returned confidence interval with a specified probability guarantee. Applying these
conditions when stipulating the sample size to be employed in each iteration, one
naturally gets a highly reliable stopping criterion for the sequential sampling proce-
dure. As we will demonstrate, the results from [4, 5] can be modified for application
within a finite-time version of the proposed framework, notwithstanding the fact that
the generated sample-path problems in the proposed framework need only be solved
imprecisely, to within a specified error-tolerance parameter.

1.3. Organization of the paper. The rest of the paper is organized as follows:
section 2 presents important notation, convention, and terminology used throughout
the paper, a precise problem statement of 2SLP, and a listing of key assumptions.
Section 3 introduces the proposed adaptive sequential SAA framework. Section 4
presents various results pertaining to consistency, work complexity rates, and opti-
mal sample size schedules. Section 6 provides a finite stopping rule for the adaptive
sequential SAA algorithm by incorporating the sequential sampling approaches pro-
posed in [4] and [5]. Section 7 shows computational performance of the proposed
adaptive sequential SAA framework on a variety of test instances.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1021

2. Problem setup. The 2SLP is formally stated as follows:

min c>x+ q(x)(P)

s.t. x ∈ X :=
{
x ∈ Rn1

+ | Ax = b
}
,

where the r1 × n1 matrix A, r1 × 1 vector b, and n1 × 1 vector c are assumed to be
fixed and known. The second-stage value function q(x) is defined as

(2.1) q(x) = E[Q(x, ξ)] =

∫
Ξ

Q(x, ξ) dP (ξ),

where for each ξ ∈ Ξ, the second-stage objective value

(2.2) Q(x, ξ) = min
y∈Rn2

+

{
d(ξ)>y |W (ξ)y ≥ h(ξ)− T (ξ)x

}
.

We assume that the second-stage objective value is finite, i.e., Q(x, ξ) > −∞ ∀x ∈
X and ξ ∈ Ξ. Notice that the function q(·) is not directly “observable” but can
be estimated pointwise by “generating scenarios.” Specifically, we assume that an
iterative algorithm, during the `th iteration, generates scenarios ξ`1, ξ

`
2, . . . , ξ

`
m`
∈ Ξ

that are identically distributed according to some probability measure. The resulting
“sample-path problem” due to scenarios ξ`1, ξ

`
2, . . . , ξ

`
m`
∈ Ξ is given by

min c>x+Q`m`(x)(P`)

s.t. x ∈ X :=
{
x ∈ Rn1

+ | Ax = b
}
,

where the second-stage sample-path value function Q`m`(x) := m−1
`

∑m`
i=1Q(x, ξ`i),

and Q(x, ξ`i) is given through (2.2).
To accommodate the probabilistic analysis of the adaptive iterative algorithms

we propose, we assume the existence of a filtered probability space (Ω,F , (F`)`≥1,P)
such that the iterates (x̂`)`≥1 generated by the algorithm we propose are adapted
to (F`)`≥1. We note then that Q`m`(·) denotes an F`-measurable function estimator

of q(·) constructed from ξ`i , i = 1, 2, . . . ,m`, identically distributed, F`-measurable
random objects. The random objects ξ`i , i = 1, 2, . . . ,m`, ` = 1, 2, . . . , correspond
to what have been called scenarios in the SP literature. We will use ξ` to denote
a generic F`-measurable outcome, and ξ`1, ξ

`
2, . . . to denote F`-measurable outcomes

obtained from Monte Carlo sampling during iteration `. Thus, the problem in (P`)
is a “sample-path approximation” of the problem in (P) and the function Q`m`(·)
is a sample-path approximation of the function q(·). The precise sense in which
the function Q`m`(·) approximates q(·) will become clear when we state the standing
assumptions in section 2.2.

The notation we use (with the superscript and subscript), while cumbersome,
is needed to reflect the fact that the framework we propose allows for a variety of
dependence structures of ξ`i , i = 1, 2, . . . ,m`, within and across iterations ` = 1, 2,
For example, in the simplest and most prevalent case of i.i.d. sampling, generation is
done so that the random objects ξ`i , i = 1, 2, . . . ,m`, are mutually i.i.d. for each `; the
objects ξ`i , i = 1, 2, . . . ,m`, can also be generated so as to satisfy chosen dependency
structures that reduce variance, e.g., LHS [45], antithetic variates [48], and randomized
quasi-Monte Carlo [37, 27]. Similarly, across iterations ` = 1, 2, . . . , one can arrange
for scenarios from previous iterations to be reused in subsequent iterations as in
common random numbers [48]. Indeed, we will have to make certain assumptions
on Q`m`(·), ` = 1, 2, . . . , in section 2.2 that will implicitly impose restrictions on the

nature of sampling, to ensure that Q`m`(·) approximates q(·) well enough.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1022 RAGHU PASUPATHY AND YONGJIA SONG

2.1. Further notation and convention. We let S∗ denote the optimal solu-
tion set, z∗ the optimal value, and S∗(ε) := {x ∈ X : c>x + q(x) − z∗ ≤ ε} the
ε-optimal solution set of problem (P). Analogously, S∗m` denotes the optimal solution

set, z∗m` the optimal value, and S∗m`(ε) := {x ∈ X : c>x + Q`m`(x) − z∗m` ≤ ε} the
ε-optimal solution set for problem (P`).

The following definitions are used extensively throughout the paper. (i) R+ de-
notes the set of nonnegative real numbers. (ii) For x = (x1, x2, . . . , xn) ∈ Rn, ‖x‖2
refers to the Euclidean norm ‖x‖2 =

√
x2

1 + x2
2 + · · ·+ x2

n. (iii) For a real-valued
continuous function g : X → R defined on the compact set X , the sup-norm ‖g‖
is defined as ‖g‖ := maxx∈X |g(x)|. (iv) The distance between a point x ∈ Rn and
a set X ⊆ Rn is defined as dist(x,X) := inf{‖x − z‖2 : z ∈ X}, and the distance
between two sets X,Y ⊆ Rn is defined as dist(X,Y) := supx∈X{dist(x, Y)}. The
definition we have used for dist(·, ·) suffices for our purposes even though it is not a
metric since dist(X,Y) 6= dist(Y,X) in general. (v) The diameter diam(X) of a set
X ⊆ Rn is defined as diam(X) := supx,y∈X{‖x− y‖2}. (vi) The projection of a point
x ∈ Rn onto a set X ⊆ Rn is defined as proj(x,X) := arg infz∈X{‖x− z‖2}. (vii) |X|
denotes the cardinality of set X. (viii) For a sequence of Rd-valued random variables
{Zn}, Z, we say Zn → Z almost surely to mean that {Zn} converges to Z almost
surely, that is, with probability one. We say that Zn converges to Z in L2-norm if
E[‖Zn‖2] → E[‖Z‖2] as n → ∞. (See [7] for modes of convergence of sequences of
random variables.)

2.2. Assumptions. The following is a list of assumptions that we will use to
prove various results in the paper. Assumptions 1 and 2 are standing assumptions in
that we will assume these to hold always. Assumption 3 will be invoked as and when
needed.

Assumption 1 (condition on relatively complete recourse). The first-stage feasible
region X of problem (P) is compact; furthermore, problem (P) has relatively complete
recourse, that is,

P
{(
y ∈ Rn2

+ : W (ξ) y ≥ h(ξ)− T (ξ)x
)

= ∅
}

= 0 ∀x ∈ X .

Assumption 2 (condition on estimator quality). The individual observations com-
prising the Monte Carlo estimator have finite variance, that is, for all ` ≥ 1,

(2.3) sup
x∈X

Var(Q(x, ξ`) | F`−1) <∞ a.s.

Moreover, the Monte Carlo estimator error decays at the canonical Monte Carlo rate,
that is, there exists a constant κ0 <∞ such that for all ` ≥ 1,

(2.4) E
[
‖ε̄m‖2 | F`−1

]
≤ κ0

m
a.s.,

where the sample-mean error function ε̄m(x) := Q`m(x)−q(x) = m−1
∑m
j=1(Q(x, ξ`j)−

q(x)). (The ‖ · ‖ appearing in (2.4) is the sup-norm defined in section 2.1.)

Assumption 3 (condition on growth rate of objective function). The (true) ob-
jective function exhibits γ0-first-order growth on X , that is,

γ0 := sup
s
{s : c>x+ q(x)− z∗ ≥ s dist(x,S∗) ∀x ∈ X} > 0.

Some form of regularity such as (2.3) in Assumption 2 is routinely made in the
SP literature [3] and is generally easy to satisfy in 2SLPs when the feasible region X
is compact.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1023

The condition (2.4) in Assumption 2 has been stated for generality, to subsume
many contexts that involve dependent and biased sampling, and needs justification.
To get a clear sense of the conditions under which (2.4) in Assumption 2 holds, let’s
first observe that in the i.i.d. unbiased context, that is, when ξ`j , j = 1, 2, . . . , are i.i.d.

and E[Q(x, ξ`j)− q(x) | F`−1] = 0 almost surely, the vast body of recent literature on
concentration inequalities [12, 13, 38, 74] guarantees that (2.4) holds under a variety of
moment conditions on Q(x, ξ`). For a general result that can be directly applied in the
i.i.d. unbiased context, see [20, Proposition 3.1] established for Banach spaces. (Much
of the literature on concentration inequalities is focused on sharp quantifications of the
tail probabilities associated with ε̄m, and thus characterize the constant κ0 indirectly;
our proposed algorithms do not rely on knowing κ0.)

In the dependent but unbiased sampling context, that is, when E[Q(x, ξ`j) −
q(x) | F`−1] = 0 almost surely but ξ`j , j = 1, 2, . . . , are not necessarily independent,
Assumption 2 holds in many popular settings where the estimator can be written as
an alternate sum of i.i.d. unbiased random variables at each x ∈ X . For instance, con-
sider using antithetic variates [48], where for even m we set ξ`j := U `j ∈ (0, 1), ξ`j+1 =

1 − U `j , j = 1, 3, 5, . . . ,m − 1. Then, Q`m(x) can be written as the sample mean of
m/2 (ignoring nonintegrality) i.i.d. unbiased random variables, each of which is the
sum of the two dependent random variables Q(x, U `j) and Q(x, 1 − U `j), implying
that Assumption 2 again holds. Similarly, if one chooses stratified sampling [27] as
a variance reduction technique, then Q`m(x), x ∈ X can be written as a finite convex
combination of sample means, each of which is composed of i.i.d. random variables
that are unbiased with respect to the conditional means.

Assumption 2 can be shown to hold in other dependent sampling settings such as
LHS [45] as well. To see this, we “construct” a d-dimensional random variable ξ`j :=

(ξ`1j , ξ
`
2j , . . . , ξ

`
dj) ∈ [0, 1)d, where ξ`ij = m−1(πij + Uij), πi = (πi1, πi2, . . . , πim), i =

1, 2, . . . , d, is each a uniform random permutation of (0, 1, 2, . . . ,m− 1), Uij ∼ [0, 1),
and Uij ’s and πi’s are independent. Under this setup, we see that ξ`ij ∼ U [0, 1),

ξ`i ∼ U [0, 1)d, and that Q`m`(x) is an unbiased estimator of q(x) that is constructed
from dependent random variables. Furthermore, under this setup, and as shown in [45,
p. 245] and [52, section 10.3], Var(Q(x, ξ)) < ∞ guarantees that Var(Q`m`(x)) =

σ2
0/m` + o(m−1

`) = O(m−1
`), where σ2

0 = E[(Q(x, ξ)−Qadd(x, ξ))2] and Qadd(x, ξ)) is
the additive approximation of Q(x, ξ) obtained using ANOVA. See also [72] for large
sample properties in the LHS context.

Randomized quasi-Monte Carlo (RQMC) is a broad class of variance reduction
methods that subsumes various dependent sampling techniques, and where arguments
similar to what we have outlined for LHS apply when considering the variance of the
estimator Q`m` . See [36, section 2], and the specific RQMC methods listed there, to
see how RQMC yields estimators having variance at least as small as what is obtained
using naive Monte Carlo, thus guaranteeing O(m−1

`) variance.
We recognize that we have limited all of the above discussion on dependent sam-

pling by fixing x ∈ X . A complete treatment of Assumption 2 that involves depen-
dence across x ∈ X will require us to consider the behavior of the random function
Q`m`(·) by directly making assumptions on the vector (d(ξ),W (ξ), h(ξ), T (ξ)) appear-
ing in the second-stage problem (2.2). In general, some sort of a stipulation on the
quality of the Monte Carlo estimator is needed to provide reasonable guarantees re-
lating to convergence and convergence rates. For example, in [68, Chapter 5], we see
that even for convergence of sample-path optimal values of SAA to the true optimal
value, one needs uniform convergence (across x ∈ X) of the sample-path functions.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1024 RAGHU PASUPATHY AND YONGJIA SONG

Finally, Assumption 3 is a standard regularity condition [68] having to do with the
growth behavior of the true objective function. Specifically, Assumption 3 imposes a
minimum growth condition on the true objective function c>x+ q(x).

3. Adaptive sequential SAA. In this section, we present the proposed adap-
tive sequential SAA algorithm. The proposed algorithm is based on the following
three high-level ideas.

(1) Instead of solving (to any given precision) a single sample-path problem that
is generated with a large prespecified sample size, solve (using a chosen Solver-
A) a sequence of sample-path problems generated with increasing sample sizes
according to a sample size schedule.

(2) Use the solution information obtained from solving each sample-path problem
as a warm start for solving the subsequent sample-path problem.

(3) To ensure that no particular sample-path problem is oversolved, solve each
generated sample-path problem only imprecisely to within an optimality tol-
erance parameter that is adaptively chosen by explicitly considering the in-
herent sampling error resulting from the choice of sample size.

Algorithm 3.1 An adaptive sequential SAA framework.

1: Input: Solver-A, a sampling scheme, constants ν, σmin, σmax ∈ (0,∞) with
σmin < σmax.

2: Set `← 0.
3: for ` = 1, 2, . . . do
4: Select sample size m` for outer iteration ` and draw a sample M` :=

{ξ`1, ξ`2, . . . , ξ`m`}.
5: for t = 1, 2, . . . do
6: Using Solver-A on (P`), execute tth inner iteration.
7: Obtain candidate solution x̂`,t, gap estimate G`,t, and variance parameter

estimate σ̂`,t.

8: if G`,t ≤ ε`,t := ν m
−1/2
` proj (σ̂`,t, [σmin, σmax]) then

9: Break the inner loop with a candidate solution x̂` := x̂`,t.
10: end if
11: end for
12: Set `← `+ 1.
13: end for

As can be seen through the listing for Algorithm 3.1, the iterative framework
maintains outer iterations that are indexed by `, each of which is composed of inner
iterations indexed by t. During the `th outer iteration, the `th sample-path prob-
lem (P`) with sample M` := {ξ`1, ξ`2, . . . , ξ`m`} is generated and solved inexactly up
to precision ε` using an iterative optimization algorithm (generically called Solver-
A) for nonsmooth convex programs, e.g., the subgradient method [46], level bundle
method [39]. We will see later that any solver that satisfies a certain imposition on
convergence rate can be used as Solver-A. The iterations of Solver-A thus constitute
the inner iterations generating a sequence of inner solutions x̂`,t, t = 1, 2,

During each inner iteration t, an upper bound estimate G`,t of the optimality gap
associated with x̂`,t is readily available for any variant of cutting plane algorithms,
where a lower approximation Q̌`,tm`(·) to Q`m`(·) is maintained and iteratively updated.

Specifically, the objective value corresponding to x̂`,t, z̄`t := c>x̂`,t +Q`m`(x̂
`,t), gives

an upper bound for z∗m` . The true optimality gap associated with x̂`,t, z̄`t − z∗m` , can

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1025

then be overestimated if a lower bound z`t for z∗m` is provided. Such a lower bound z`t
can be obtained, e.g., by solving z`t = minx∈X {c>x + Q̌`,tm`(x)}. This optimality gap

estimate, G`,t := z̄`t − z`t, is then compared against an estimate of the sampling error
of the true solution of the `th sample-path problem calculated using x̂`,t. Precisely,
the inner iterations terminate when

(3.1) G`,t < ε`,t := ν m
−1/2
` proj (σ̂`,t, [σmin, σmax]) ,

where σmin, σmax, ν > 0, are chosen constant parameters and, as usual, the sample
variance

(3.2) σ̂2
`,t :=

1

m`

m∑̀
i=1

[
Q(x̂`,t, ξ`i)−Q`m`(x̂

`,t)
]2
.

We informally call ε`,t appearing in (3.1) the error tolerance; notice that the condition
in (3.1) is meant to keep the estimate of the solution error (as measured by the
optimality gap G`,t) in balance with the sampling error, as measured by the error
tolerance ε`,t. The constants σmin, σmax appearing in (3.1) have been introduced for
practical purposes only, to hedge against the rare event that we generate scenarios
resulting in an extremely large or extremely small value of the sample variance. Thus

– if G`,t ≥ ε`,t, that is, the upper bound estimate of the optimality gap for solv-
ing the current sample-path problem is no less than a factor of the sampling
error estimate, continue to the next inner iteration t+ 1;

– otherwise, stop solving the current sample-path problem, that is, terminate
the inner iterations, define ε` := ε`,t, obtain a new scenario set M`+1 :=
{ξ`+1

1 , ξ`+1
2 , . . . , ξ`+1

m`+1
} with sample size m`+1 and continue to the next outer

iteration `+ 1.
When the inner termination condition (3.1) is achieved, we stop the inner iterations,
record the solution x̂`,t at termination as the current candidate solution x̂`, obtain
a new scenario set M`+1, and start a new outer iteration ` + 1 with x̂` as the ini-
tial candidate solution. Additional information such as the optimal dual multipliers
collected up to outer iteration ` can also be used to warm start the outer iteration
` + 1. The process is then repeated until a stopping criterion for the outer iteration
of Algorithm 3.1 is satisfied by the candidate solution x̂`. We defer our specification
of the outer stopping criterion to section 6.

Algorithm 3.1 is adaptive in that ε` is not prespecified—it is a function of scenarios
M` := {ξ`1, ξ`2, . . . , ξ`m`} used in the `th outer iteration. Adaptivity is crucial for
practical efficiency and when incorporated in our way, avoids several mathematical
complexities that otherwise manifest.

We end this section with a result that quantifies the quality of estimators used
within Algorthm 3.1. Specifically, Theorem 3.1 quantifies the quality of Q`m`(·) as an
estimator of q(·).

Theorem 3.1 (Monte Carlo estimator quality). Suppose Assumptions 1 and 2
hold, and the sequence of sample sizes (m`)`≥1 is chosen so that the following condition
holds:

(SS-A)

∞∑
`=1

1
√
m`

<∞, m` ≥ 1.

Then supx∈X |Q`m`(x)− q(x)| = 0 almost surely as `→∞.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1026 RAGHU PASUPATHY AND YONGJIA SONG

Proof. We can write for t > 0, a.s.,

P
{

sup
x∈X
|Q`m`(x)− q(x)| > t | F`−1

}
≤ t−1E

[
sup
x∈X
|Q`m`(x)− q(x)| | F`−1

]
= t−1 E

[(
sup
x∈X
|Q`m`(x)− q(x)|2

)1/2

| F`−1

]

≤ t−1

(
E
[
(sup
x∈X
|Q`m`(x)− q(x)|2 | F`−1

])1/2

≤
√
κ0 t
−1

√
m`

,(3.3)

where the first line in (3.3) is from Markov’s inequality [7], the third from (concave)
Jensen’s inequality [7], and the last from Assumption 2. Conclude from (3.3), the
assumed bound (SS-A), and the filtered version of the Borel–Cantelli lemma [76],
that the assertion of the theorem holds.

We note that the condition in (SS-A) is weak—any sequence (m`)`≥1 that satis-
fies m` ≥ `2+ε for large enough ` and some ε > 0 satisfies the condition in (SS-A).
The utility of Theorem 3.1 is that it connects uniform almost sure convergence of
the Monte Carlo estimator with the moment assumption specified through Assump-
tion 2. See [33] for analogous results for pointwise convergence. We are now ready to
undertake the consistency of the iterates (x̂`)`≥1 generated by Algorithm 3.1.

4. Consistency. In this section, we treat the consistency of the stochastic it-
erates generated by the proposed algorithm. By consistency, we mean convergence
guarantees (both almost sure and in expectation) associated with the true function
values at the stochastic iterates, and the stochastic iterates themselves. This section
also sets up the foundation for work complexity results of the subsequent section.

We begin with Lemma 4.1—a result on the behavior of approximate minimizers
of a sequence of convex functions that uniformly converge to a limit function. We
emphasize that this result is stated in a deterministic setting and will become very
useful in explaining the behavior of the sample paths in the stochastic context in the
subsequent section. It also appears to be interesting in its own right due to applicabil-
ity in the context of optimization with a deterministic inexact oracle. See [24, 59, 60]
for more on such problems. A complete proof is provided in the appendix of the online
supplementary document [57].

Lemma 4.1. Let (fk)k≥1, fk : X ⊂ Rd → R be a sequence of real-valued convex
functions defined on the compact set X . Let f : X → R be a real-valued function such
that fk uniformly converges to f , that is,

lim
k→∞

sup
x∈X
|fk(x)− f(x)| = 0.

Denote δk+1 := supx∈X |fk(x) − fk+1(x)|, S∗f := arg minx∈X {f(x)}, and v∗ :=
minx∈X {f(x)}. The point xk is said to be εk-optimal to fk over X if xk satisfies
|fk(xk) − v∗k| ≤ εk, where v∗k := minx∈X {fk(x)}. Suppose the sequences (δk)k≥1,
(εk)k≥1 satisfy

(SS-1)

∞∑
j=1

δj <∞,
∞∑
j=1

εj <∞.

Then the following assertions hold.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1027

(a) f(xk)→ v∗ as k →∞;
(b) for each k ≥ 1, f(xk)− v∗ ≤ 2

∑∞
j=k δj + 2

∑∞
j=k εj .

If f obeys a growth rate condition, that is, there exist τ > 0, γ > 0 such that for all
x ∈ X ,

(4.1) f(x)− v∗ ≥ τ dist(x,S∗f)γ , then

(c) for each k ≥ 1, dist(xk,S∗f) ≤ (2τ−1(
∑∞
j=k δj +

∑∞
j=k εj))

1
γ .

We emphasize that the postulates of Lemma 4.1 allow fk, f to be nonsmooth con-
vex functions without a unique minimizer. Moreover, Lemma 4.1 guarantees through
assertion (a) that the function values at the iterates converge to the optimal value
v∗ at a rate characterized in assertion (b). A corresponding rate guarantee on the
distance between the kth approximate solution xk and the true solution set S∗f can
be given under a growth rate assumption on the objective function f .

Notice that Lemma 4.1 does not assert that the sequence of approximate solu-
tions (xk)k≥1 converges to a point in the solution set S∗f , but only that the distance
between the sequence (xk)k≥1 and the set S∗f converges to zero. A guarantee such as
convergence to a point is not possible as is, but may be possible by solving regularized
versions of fk, assuming the regularization parameters are chosen appropriately. This
question lies outside the scope of the current paper.

We are now ready to characterize consistency in the stochastic context. The first
(Theorem 4.2) of these results asserts that the true function values at the iterates
generated by the proposed algorithm converge to the optimal value almost surely and
in expectation. Furthermore, if the objective function q(·) satisfies a growth condition
on X , then similar guarantees can be provided on the distance between the solutions
(x̂`)`≥1 and the solution set S∗.

Theorem 4.2 (consistency). Suppose Assumptions 1 and 2, and the sample
size condition (SS-A) hold, then the following assertions about the iterates (x̂`)`≥1

generated by Algorithm 3.1 are true.
(a) cT x̂` + q(x̂`)→ z∗ a.s. as `→∞;
(b) E

[
cT x̂` + q(x̂`)

]
→ z∗ as `→∞.

If Assumption 3 also holds, then the following assertions hold as well.
(c) dist(x̂`,S∗)→ 0 a.s. as `→∞;
(d) E[dist(x̂`,S∗)]→ 0 as `→∞.

Proof. We will prove assertion (a) by demonstrating that the postulates for
Lemma 4.1(a) are satisfied except on a set (of sample paths) of measure zero.

We know that x̂` is ε`-optimal to problem (P`), that is, |cT x̂` +Q`m`(x̂
`)− z∗m` | ≤

ε`. We also know that Q`m`(·) is convex on X , and from Theorem 3.1, Q`m`(·) is
uniformly convergent to q(·). In preparation to invoke Lemma 4.1, denote δ`+1 :=
supx∈X |Q`m`+1

(x)−Q`m`(x)| and notice that

δ` ≤ sup
x∈X
|Q`+1

m`+1
(x)− q(x)|+ sup

x∈X
|Q`m`(x)− q(x)| := ζ`+1

m`+1
+ ζ`m` .

The inequality in (2) and Assumption 2 imply that

E

[
n∑
`=1

δ`

]
=

n∑
`=1

E [δ`] ≤
n∑
`=1

E
[(
ζ`+1
m`+1

+ ζ`m`

)]
≤
√
κ0

(
n∑
`=1

1
√
m`+1

+

n∑
`=1

1
√
m`

)
,

(4.2)

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1028 RAGHU PASUPATHY AND YONGJIA SONG

where the last inequality in (4.2) follows from Jensen’s inequality [22, Theorem 5.1.3]
applied to Assumption 2. Thus,

(4.3) E

[∞∑
`=1

δ`

]
=

∞∑
`=1

E [δ`] ≤
√
κ0

(∞∑
`=1

1
√
m`+1

+

∞∑
`=1

1
√
m`

)
,

where the equality is due to the monotone convergence theorem [7, Theorem 16.2] and
the inequality is due to (4.2). The inequality in (4.3) together with the sample size
condition (SS-A) implies that E [

∑∞
`=1 δ`] <∞ and, hence, that

∑∞
`=1 δ` <∞ almost

surely. Also, recall that the error-tolerance sequence (ε`)`≥1 in Algorithm 3.1 has
been chosen as ε` = ν 1√

m`
proj(σ̂`, [σmin, σmax]). This choice implies that

∑∞
`=1 ε` <

∞ almost surely. The two inequalities above imply that all postulates leading to
assertions (a) and (b) in Lemma 4.1 are satisfied on a set (of sample paths) of measure
one; we thus conclude that assertion (a) of the theorem holds. The assertion in (b)
follows from the assertion in (a) since the function q(·) is continuous on the compact
set X and is hence bounded.

If Assumption 3 is satisfied, we know that

(4.4) dist(x̂`,S∗) ≤ γ−1
0

(
cT x̂` + q(x̂`)− z∗

)
.

Use assertion (a) and (4.4) to conclude that assertion (c) holds. Furthermore, since
X is compact, dist(x̂`,S∗) is bounded and hence assertion (d) holds as well.

Theorem 4.2 gives strong guarantees on the consistency of the objective function
value at the iterates generated by Algorithm 3.1. However, as is implied by assertion
(c) of Theorem 4.2, the solutions (x̂`)`≥1 can be guaranteed to only “converge into”
the true solution set S∗ in the sense that the distance between x̂` and the set S∗
converges to zero almost surely and in expectation, and not that the sequence (x̂`)`≥1

is guaranteed to converge to a point. We are now ready to treat convergence rates in
the stochastic context.

5. Iteration and work complexity guarantees. Theorem 4.2 guarantees that
the sequence of iterates (x̂`)`≥1 generated by Algorithm 3.1 are such that the corre-
sponding objective function values converge to the optimal value almost surely and
in expectation, and the iterates converge “into” the true solution set S∗, that is, their
distance from S∗ converges to zero almost surely and in expectation. In this section,
we will provide a rigorous sense of how fast such convergence happens. Specifically,
we provide complexity results that characterize the rate at which the optimality gap
and the distance (from S∗) converge to zero as a function of the iteration number and
the total workload incurred through a specific iteration.

The first result characterizes the sample-path iteration complexity of the pro-
posed algorithm, that is, the rate at which the convergence (as specified through
Theorem 4.2) happens as a function of iteration `.

Theorem 5.1 (iteration complexity). Suppose that Assumptions 1 and 2 hold,
and that the sample size sequence obeys the following geometric increase for ` ≥ 1:

(SS-C) m` = c1m`−1, c1 ∈ (1,∞).

Then,

E
[
cT x̂` + q(x̂`)− z∗

]
≤ 2κ2 c

−`/2
1 ,

where κ2 :=

√
c1
m1

1
√
c1 − 1

(
√
κ0(
√
c1 + 1) + σmax

√
c1ν) .(5.1)

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1029

If Assumption 3 holds as well, then

(5.2) E
[
dist(x̂`,S∗)

]
≤ 2 τ−1

0 κ2 c
−`/2
1 .

Proof. Recall δ`+1 := supx∈X |Q`m`+1
(x) − Q`m`(x)| and that the error-tolerance

sequence (ε`)`≥1 in Algorithm 3.1 has been chosen as ε` = ν 1√
m`

proj(σ̂`, [σmin, σmax]).

From arguments in the proof of Theorem 4.2, we know that
∑∞
`=1 δ` < ∞ almost

surely, and that
∑∞
`=1 ε` <∞ almost surely. This means that we can invoke assertion

(b) of Lemma 4.1 on a set of measure one, that is, we have for each ` ≥ 1,

(5.3) c>x̂` + q(x̂`)− z∗ ≤ 2

∞∑
k=`

δ` + 2

∞∑
k=`

ε` a.s.

From the monotone convergence theorem [7, Theorem 16.2], Assumption 2, and the
sample size choice (SS-C), we see that

E

[∞∑
k=`

δk

]
=

∞∑
k=`

E [δk] ≤
√
κ0

(∞∑
k=`

1
√
mk+1

+

∞∑
k=`

1
√
mk

)
≤ c−`/21

√
κ0c1
m1

√
c1 + 1
√
c1 − 1

.

(5.4)

Also, since ε` = ν 1√
m`

proj(σ̂`, [σmin, σmax]), we see that

(5.5) E [ε`] ≤
√

ν

m`
σ2

max

and, hence,

E

[∞∑
k=`

εk

]
:= lim

n→∞
E

[
n∑
k=`

εk

]
= lim
n→∞

n∑
k=`

E [εk] ≤ c−`/21

√
ν σ2

maxc1
m1

√
c1√

c1 − 1
,(5.6)

where the inequality in (5.6) is due to (5.5) and the sample size choice (SS-C). From
(5.4), (5.6), and (5.3), we conclude that the first assertion of the theorem (appearing
in (5.1)) holds. The second assertion of the theorem (appearing in (5.2)) follows
trivially from the growth condition and the first assertion.

Iteration complexity results such as that in Theorem 5.1 are generally of limited
value (especially by themselves) in sampling contexts because they characterize the
convergence rate in terms of the iteration number, which is not reflective of the total
computational work done. A more useful characterization of the convergence rate is
what has been called work complexity, which is essentially the error (in function value
or distance from solution set) expressed as a function of the total computational work
done, which for the current context includes the total number of second stage LPs
solved. We take up this question next.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1030 RAGHU PASUPATHY AND YONGJIA SONG

Towards characterizing the work complexity of the proposed algorithm, recall the
iterative process: during iteration `, a chosen solver that we generically call Solver-A
uses the solution x̂`−1 from the previous iteration as well as the dual vector information
collected so far (for the special case of fixed recourse [1, 31]) as “warm start,” and
solves the sample-path problem (P`) generated with sample M` := {ξ`1, ξ`2, . . . , ξ`m`}
to within tolerance ε`, that is, find x̂` ∈ S∗m`(ε`). Given this structure, it makes sense

then that the rapidity with which a point x̂` is identified will play a central role in
determining the overall work complexity of the proposed algorithm. Accordingly, we
now make an assumption on the nature of Solver-A being used to solve the sample-
path problem (P`).

Assumption 4. The Solver-A executed on the problem (P`) having a piecewise
linear convex objective, and with an initial solution x̂`−1 ∈ X , exhibits iteration
complexity Λ2

` dist2(x̂`−1, S∗m`)ε
−2 to obtain an ε-optimal solution, that is,

(5.7)
(
cT x̂`,t +Qm`(x̂

`,t)
)
− z∗m` ≤ Λ`

dist
(
x̂`−1, S∗m`

)
√
t

, t = 1, 2, . . . ,

where x̂`,t is the tth iterate returned by Solver-A, and S∗m` is the set of optimal
solutions corresponding to problem (P`). Denote the growth rate γ` of the sample-
path function

(5.8) γ` := sup
s

{
s : cTx+Q`m`(x)− z∗m` ≥ sdist(x, S∗m`) ∀x ∈ X

}
,

there exists λ <∞ such that

(5.9) E

[(
Λ`
γ`

)2

| F`−1

]
≤ λ2 <∞ a.s.

Assumption 4 has been stated in a way that preserves generality of our theory,
with the intent of allowing any choice of Solver-A as long as the stipulation of Assump-
tion 4 is met. Furthermore, we emphasize that Assumption 4 has been stated for piece-
wise linear convex objectives, since the objective function of the sample-path problem
(P`) is piecewise linear convex. For instance, a number of well-known subgradient
algorithms provide a guaranteed iteration complexity of the sort stipulated in (5.7)
of Assumption 4 even for convex nonsmooth objectives. For example, the standard
subgradient descent algorithm having the iterative structure xt+1 = xt−αt∂h(xt), t =
0, 1, 2, . . . , for solving the convex optimization problem minx∈X {h(x)}, when executed
with constant step size αt = ε/M2 and ‖∂h(x)‖ ≤ M ∀x ∈ X , satisfies the complex-
ity requirement stated in Assumption 4. Another recent example is a variant of the
level bundle method [6] under an idealized assumption. In our numerical experiments
presented in section 7, we use an implementable variant of the level bundle method
as Solver-A, which is described in greater detail in the appendix of the online supple-
mentary document [57].

The assumption appearing in (5.9) on the finiteness of the second moment of the
ratio Λ`/γ` is a stipulation on the extent of the “ill-conditioning” of the sample-path
problems. To see this, consider using the level method [49, Chapter 3] as Solver-A in
the proposed algorithm. It follows from a well-known result [49, p. 163] that Λ` then
satisfies

(5.10) Λ` ≤
M`√

α(1− α)2(2− α)
, α ∈ (0, 1),

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1031

where α ∈ (0, 1) is a user-chosen constant within the level method, and M` :=
supx∈X {‖c+ ∂Qm`(x)‖} is the supremum norm (taken over the fixed compact set X)
of the subgradient associated with the sample-path function. It follows from (5.10)
then that

(5.11)
Λ`
γ`
≤ 1√

α(1− α)2(2− α)

M`

γ`
,

where the ratio M`/γ` has the interpretation of the “condition number” of the `th
sample-path problem. It is in this sense that the condition appearing in (5.9) can be
violated in pathological settings where, persistently, the sample-path function remains
“steep” in certain directions but “flat” in others. Also, notice that from the Cauchy–
Schwarz inequality, the condition in (5.9) is satisfied, e.g., if the fourth moments of
Λ` and γ−1

` exist, i.e., E[Λ4
` | F`−1] < ∞ and E[γ−4

` | F`−1] < ∞ almost surely. The
following lemma is an obvious consequence of Assumption 4.

Lemma 5.2. Suppose Assumptions 1 and 4 hold. Let N` denote the number of
iterations by Solver-A to solve problem (P`) to within optimality gap ε` > 0 starting
at x̂`−1, i.e., N` := inf{t̄ : (c>x̂`,t+Q`m`(x̂

`,t))−z∗m` ≤ ε` for all t ≥ t̄, x̂`,0 := x̂`−1}.
Then, ∃Λ` ∈ F`:

P

{
N` > Λ2

`

(
dist(x̂`−1,S∗m`)

)2
ε2`

| F`−1

}
= 0 and E

[(
Λ`
γ`

)2

| F`−1

]
<∞ a.s.

We will now combine the iteration complexities characterized in Theorem 5.1 and
Lemma 5.2 to characterize the work complexity of the proposed Algorithm 3.1.

Theorem 5.3. Suppose Assumptions 1, 2, and 4 hold. Define WL :=
∑L
`=1 W̃`,

where W̃` is the number of second-stage LPs solved during the `th outer iteration of
Algorithm 3.1. Suppose (m`)`≥1 satisfies the geometric increase sampling condition
in (SS-C). Then, for L ≥ 1,
(5.12)

E
[(
cT x̂L + q(x̂L)− z∗

)]
≤ τ0/E[

√
WL], where τ0 is a constant independent of L.

If Assumption 3 also holds, then for L ≥ 1,

(5.13) E
[
dist(x̂L,S∗)

]
≤ τ0γ−1

0 /E[
√
WL],

where γ0 is the growth-rate constant in Assumption 3.

Proof. According to Lemma 5.2, and recalling that up to m` second-stage LPs are
solved in each iteration (e.g., when one employs a scenario decomposition algorithm),
for every ` ≥ 1,

E
[√

W̃`

]
= E

[√
N`m`

]
≤ E

[
E

[
Λ`

(
dist(x̂`−1,S∗m`)

)
ε`

√
m`

∣∣∣∣F`−1

]]
.(5.14)

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1032 RAGHU PASUPATHY AND YONGJIA SONG

Using (5.14) and ε` := ν m
−1/2
` proj(σ̂`, [σmin, σmax]), we get for large enough ` that

E
[√

W̃`

](5.15)

≤ m`

νσmin
E
[
E
[
Λ` dist(x̂`−1,S∗m`) | F`−1

]]
≤ m`

νσmin
E

(E[(Λ`
γ`

)2

| F`−1

]) 1
2 (

E
[(
cT x̂`−1 +Q`m`(x̂

`−1)− z∗m`
)2 | F`−1

]) 1
2


≤ m`λ

νσmin
E
[(

E
[(
cT x̂`−1 +Q`m`(x̂

`−1)− z∗m`
)2 | F`−1

]) 1
2

]
≤ m`λ

νσmin

(
E
(
E
[(
cT x̂`−1 +Q`m`(x̂

`−1)− z∗m`
)2 | F`−1

])) 1
2

≤ m`λ

νσmin

(
E
[(
δ` + ε`−1 + |z∗m`−1

− z∗m` |
)2
]) 1

2

,

where the second inequality in (5.15) uses the Cauchy–Schwarz inequality (condition-
ally) and the definition in (5.8) of the sample-path growth rate, the third inequality
uses the finite second moment assumption in (5.9) of Assumption 4, the fourth in-
equality uses the concavity of the square root function, and the last inequality uses
δ` := supx∈X {|Q`m`(x)−Q`−1

m`−1
(x)|} and the fact that x̂`−1 ∈ F`−1 is ε`−1-optimal to

cTx+Q`−1
m`−1

(x) over the set X . Next, let x∗` ∈ S∗m` , x
∗
`−1 ∈ S∗m`−1

and observe that

|z∗m`−1
− z∗m` | ≤ (cTx∗` +Q`−1

m`−1
(x∗`)− z∗m`) + (cTx∗`−1 +Q`m`(x

∗
`−1)− z∗m`−1

)

≤ 2 sup
x∈X

{
|Q`m`(x)−Q`−1

m`−1
(x)|

}
= 2δ`.(5.16)

Using (5.16) in (5.15), we get for large enough `,
(5.17)

E
[√

W̃`

]
≤ λ m`

νσmin

(
E
[
(3δ` + ε`−1)

2
]) 1

2 ≤ λ m`

νσmin

(
E
[
18δ2

` + 2ν2 σ
2
max

m`−1

]) 1
2

,

where the second inequality above uses (a+ b)2 ≤ 2a2 + 2b2 and

ε` := ν m
−1/2
` proj(σ̂`, [σmin, σmax]).

Observing that WL =
∑L
`=1 W̃`, (5.17) implies that

E[
√
WL] ≤

L∑
`=1

E
[√

W̃`

]
≤

L∑
`=1

λ
m`

νσmin

(
18E

[
δ2
`

]
+ 2ν2 σ

2
max

m`−1

) 1
2

≤
L∑
`=1

λ
m`

νσmin

(
18
κ0(1 + c1 + 2

√
c1)

m`
+ 2ν2c1

σ2
max

m`

) 1
2

≤ λ

νσmin

(
18κ0(1 + c1 + 2

√
c1) + 2ν2c1σ

2
max

) 1
2

L∑
`=1

√
m`

=
λ

νσmin

(
18κ0(1 + c1 + 2

√
c1) + 2ν2c1σ

2
max

) 1
2

√
m1√
c1 − 1

(
c
L/2
1 − 1

)
,(5.18)D

ow
nl

oa
de

d
08

/1
4/

22
 to

 1
28

.2
10

.1
26

.1
99

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1033

where the third inequality follows since E[δ2
`] ≤ κ0(m

−1/2
` + m

−1/2
`−1)2 holds from

Assumption 2, and from further algebra (also see from the proof of Theorem 4.2).
Also, we know from (5.3) that for each L ≥ 1, cT x̂L + q(x̂L)− z∗ ≤ 2

∑∞
`=L (δ` + ε`)

almost surely and, hence, for L ≥ 1,

E
(
cT x̂L + q(x̂L)− z∗

)2
≤ 4E

(lim
n→∞

n∑
`=L

(δ` + ε`)

)2
 = 4 lim

n→∞
E

(n∑
`=L

(δ` + ε`)

)2


≤ 4

∞∑
`=L

E
[
(δ` + ε`)

2
]

+ 8

∞∑
`=L

(
E
[
(δ` + ε`)

2
])1/2 ∞∑

j=`+1

(
E
[
(δj + εj)

2
])1/2

,(5.19)

where the equality is from the monotone convergence theorem [7, Theorem 16.2],
and the last inequality follows from the repeated application of Hölder’s inequality [7,
p. 242]. Let’s now bound each term appearing on the right-hand side of (5.19). Notice
that

∞∑
j=`+1

(
E
[
(δj + εj)

2
])1/2 ≤ ∞∑

j=`+1

(
2E[δ2

j] + 2E[ε2j]
)1/2

≤
∞∑

j=`+1

1
√
mj

(
2κ0(1 + c1 + 2

√
c1) + 2ν2σ2

max

)1/2 ≤ κ̃1 c
−`/2
1 ,(5.20)

where κ̃1 := (1√
m1

√
c1√
c1−1)(2κ0(1 + c1 + 2

√
c1) + 2ν2σ2

max)1/2, the second inequality in

(5.20) follows from Assumption 2 and the definition ε` := ν m
−1/2
` proj(σ̂`, [σmin, σmax]),

and the last inequality follows from using the assumed sample size increase (SS-C).
Similarly, we also get

∞∑
`=L

(
E
[
(δj + εj)

2
])
≤ κ̃2 c

−L
1 ,(5.21)

where κ̃2 := (1
m1

c21
c1−1)(2κ0(1 + c1 + 2

√
c1) + 2ν2σ2

max). Use (5.20) and (5.21) in (5.19)
to get

E
[(
cT x̂L + q(x̂L)− z∗

)2]
≤ 4

∞∑
`=L

E
[
(δ` + ε`)

2
]

+ 8

∞∑
`=L

(
E
[
(δ` + ε`)

2
])1/2 ∞∑

j=`+1

(
E
[
(δj + εj)

2
])1/2

≤ 4κ̃2c
−L
1 + 8

∞∑
`=L

(
E
[
(δ` + ε`)

2
])1/2

κ̃1c
−`/2
1

≤ 4κ̃2c
−L
1 + 8(

√
c1 − 1) κ̃2

1

∞∑
`=L

c−`1 = c−L1

(
4κ̃2 +

8c1κ̃
2
1√

c1 + 1

)
.(5.22)

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1034 RAGHU PASUPATHY AND YONGJIA SONG

Finally, we put it all together to get

E
[√

WL

]
E
[(
cT x̂L + q(x̂L)− z∗

)]
≤ λ

νσmin

(
18κ0(1 + c1 + 2

√
c1) + 2ν2c1σ

2
max

) 1
2

×
√
m1√
c1 − 1

(
1− 1

c
L/2
1

)(
4κ̃2 +

8c1κ̃
2
1√

c1 + 1

)1/2

≤ λ

νσmin

(
18κ0(1 + c1 + 2

√
c1) + 2ν2c1σ

2
max

) 1
2

×
√
m1√
c1 − 1

(
4κ̃2 +

8c1κ̃
2
1√

c1 + 1

)1/2

=: τ0,(5.23)

where the first and second inequalities above follow from applying the bounds in (5.22)
and (5.18) and simplifying. This proves the first assertion of the theorem. The second
assertion follows simply from the first assertion and the assumed minimum growth
rate of the objective function as expressed through Assumption 3.

The following observations on Theorem 5.3 are noteworthy.
(a) The assertions in Theorem 5.3 should be seen as the analogue of the O(1/ε2)

complexity result in nonsmooth convex optimization that is known to be
optimal [50] to within a constant factor.

(b) The complexity result in Theorem 5.3 has been stated in the general popula-
tion context. So, the result equally applies for the finite-population scenario
|Ξ| < ∞, although there is strong evidence that in the finite and the count-
ably infinite populations, the best achievable complexity rates may be much
faster due to the existence of sharp minima of the sort discussed in [70].

(c) The theorem assumes that the sample size schedule (m`)`≥1 increases geo-
metrically with common ratio c1. Importantly, the result can be generalized
in a straightforward manner to a sample size schedule having a stochastic
common ratio C1 that is allowed to vary between two deterministic bounds
c0 and ch such that 1 < c0 ≤ ch <∞ (see section 7).

Recall again that the complexity result in Theorem 5.3 has been obtained as-
suming that the sample sizes increase geometrically, that is, m`/m`−1 = c1 ∈ (1,∞),
ignoring nonintegrality. Can a similar complexity be achieved using other sample
size schedules? The following negative result explains why using a slower sample size
schedule is bound to result in an inferior complexity.

Theorem 5.4. Suppose Assumptions 1–3 hold. Also, suppose there exists η̃ such
that

(5.24) E
[(

dist(S∗m` ,S
∗)
)]
≥ η̃
√
m`

.

If the sample size schedule is polynomial, that is,

(SS-D) m` = c0 `
p, c0 ∈ (0,∞), p ∈ [1,∞),

then there exists τ1 > 0 such that for L ≥ 3,

(5.25) E
[
dist(x̂L,S∗)

]
≥ τ1

E
[
W

1
2−

1
2(1+p)

L

] .D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1035

Proof. The structure of the algorithm is such that each outer iteration consists
of at least one inner iteration. Hence W̃` ≥ m`, implying that

(5.26) WL ≥
L∑
`=1

c0`
p ≥

∫ L

1

c0(`− 1)pd` =
c0

p+ 1

(
(L− 1)p+1 − 1

)
.

Since (SS-D) has been assumed, mL = c0L
p and (5.26) imply, after some algebra,

that for L ≥ 3,

WL ≥
c0

p+ 1

(
mL

c0

)1+1/p
(1−

(
c0
mL

)1/p
)p+1

−
(
c0
mL

)1+1/p


≥ c0
p+ 1

(
mL

c0

)1+1/p ((
1− L−1

)p+1 − L−(p+1)
)
≥ τp

c0
p+ 1

(
mL

c0

)1+1/p

,(5.27)

where τp := (2
3)p+1 − (1

3)p+1. Continuing from (5.27), we get

(5.28) W
1
2−

1
2(1+p)

L ≥
(
τp

c0
p+ 1

) p
2(p+1)

√
mL

c0
.

Use (5.24) and (5.28) to get, for L ≥ 3, that E[W
1
2−

1
2(1+p)

L]E[dist(x̂L,S∗)] ≥
(τp

c0
p+1)

p
2(p+1) η̃√

c0
, thus proving the assertion in the theorem.

We observe from Theorem 5.4 that no matter how large p ∈ [1,∞) is chosen
when choosing a polynomial sample size schedule, the resulting complexity (5.25) is
inferior to the complexity (5.13) implied by a geometric sample size schedule, with
the inferiority characterized by the deviation (2(p+ 1))−1. A similar result has been
proved by [63] in a different context.

While the results of Theorem 5.4 show the superiority of a geometric sequence
for the sample size schedule, we emphasize two caveats. First, the lower bound on
the (implicit) quality of the sample-path solution set may be violated in, e.g., “non-
quantitative,” contexts where the underlying probability space generating the random
variables naturally consists of only a finite number of outcomes. The question of what
is the best sample size schedule in such contexts is open. Second, we make the obvious
observation that during implementation, considerations other than those included in
our analysis, e.g., storage and wall-clock computation time limits, might influence the
sample size choice. The conclusions of Theorems 5.3 and 5.4 should thus be judged
within the purview of the analysis considered here.

The condition in (5.24) might appear cryptic but we believe that this condi-
tion will hold under mild conditions. General sufficient conditions under which
the sequence

√
m` dist(Sm` ,S∗) will “stabilize” to a nondegenerate distribution are

well known [67, 21]. Such conditions, along with assuming the random variables√
m` dist(Sm` ,S∗) exhibit uniform integrability, will ensure that the condition in

(5.24) is guaranteed to hold asymptotically.

6. Stopping in finite time. The results we have presented thus far have implied
a nonterminating algorithm, as can be seen in the listing of Algorithm 3.1. Our intent
in this section is to demonstrate that the iterates generated by Algorithm 3.1 can be
stopped in finite time while providing a solution with a probabilistic guarantee on
the optimality gap. For this, we rely heavily on the finite-stopping results in [5]. We

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1036 RAGHU PASUPATHY AND YONGJIA SONG

first describe a simple stopping procedure which is almost identical to what is called
FSP in [5], and then argue that the stipulations laid out in [5] hold here, thereby
allowing us to invoke the main results of [5]. We note that alternative finite stopping
rules have also been studied in the literature; see, e.g., [66] for a sequential sampling
based approach based on the variance associated with 2SLP solutions rather than
their corresponding objective values.

Suppose we wish to stop our procedure with a solution whose optimality gap is
within ε > 0 with probability exceeding 1 − α, α > 0. Recall that upon terminating
the `th outer iteration of Algorithm 6.1, we have at our disposal an F`-measurable
candidate solution x̂`. To construct a one-sided 100(1− α) percent confidence inter-
val on the true gap c>x̂` + q(x̂`) − z∗, we independently generate an i.i.d. sample
N` = {ξ̃`1, ξ̃`2, . . . , ξ̃`n`}. Assume that the sequence {n`} of “testing” sample sizes is

nondecreasing; the random objects ξ̃`i , i ≥ 1, ` ≥ 1, can be reused across iterations,

that is, ξ̃`i can be chosen so that if i < j, then ξ̃ik = ξ̃jk for k = 1, 2, . . . , ni. We then

use the set N` to calculate a gap estimate G̃`n`(x̂
`) and sample variance s̃2

n`
(x̂`) as

follows:

G̃`n`(x̂
`) = c>(x̂` − x̃∗`) +

1

n`

n∑̀
i=1

[Q(x̂`, ξ̃`i)−Q(x̃∗` , ξ̃
`
i)],

s̃2
n`

(x̂`) =
1

n`

n∑̀
i=1

[
Q(x̂`, ξ̃`i)−Q(x̃∗` , ξ̃

`
i)−

1

n`

n∑̀
i=1

[Q(x̂`, ξ̃`i)−Q(x̃∗` , ξ̃
`
i)]

]2

,(6.1)

where x̃∗` is an optimal solution to the sample-path problem (P`) generated with
sample N`, and δ > 0 is the thresholding constant from Algorithm 3.1.

Algorithm 6.1 An adaptive sequential SAA framework with a finite stopping crite-
rion.

1: Input: Solver-A, a sampling policy, a constant ν > 0, and a constant σmax > 0.
Set `← 0.

2: while G̃`n`(x̂
`) + zα

max(s̃n` (x̂
`),σmax)√
n`

> ε do

3: Select the sample size m` and draw a random sampleM` := {ξ`1, ξ`2, . . . , ξ`m`}.
4: for t = 1, 2, . . . do
5: Use Solver-A, e.g., the adaptive partition-based level decomposition [1], to

execute the tth inner iteration for solving the sample-path problem.
6: If G`,t ≤ ε`,t := νmax{ŝe`,t, σmax√

m`
}, break the inner loop with a candidate

solution x̂`.
7: end for
8: Generate a Monte Carlo sample N` := {ξ̃`1, ξ̃`2, . . . , ξ̃`n`} (independent ofM`) of

sample size n`, solve the corresponding sample-path problem (P`), and calculate
G̃`n`(x̂

`) and s̃2
n`

(x̂`) according to (6.1), respectively.
9: end while

The proposed one-sided 100(1−α) percent confidence interval on µ(x̂`) = c>x̂`+
q(x̂`)− z∗ is [

0, G̃`n`(x̂
`) + zα

max(s̃n`(x̂
`), σmax)

√
n`

]
,

where zα = Φ−1(1 − α) is the 1 − α quantile of the standard normal distribution,

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1037

implying that the finite-time procedure stops at iteration

L(ε) := arginf
`≥1

{
` : G̃`n`(x̂

`) + zα
max(s̃n`(x̂

`), σmax)
√
n`

≤ ε
}
.

Algorithm 6.1 lists a terminating version of Algorithm 3.1 (modulo setting σmin = 0)

based on the proposed confidence interval. The factor σmax n
−1/2
` is a thresholding

term that is common in sequential settings [16] and plays the same role as the term
h(nk) in [5], ensuring that L(ε) → ∞ as ε → 0. To analyze the behavior of the
coverage probability obtained from Algorithm 6.1, the following three assumptions
are made in [5].

(A1) Event An` = {Sn` ⊆ S∗} happens with probability 1 as `→∞.
(A3) lim`→∞ P{supx∈X |G̃`n`(x̂

`)− µ(x)| > β} = 0 for any β > 0.

(A4) lim`→∞ P{supx∈X n
−1/2
` max(s̃n`(x̂

`), σmax) > β} = 0 for any β > 0.
(We have omitted (A2) above to preserve the numbering in [5].) Theorem 2.3 in [70]
implies that Assumption (A1) is satisfied if the support Ξ is finite, in addition to
Assumptions 1–3. Also, it is seen that Assumptions (A3) and (A4) hold if the standing
Assumption 2 holds. The following result characterizes the behavior of the iterates
obtained from Algorithm 6.1, along with a probabilistic guarantee. We provide a
proof only for the third part of the theorem since proofs for the rest either follow
trivially or are almost identical to that in [5].

Theorem 6.1. Suppose Assumptions 1–3 hold. Furthermore, let |Ξ| < ∞. Let
m` and n` be positive nondecreasing sequences such that m` → ∞ and n` → ∞ as
`→∞. Then the following assertions hold.

1. L(ε) <∞ a.s. for all ε > 0 and L(ε)→∞ a.s. as ε→ 0.
2. Recalling the optimality gap µ(x) := c>x+ q(x)− z∗,

(6.2) lim
ε→0

P
{
µ(x̂L(ε)) ≤ ε

}
= 1.

3. Suppose {n`} is chosen so that lim inf`→∞ n`−1/n` > 0. Then we have that

lim
ε→0+

ε2nL(ε) = O(1).

Proof of 3. Following the proof of [5, Lemma 5], we see that there exists ε0 > 0
such that for all 0 < ε < ε0,

(6.3) G̃L(ε)
nL(ε)

(x̂L(ε)) = 0, s̃2
nL(ε)

(x̂L(ε)) = 0,

where G̃
L(ε)
nL(ε)

(x̂L(ε)) and s̃2
nL(ε)

(x̂L(ε)) are from (6.1) at stopping. According to the

stopping criterion of Algorithm 6.1, we have that

ε2nL(ε) ≥
(√

nL(ε)G̃
L(ε)
nL(ε)

(x̂L(ε)) + zαmax(s̃nL(ε)
(x̂L(ε)), δ)

)2

,

ε2nL(ε)−1 ≤
(√

nL(ε)−1G̃
L(ε)−1
nL(ε)−1

(x̂L(ε)−1) + zαmax(s̃nL(ε)−1
(x̂L(ε)−1), δ)

)2

.(6.4)

Now notice that since lim inf`→∞ n`−1/n` > 0 and L(ε)→∞ as ε→ 0 almost surely
there exists β̃ > 0 such that for small enough ε, we have

(6.5) nL(ε)−1 ≥ β̃ nL(ε) a.s.

Using (6.5), (6.4), and (6.3), we get, a.s., zαδ
2 ≤ limε→0+

nL(ε)

1/ε2 ≤
zα
β̃
δ2.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1038 RAGHU PASUPATHY AND YONGJIA SONG

It is worth noting that the main probabilistic guarantee appearing in (6.2) is
stronger than classical guarantees in sequential testing such as those in [16]. This
deviation from a classical stopping result is primarily because of the fast convergence
assured by (A1). It is possible and likely that when (A1) is relaxed, a more classical
result such as what one encounters in [16] holds, but we are not aware of the existence
of such a result.

The condition lim inf`→∞ n`−1/n` > 0 stipulated by the third assertion of The-
orem 6.1 is satisfied by a wide variety of sequences. For instance, if q0, q1 ∈ (0,∞),
any logarithmic increase schedule n` = q0 + q1 log `, any polynomial increase schedule
n` = q0 + q1`

p, p ∈ (0,∞), and any geometric increase schedule n`/n`−1 = q1 satisfy
the condition lim inf`→∞ n`−1/n` > 0.

7. Computational experiments. In this section, we present computational
results of the proposed adaptive sequential sampling framework for solving 2SLPs
with fixed recourse and fixed second-stage objective coefficients. We chose problem
instances of this type to enable a warm starting procedure, where the initial solution
and an initial second-stage value function approximation for every sample-path prob-
lem at each outer iteration can be obtained using information gained from previous
iterations. (This procedure is summarized in Algorithm C.1 in the appendix of the
online supplementary document [57].) For the purpose of benchmarking, we consider
finite-sample instances of such problems, that is, problems where |Ξ| < ∞, so that
we get access to the true optimal value z∗ up to a prespecified precision by solving
these instances using a deterministic solver. In particular, we apply the adaptive
partition-based level decomposition method [1], which has shown to be a competitive
state-of-the-art solution approach. Five finite-sample instances of each problem in
a selected problem class are generated: 20 replications of each competing sequential
SAA algorithm are performed on each of the generated problem instances, except
for the ssn instances (see Table 1), where only 10 replications are performed due to
the extensive computational effort for solving these instances. We implemented all
algorithms in C++ using the commercial solver CPLEX, version 12.8. All tests are
conducted on an iMac desktop with four 4.00 GHz processors and 16 Gb memory.
The number of threads is set to be one.

We run the adaptive sequential SAA framework according to Algorithm 6.1, and
record the total number of outer iterations as L, the final candidate solution at the Lth
iteration as x̂L, and the sample size used in the final iteration L as NL; c>x̂L + q(x̂L)
then gives the true objective value of final candidate solution x̂L. We report in column
“CI” the ratio between the width of the reported confidence interval (at stopping) for
the optimality gap and the true objective value corresponding to x̂L. The threshold
ε is chosen to be small enough relative to the objective value corresponding to the
candidate solution obtained from the outer iteration, e.g., 10−3 ×

(
c>x̂1 +Q1

m1
(x̂1)

)
.

After Algorithm 6.1 terminates with a final solution x̂L, we verify whether or not
the true optimal objective value z∗ is in the reported confidence interval. Since the
confidence interval at stopping is guaranteed to cover z∗ only asymptotically (see
Theorem 6.1), we report the coverage probability at stopping in the column titled
“cov.,” using results obtained from the 20 replications for each test instance except
ssn and 20term, where 10 replications are used.

We set the sample size m` for the `th sample-path problem to be twice as large
as the sample size n` for validating the quality of candidate solution x̂`, i.e., m` =
2 × n` ∀` = 1, 2, This choice is motivated by the practical guideline [4] that the
computational effort expended to find candidate solutions should be higher than that

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1039

expended to compare candidate solutions. The following additional notation is used
in the tables that follow:

• Time: computational time (recorded in seconds).
• M : total number of inner iterations.
• L: total number of outer iterations.
• nL: the sample size used in the final outer iteration L.

7.1. Implementation details. The following five algorithms are implemented
in our computational study. The procedures described in (iii), (iv), and (v) use
Algorithm 6.1 with different sample size schedules. The procedure listed in (i) has
been shown to be very competitive recently; the procedure in (ii) is proposed in [5].

(i) PILD-ODA. This algorithm is the adaptive partition-based level decomposi-
tion algorithm with on-demand accuracy as proposed in [1], which is used to
solve each instance with the full set of scenarios up to a relative optimality
gap of 10−4. Note that z∗ for each instance is also obtained by this algorithm
using a smaller relative optimality gap threshold of 10−6.

(ii) Sequential-BP-L(∆). This algorithm follows the sampling schedules in [5]
while solving individual sample-path problems to high precision. Specifically,
each sample-path problem (with a sample size of m`) is solved up to a relative
optimality gap of 10−6 in each outer iteration `, using a standard level de-
composition approach for solving 2SLPs [25]. Note that our implementation
of this approach does not incorporate the warm starting functionality. The
obtained candidate solution x̂` is then evaluated using a sample of size n`. To
obtain x∗n` that appears in G̃`n` and s̃2

n`
in (6.1), we solve the corresponding

sample-path problem up to a relative optimality gap of 10−4, as suggested
by [5]. By default, we use a linear sample size schedule where ∆ = 100 addi-
tional scenarios are sampled from one iteration to the next, starting with an
initial sample size m1 = 2 × n1 = 100. We use the same initial sample size
for all variants of the sequential sampling approaches that we describe below,
although one may tune this parameter for further enhancements.

(iii) Adaptive-seq-BP-L(∆). This is Algorithm 6.1 implemented with the linearly
increasing sample size schedule proposed in [5], that is, m`+1 = m` + ∆. For
warm starting the initial solution and an initial second-stage value function
approximation for every sample-path problem at each outer iteration, we use
Algorithm C.1 in the appendix of the online supplementary document [57].
We use parameter α = 0.1 and safeguard parameter δ = 10−5 in defining the
adaptive optimality tolerance ε` according to (3.1). PILD-ODA is applied
to solve each sample-path problem with the aforementioned warm starting
functionality.

(iv) Adaptive-seq-fixed (c1). This is Algorithm 6.1 implemented with a geometric
sample size schedule. The setting is nearly identical to (iii) except that we
use a fixed rate c1 as the geometric increase rate, that is, m`+1 = c1m`.

(v) Adaptive-seq-dyn(c0, ch). Like in (iv), this is Algorithm 6.1 implemented
with a geometric sample size schedule ensuring that m`+1 = C1m`. However,
unlike in (iv), the rate C1 is dynamic (and, hence, listed in uppercase) within
chosen bounds c0, ch. Specifically, starting from some initial value of C1, if the
inner loop finishes after a single iteration, implying that the problem with the
current sample size does not deviate much from the one solved in the previous
outer iteration, we increase the deviation of C1 from 1 by a factor of 2 subject
to C1 not exceeding ch. Formally, we set C1 ← min(2C1 − 1, ch). If, on the

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1040 RAGHU PASUPATHY AND YONGJIA SONG

Table 1
Profiles of test instances from the literature. Notation (na, nb) means that the number of

variables is given by na and the number of constraints is given by nb.

Instance First-stage size Second-stage size Reference

DEAK40×20 (40,20) (30,20) [18]
DEAK40×40 (40,20) (60,40) -
DEAK40×60 (40,20) (90,60) -
DEAK60×20 (60,30) (30,20) -
DEAK60×40 (60,30) (60,40) -
DEAK60×60 (60,30) (90,60) -

LandS (4,2) (12,7) [40]
gbd (17,4) (10,5) [26]

4node (52,14) (186,74) [2]
pgp2 (4,2) (16,7) [32]
retail (7,0) (70,22) [30]
cep (8,5) (15,7) [32]

baa99-20 (20,0) (250,40) [66]
20-term (63,3) (764,124) [43]

ssn (89,1) (706,175) [65]

other hand, the inner loop takes more than four iterations, we shrink the
deviation of C1 from 1 by a factor of 2, subject to C1 reaching a minimum
of c0, that is, we set C1 ← max(c0,

1
2C1 + 1

2). While our theory does not
explicitly cover this “dynamic C1” context, an extension of our theory to this
case is straightforward. See comment (c) appearing after Theorem 5.3.

In all algorithms that we tested except “PILD-ODA,” we use a time limit of two
hours (7200 seconds). When the stopping criterion is not met by the time limit, we

report the smallest value G̃`n`(x̂
`) + zα

max(s̃n` (x̂
`),σmax)√
n`

encountered during all com-

pleted outer iterations ` and, accordingly, consider this quantity the width of the
confidence interval on the optimality gap of x̂`. The profiles of test instances used in
our computational experiments are summarized in Table 1, where the set of DEAK
instances are randomly generated test instances from [18], and other instances are
taken from existing literature that are linked to certain “real-world” applications.
For the purpose of benchmarking, we also create an additional family of instances
based on the DEAK instances by increasing the variance of the underlying random
variables generating the test instances. We use “High” to label this new set of DEAK
instances with higher variance in Tables 2, 3, and 4.

7.2. Numerical results. We first investigate the empirical performance of “Se-
quential-BP-L(∆),” and its adaptation “Adaptive-seq-BP-L(∆)” into our proposed
framework, against PILD-ODA which is arguably a state-of-the-art approach for solv-
ing 2SLPs with fixed recourse and fixed second-stage objective coefficients using the
full set of scenarios [1]. Table 2 summarizes the results on our test instances. We
recall that for all the sequential SAA approaches, the numbers shown in each row
are calculated by taking the average of the corresponding values over 20 replications
(10 replications for ssn and 20term) of algorithm instantiation on five finite-sample
instances.

7.2.1. Computational results on the DEAK instance family. We first
present the performance of aforementioned algorithms on the DEAK instance family.
Instances within this family share the same structure and vary by the problem sizes
in terms of the number of variables and constraints. Experiments on these different

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1041

Table 2
Computational results of the adaptive partition-based level decomposition approach [1] (PILD-

ODA), the sequential sampling procedure by [5] (Sequential-BP-L), and Algorithm 6.1 with the stop-
ping criterion and sample size schedule proposed in [5] (Adaptive-seq-BP-L (100)) on our test in-
stances DEAK and DEAK-H.

Ins N PILD-ODA Sequential-BP-L(100) Adaptive-seq-BP-L(100)
Time M Time M(L, nL) CI (cov.) Time M(L, nL) CI (cov.)

40x20
50K 53.4 19 5.4 14(5,1070) (0.1,97) 1.5 20(5,1094) (0.1,97)
100K 101.8 18 5.1 13(5,1032) (0.1,99) 1.3 19(5,1014) (0.1,97)

40x40
50K 74.6 12 4.3 19(3,584) (0.0,83) 1.2 12(3,630) (0.1,80)
100K 134.1 12 5.6 20(3,660) (0.1,90) 1.3 13(3,676) (0.1,82)

40x60
50K 206.2 19 4.3 20(2,374) (0.1,96) 1.7 21(2,396) (0.1,100)
100K 413.1 20 4.1 20(2,360) (0.1,99) 1.6 21(2,366) (0.1,100)

60x20
50K 114.4 56 86.1 41(13,2540) (0.1,100) 18.5 64(13,2596) (0.1,100)
100K 252.2 60 87.8 42(13,2584) (0.1,100) 19.1 64(13,2636) (0.1,100)

60x40
50K 502.0 65 23.2 32(4,824) (0.1,100) 12.3 70(4,834) (0.1,100)
100K 929.4 67 25.1 33(4,864) (0.1,100) 13.5 70(4,876) (0.1,100)

60x60
50K 333.8 24 5.9 22(2,414) (0.1,100) 2.2 25(2,424) (0.1,100)
100K 622.3 24 6.5 22(2,436) (0.1,100) 2.3 25(2,436) (0.1,100)

40x20 50K 63.9 17 18.6 27(9,1776) (0.1,96) 4.4 23(8,1698) (0.1,98)
High 100K 139.2 18 18.2 27(9,1772) (0.1,96) 5.3 24(9,1854) (0.1,95)
40x40 50K 58.9 9 4.5 17(3,580) (0.0,83) 1.3 10(3,640) (0.0,70)
High 100K 117.0 9 4.0 17(3,556) (0.1,88) 1.3 10(3,646) (0.1,80)
40x60 50K 711.5 25 60.8 42(6,1140) (0.1,99) 22.4 29(6,1132) (0.1,93)
High 100K 1520.0 24 55.5 41(6,1102) (0.1,100) 20.8 29(6,1130) (0.1,93)
60x20 50K 162.6 46 139.4 53(16,3194) (0.1,99) 78.9 52(16,3280) (0.1,100)
High 100K 263.2 43 132.9 54(16,3160) (0.1,100) 73.5 52(16,3230) (0.1,100)
60x40 50K 432.8 31 112.6 55(9,1824) (0.1,99) 127.4 42(10,1920) (0.1,98)
High 100K 958.5 32 124.0 56(9,1834) (0.1,99) 122.4 42(10,1940) (0.1,98)
60x60 50K 673.5 23 96.6 48(6,1290) (0.1,100) 38.2 31(6,1282) (0.1,90)
High 100K 1591.9 25 107.2 49(7,1316) (0.1,96) 42.3 31(7,1362) (0.1,89)

instances allow us to see how the algorithms behave as the problem sizes change given
the same underlying problem structure.

From Table 2, we see that sequential SAA algorithms Sequential-BP-L(100) and
Adaptive-seq-BP-L(100) are clearly favored over the direct approach PILD-ODA. The
sequential SAA approaches finish in much less computational time at a low price in
terms of optimality gap—around 0.1%. The coverage probabilities of these approaches
are also satisfactory. The majority of the computational savings come from the fact
that sequential SAA approaches expend much less effort in each inner iteration, since
only a (small) sample is taken at each early outer iteration `.

In comparing Sequential-BP-L(∆) against Adaptive-seq-BP-L(∆), notice from
Table 2 that the computational time for Adaptive-seq-BP-L(∆) is lower in most
cases, while the total number of outer iterations L, inner iterations M , and the final
sample size nL are similar. This is again explainable since in Sequential-BP-L, the
sample-path problems in each outer iteration are solved to a high precision, whereas
in Adaptive-seq-BP-L(∆), the sample-path problems are only solved up to a factor
of the sampling error as detailed in Algorithm 6.1. Furthermore, a warm start func-
tionality and an adaptive scenario aggregation technique are leveraged in Adaptive-
seq-BP-L(∆), by using Algorithm C.1 in the appendix of the online supplementary
document [57] and PILD-ODA [1], respectively.

Table 2 provides clear evidence of the effectiveness of the sequential SAA frame-
work and the use of warm starts. In an attempt to investigate the effect of geometric
sampling schemes, which assuredly preserve the Monte Carlo canonical rate by The-
orem 5.3, we next compare in Table 3 the computational results of the adaptive

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1042 RAGHU PASUPATHY AND YONGJIA SONG

Table 3
Computational results of the adaptive partition-based level decomposition approach [1] PILD-

ODA, Algorithm 6.1 with a fixed increasing rate Adaptive-seq-fixed(1.5), and Algorithm 6.1 with a
dynamic increase rate Adaptive-seq-dyn(1.05, 3), and with C1 starting at 1.5 on our test instances
DEAK and DEAK-H.

Ins N PILD-ODA Adaptive-seq-fixed(1.5) Adaptive-seq-dyn(1.05, 3)
Time M Time M(L, nL) CI(cov.) Time M(L, nL) CI(cov.)

40x20
50K 53.4 19 1.5 21(7,1377) (0.1,96) 1.6 19(4,2892) (0.1,100)
100K 101.8 18 1.5 21(7,1438) (0.1,99) 1.6 19(4,2886) (0.1,100)

40x40
50K 74.6 12 1.2 13(4,568) (0.1,71) 1.8 13(4,1662) (0.0,75)
100K 134.1 12 1.2 14(4,595) (0.1,72) 1.7 13(3,1489) (0.0,75)

40x60
50K 206.2 19 1.9 23(3,318) (0.1,100) 1.9 22(3,454) (0.1,100)
100K 413.1 20 1.9 23(3,308) (0.1,100) 1.9 23(3,458) (0.1,100)

60x20
50K 114.4 56 10.7 60(9,3675) (0.1,100) 9.2 56(5,6048) (0.1,100)
100K 252.2 60 11.0 60(9,3673) (0.1,100) 9.5 56(5,6264) (0.1,100)

60x40
50K 502.0 65 14.1 73(6,921) (0.1,100) 13.8 69(4,1620) (0.1,100)
100K 929.4 67 14.7 73(6,959) (0.1,100) 13.4 68(4,1566) (0.1,100)

60x60
50K 333.8 24 2.7 28(4,374) (0.1,100) 2.8 27(3,617) (0.1,100)
100K 622.3 24 2.7 28(4,374) (0.1,100) 2.7 27(3,580) (0.1,100)

40x20 50K 63.9 17 4.4 23(9,3034) (0.1,97) 4.0 19(5,5400) (0.1,99)
High 100K 139.2 18 4.4 23(9,3013) (0.1,95) 5.3 20(5,7066) (0.0,98)
40x40 50K 58.9 9 1.3 11(4,617) (0.0,69) 1.8 11(4,1485) (0.0,65)
High 100K 117.0 9 1.3 11(4,601) (0.0,61) 1.7 10(3,1366) (0.0,65)
40x60 50K 711.5 25 24.6 31(7,1535) (0.1,93) 28.1 27(4,3240) (0.1,96)
High 100K 1520.0 24 22.0 31(7,1427) (0.1,92) 27.0 27(4,3046) (0.1,93)
60x20 50K 162.6 46 38.0 46(10,5558) (0.1,100) 34.3 43(6,9720) (0.1,100)
High 100K 263.2 43 42.4 46(10,6086) (0.1,100) 33.1 43(6,9720) (0.1,100)
60x40 50K 432.8 31 70.4 40(9,2866) (0.1,99) 78.1 33(5,5706) (0.1,99)
High 100K 958.5 32 78.6 40(9,2894) (0.1,98) 75.3 33(5,5688) (0.1,96)
60x60 50K 673.5 23 42.3 32(7,1878) (0.1,92) 42.2 27(5,3831) (0.1,94)
High 100K 1591.9 25 38.4 32(7,1808) (0.1,85) 50.9 27(5,4078) (0.1,89)

sequential SAA with a geometric sample size schedule having a fixed increase rate
c1 = 1.5 (option Adaptive-seq-fixed(1.5)) against a dynamically chosen geometric
increase rate with c0 = 1.05, ch = 3, and C1 starting at 1.5 (option Adaptive-seq-
dyn(1.05, 3)), when employed with a finite-time stopping criterion. We see that simi-
lar results are obtained by the two alternative options in terms of the computational
time. Adaptive-seq-dyn(1.05, 3) exhibits slightly fewer inner and outer iterations,
whereas the sample sizes seem significantly larger. Also, comparing Table 2 against
Table 3, it seems clear that a geometrically increasing sample size schedule results in
a large sample size at stopping but generally fewer outer iterations than the linear
increasing rate employed in Adaptive-seq-BP-L. In Adaptive-seq-dyn, the sample size
at stopping is even larger, but the number of outer iterations and the number of in-
ner iterations are reduced, leading to less computational time in general. All options
share similar behavior from the standpoint of the width of the confidence interval and
its coverage.

We next investigate the sensitivity of chosen parameters such as the sample size
increase rate for the proposed approaches. We observe from Tables 2 and 3 that, as
opposed to what has been suggested in theory (Theorem 5.3), Algorithm 6.1 with a lin-
ear sample size schedule performs competitively with the one with a geometric sample
size schedule in our test instances. This may be because the algorithm Sequential-BP-
L(∆) in Table 2 with a value ∆ = 100 mimics the behavior of a geometric sequence.
To validate this suspicion, Table 4 presents the performance of Adaptive-seq-BP-L(∆)
implemented with a linear sample size schedule having a smaller increase ∆ = 10 and
Adaptive-seq-fixed(c1) with a smaller geometric increase rate c1 = 1.1. We also dis-

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1043

Table 4
Computational results of Algorithm 6.1 with the fixed-width stopping criterion and linear sample

size schedule proposed in [5] with an increase of 10 scenarios per iteration (Adaptive-seq-BP-L(10)),
Algorithm 6.1 with a geometrically increasing sample size schedule with rate c1 = 1.1 (Adaptive-seq-
fixed(1.1)), and Algorithm 6.1 with a geometrically increasing sample size schedule having a dynamic
rate (Adaptive-seq-dyn(1.05, 3)), with C1 starting at 1.1, on our test instances DEAK and DEAK-H.

Ins N Adaptive-seq-BP-L(10) Adaptive-seq-fixed(1.1) Adaptive-seq-dyn(1.05, 3)
Time M(L, nL) Time M(L, nL) Time M(L, nL)

40x20
50K 3.2 37(23,551) 2.8 36(22,760) 1.7 21(6,2797)
100K 3.5 39(24,579) 2.7 35(21,721) 1.7 21(6,2711)

40x40
50K 1.4 17(8,249) 1.4 19(9,250) 1.7 14(5,1319)
100K 1.3 17(7,239) 1.4 19(9,252) 1.5 14(5,1143)

40x60
50K 2.5 27(6,204) 2.6 29(7,188) 2.3 25(4,421)
100K 2.1 26(5,186) 2.7 30(7,193) 2.1 25(4,369)

60x20
50K 102.5 144(93,1945) 30.8 87(36,2760) 10.2 58(7,6383)
100K 103.8 143(93,1936) 31.1 87(36,2768) 10.5 58(7,6435)

60x40
50K 47.9 92(24,560) 38.2 90(21,682) 15.5 73(6,1578)
100K 51.3 92(24,572) 37.1 88(21,665) 16.7 72(6,1733)

60x60
50K 3.9 35(7,233) 4.4 38(9,235) 3.0 30(4,459)
100K 3.7 34(7,230) 4.1 37(9,222) 3.3 30(5,539)

40x20 50K 11.6 53(39,875) 7.9 42(28,1410) 4.2 21(7,5371)
High 100K 12.9 54(40,891) 9.5 44(30,1612) 5.1 21(7,6229)
40x40 50K 1.4 14(8,246) 1.4 15(9,231) 1.5 11(5,1030)
High 100K 1.5 14(8,251) 1.5 15(9,238) 1.4 11(5,956)
40x60 50K 263.4 77(30,683) 78.0 65(24,940) 32.8 30(6,3237)
High 100K 200.6 73(28,646) 68.3 63(23,859) 29.3 31(6,2904)
60x20 50K 337.7 128(94,1951) 101.6 73(38,3413) 34.5 45(8,9523)
High 100K 341.5 130(96,1988) 97.6 72(37,3271) 26.8 45(7,7979)
60x40 50K 2283.2 141(59,1271) 268.1 85(31,1758) 97.6 37(7,5817)
High 100K 2075.0 133(55,1196) 261.0 83(30,1710) 78.8 36(7,5363)
60x60 50K 742.6 88(35,793) 134.3 69(26,1106) 53.0 31(7,3987)
High 100K 621.0 82(32,735) 144.6 67(25,1052) 51.0 31(7,3593)

play the performance of Adaptive-seq-dyn(c0, ch) with c0 = 1.05, ch = 2, and with C1

starting at 1.1, alongside these algorithms.
Comparing Tables 4 and 3, we see that the performance of Adaptive-seq-BP-

L(10), where the sample size increases by 10 in each iteration, is significantly worse
than Adaptive-seq-BP-L(100), where the sample size increases by 100 in each iter-
ation. Although the final sample size nL is lower at stopping when a slower linear
sample size schedule is utilized, this comes at the price of a larger number of outer
and inner iterations, leading to substantially more computational time. The same
effect happens to option Adaptive-seq-fixed(c1) as well, but at a much less significant
level, where utilizing a smaller c1 ends up with a larger number of outer iterations and
slightly more computational time. On the other hand, the performance of Algorithm
6.1 with a dynamic increase rate (option Adaptive-seq-dyn(1.05, 3)) does not appear
to be impacted much from the choice of the starting increasing rate C1.

7.2.2. Computational results on other test instances. Finally, we present
the performance of the best adaptive sequential SAA options (according to the above
experiments on DEAK and DEAK-H instances) on an additional set of test instances
that have a background in real-world applications. In particular, we consider Algo-
rithm Adaptive-seq-BP-L(100) and Algorithm Adaptive-seq-fixed(1.5). We consider
Algorithm Adaptive-seq-fixed(1.5) rather than the one with dynamic rate, Adaptive-
seq-dyn(1.05, 3), as we find in our experiments that the parameters c0 and ch need to
be fine tuned for specific instances in order to yield competitive performance.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1044 RAGHU PASUPATHY AND YONGJIA SONG

Table 5
Computational results of the adaptive partition-based level decomposition approach [1] (PILD-

ODA), Algorithm 6.1 with the fixed-width stopping criterion and sample size schedule proposed in [5]
(Adaptive-seq-BP-L(100)), and Algorithm 6.1, with a geometrically increasing sample size schedule
with rate c1 = 1.5 (Adaptive-seq-fixed(1.5)) on an additional set of real-world test instances.

Ins N PILD-ODA Adaptive-seq-BP-L(100) Adaptive-seq-fixed(1.5)
Time M Time M(L, nL) CI (cov.) Time M(L, nL) CI (cov.)

LandS
50K 18.8 12 0.2 10(2,364) (0.1,100) 0.3 11(3,292) (0.1,100)
100K 35.6 12 0.2 10(2,366) (0.1,100) 0.3 11(3,298) (0.1,100)

gbd
50K 37.5 32 0.5 24(3,602) (0.0,89) 0.5 25(4,545) (0.0,94)
100K 75.9 29 0.5 24(3,582) (0.0,94) 0.5 25(4,576) (0.0,94)

cep
20K 6.9 5 0.1 4(1,280) (0.0,99) 0.1 4(1,145) (0.0,99)
50K 17.1 4 0.1 4(1,292) (0.0,100) 0.1 4(2,151) (0.0,100)

pgp2
20K 13.7 20 2.1 65(4,700) (0.1,66) 2.7 87(5,892) (0.1,64)
50K 31.0 22 2.3 68(4,732) (0.1,53) 2.2 77(4,727) (0.1,49)

4node
20K 211.5 54 2.2 64(1,146) (0.0,80) 2.1 65(1,114) (0.0,75)
50K 487.4 51 2.2 64(1,144) (0.0,80) 1.9 63(1,111) (0.0,82)

retail
20K 82.4 54 140.0 503(16,3136) (0.1,80) 87.0 305(10,6704) (0.1,91)
50K 179.3 53 123.9 469(15,3040) (0.1,78) 91.9 302(10,6998) (0.1,86)

baa99-20
20K 735.3 187 593.3 347(12,2346) (0.1,98) 383.4 354(9,3454) (0.1,100)
50K 1670.4 184 659.7 366(12,2344) (0.1,100) 380.4 356(9,3349) (0.1,100)

20-term
2K 1367.9 616 2451.3 596(2,212) (0.1,82) 1889.8 657(2,148) (0.1,82)
5K 1617.0 726 2571.0 554(2,280) (0.1,62) 2687.5 696(2,188) (0.1,82)

ssn 5K 6482.9 804 - 2028(6,1104) (17.0,100) - 2477(7,1586) (16.2,100)

From Table 5, we see that our conclusions made based on the results from the
DEAK instances also stand for most of this additional set of test instances, except
instances ssn and 20-term, which we discuss separately since they serve as interesting
negative examples. In particular, we see that both sequential sampling algorithms
Adaptive-seq-BP-L(100) and Adaptive-seq-fixed(1.5) yield high-quality solutions and
their solution quality validation much more efficiently than PILD-ODA in most cases.
Using a geometric sequence for the sample size schedule (Adaptive-seq-fixed(1.5) as
opposed to Adaptive-seq-BP-L(100)), further computational enhancements are ob-
tained. The sequential sampling algorithms usually end up with a larger number of
inner iterations than the deterministic algorithm PILD-ODA that employs the full
set of samples. However, the computational savings brought by the smaller sample
sizes used in the sequential sampling algorithms, which are reflected in the amount
of work involved per inner iteration, turn out to offset the increase in the number of
inner iterations on these instances. This is consistent with what our theoretical results
presented in section 5. In addition, we can observe some “undercoverage” phenom-
enon for pgp2 instances (as shown in column cov.), which is somewhat expected as
the variance associated with their solutions is quite large [3]. Procedures that employ
more than a single replication, such as A2RP proposed in [3], can be used to address
the issue of undercoverage.

As noted earlier, the problem instances ssn and 20-term are interesting as nega-
tive examples, where the proposed sequential sampling algorithms do not yield gains
realized in other problem instances. Instance ssn is challenging most probably due
to the high inherent variance of the underlying random variables and the associated
computational challenge in solving the second-stage problems while also reporting
solution accuracy. For instance, observe from Table 5 that both options Adaptive-
seq-BP-L(100) and Adaptive-seq-fixed(1.5) fail to provide confidence intervals with
a satisfactory width within the stipulated time limit. We suspect that the variance
associated with the second-stage optimal cost, along with the strict nature of the
stopping criterion, contributes to ssn being in contrast with other test instances ap-
pearing in Table 5. The negative effect of such high variance can be mitigated, at least

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1045

in principle, by directly using variance reduction techniques, or through alternative
stopping ideas such as that proposed in [66].

The negative context presented by the instance 20-term appears to be different
in spirit than ssn. Specifically, observe that Adaptive-seq-BP-L(100) and Adaptive-
seq-fixed(1.5) exhibit longer computational times than the deterministic algorithm
PILD-ODA on instances 20-term despite having a small number of outer iterations
and small sample sizes used in each outer iteration. In fact, most of the computational
effort is expended on solving the master problem, while the second-stage subproblems
can be solved efficiently. The increased effort in solving the master problem could be
because the warm start feature that worked well for other instances is not as effective
here, since “recovering” a lower cutting-plane approximation using the dual vector
information stored from previous iterations, although “generated on the fly,” requires
the problem to be resolved with a new right-hand side at every restart, and when-
ever any new first-stage decision vector is generated by the algorithm. This special
feature of 20-term—time-consuming master problems alongside easily solved second-
stage problems—means that our implementation’s premise of the total computational
burden being dominated by the task of solving second-stage LPs is not true in the
20-term context. The clear lesson from 20-term is then to adapt the implementation
to explicitly account for the cost of solving the master problem alongside the cost of
solving the second-stage problems, potentially leading to the use of a larger constant
c1 in such contexts. In addition, alternative warm starting techniques for sequen-
tial sampling algorithms, such as those arising in stochastic decomposition [31, 32]
and stochastic dual dynamic programming algorithms [44], may be more effective in
relieving the computational challenges in repeatedly solving the master problem on
these instances.

8. Concluding remarks. We propose an adaptive sequential SAA algorithm
to solve 2SLPs. During each iteration of the proposed framework, a piecewise linear
convex optimization sample-path problem is generated with a scenario set having a
specified size, and solved imprecisely to within a tolerance that is chosen to balance
statistical and computational errors. We find that (i) the use of an appropriate solver
to solve the sample-path problems, (ii) solving each sample-path problem only im-
precisely to an appropriately chosen error tolerance, and (iii) the use of warm starts
when solving sample-path problems, are crucial for efficiency.

Our theoretical results suggest that the optimality gap and the distance from
the true solution set (of the generated stochastic iterates) converges to zero almost
surely and in expectation. Moreover, when the sample sizes are increased according
to a geometric rate, the fastest possible convergence rate under i.i.d. Monte Carlo
sampling is preserved. This result is analogous to the O(ε−2) optimal complexity rate
for deterministic nonsmooth convex optimization. Slower sample size increases result
in a poorer convergence rate. Interestingly, the proposed framework also facilitates
the use of dependent sampling schemes such as LHS, antithetic variates, and quasi-
Monte Carlo without affecting convergence or the lower bound on the rate results.
The use of such variance reduction ideas have been shown to be effective.

Our extensive numerical studies indicate that the proposed adaptive sequential
SAA framework is able to produce high-quality solutions to 2SLPs significantly more
efficiently than existing decomposition approaches that solve a single sample-path
problem generated using a large sample size. Such gains are principally due to the
sequential framework, the progressive increase in sample sizes in an optimal way,
and the use of warm starts in solving the sample-path problems. Our numerical

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1046 RAGHU PASUPATHY AND YONGJIA SONG

experience has also revealed problem instances having certain challenging features that
are not directly addressed by the implementations that we have used for illustration.
These challenges could be mitigated by using alternative solvers that exploit particular
problem structures and/or other termination criteria such as that proposed in [66].

We believe that similarly efficient sequential SAA algorithms are possible for
large-scale multistage convex stochastic programs, and possibly even stochastic integer
programs. The key appears to be principled choices for adaptive sample sizes, solver
for the sample-path problems, and adaptive optimality tolerance parameters. Ongoing
research efforts are accordingly directed.

Acknowledgment. We greatly appreciate the comments and suggestions of the
associate editor and two anonymous referees.

REFERENCES

[1] W. van Ackooij, W. de Oliveira, and Y. Song, An adaptive partition-based level decomposi-
tion for solving two-stage stochastic programs with fixed recourse, INFORMS J. Comput.,
30 (2018), pp. 57–70.

[2] K. A. Ariyawansa and A. J. Felt, On a new collection of stochastic linear programming test
problems, INFORMS J. Comput., 16 (2004), pp. 291–299.

[3] G. Bayraksan and D. Morton, Assessing solution quality in stochastic programs, Math.
Program., 108 (2006), pp. 495–514.

[4] G. Bayraksan and D. Morton, A sequential sampling procedure for stochastic programming,
Oper. Res., 59 (2011), pp. 898–913.

[5] G. Bayraksan and P. Pierre-Louis, Fixed-width sequential stopping rules for a class of
stochastic programs, SIAM J. Optim., 22 (2012), pp. 1518–1548.

[6] J. Y. Bello-Cruz and W. de Oliveira, Level bundle-like algorithms for convex optimization,
J. Global Optim., 59 (2014), pp. 787–809, https://doi.org/10.1007/s10898-013-0096-4.

[7] P. Billingsley, Probability and Measure, Wiley, New York, 1995.
[8] J. Birge, State-of-the-art-survey—stochastic programming: Computation and applications, IN-

FORMS J. Comput., 9 (1997), pp. 111–133, https://doi.org/10.1287/ijoc.9.2.111.
[9] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, New York,

2011.
[10] R. Bollapragada, R. Byrd, and J. Nocedal, Adaptive sampling strategies for stochastic

optimization, SIAM J. Optim., 28 (2018), pp. 3312–3343.
[11] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine

learning, SIAM Rev., 60 (2018), pp. 223–311.
[12] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities and Model Selection,

Springer, Berlin, 2007.
[13] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic

Theory of Independence, Oxford University Press, Cambridge, 2013.
[14] M. Chen and S. Mehrotra, Self-concordance and decomposition-based interior point methods

for the two-stage stochastic convex optimization problem, SIAM J. Optim., 21 (2011),
pp. 1667–1687.

[15] M. Chen, S. Mehrotra, and D. Papp, Scenario generation for stochastic optimization prob-
lems via the sparse grid method, Comput. Optim. Appl., 62 (2015), pp. 669–692.

[16] Y. S. Chow and H. E. Robbins, On the asymptotic theory of fixed-width confidence intervals
for the mean, Ann. Math. Stat., 36 (1965), pp. 457–462.

[17] G. B. Dantzig, Linear programming under uncertainty, Manag. Sci., 1 (1955), pp. 197–206.
[18] I. Deák, Testing successive regression approximations by large-scale two-stage problems, Ann.

Oper. Res., 186 (2011), pp. 83–99.
[19] G. Deng and M. C. Ferris, Variable-number sample-path optimization, Math. Program.,

(2009), pp. 81–109.
[20] L. Dümbgen, S. A. van de Geer, M. C. Veraar, and J. A. Wellner, Nemirovski’s inequal-

ities revisited, Amer. Math. Monthly, 117 (2010), pp. 138–160.
[21] J. Dupačová and R. J. B. Wets, Asymptotic behavior of statistical estimators and of optimal

solutions of stochastic optimization problems, Ann. Statist., 16 (1988), pp. 1517–1549.
[22] R. Durrett, Probability: Theory and Examples, Cambridge University Press, New York, 2010.
[23] Y. Ermoliev and A. Gaivoronski, Stochastic quasigradient methods for optimization of dis-

crete event systems, Ann. Oper. Res., 39 (1992), pp. 1–39.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1007/s10898-013-0096-4
https://doi.org/10.1287/ijoc.9.2.111

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ADAPTIVE SEQUENTIAL SAA FOR STOCHASTIC PROGRAMS 1047

[24] Y. M. Ermoliev, Stochastic quasigradient methods and their application to system optimiza-
tion, Stochastics, 9 (1983), pp. 1–36.

[25] C. I. Fábián and Z. Szőke, Solving two-stage stochastic programming problems with level
decomposition, Comput. Manag. Sci., 4 (2007), pp. 313–353.

[26] A. Ferguson and G. Dantzig, The allocation of aircraft to routes? An example of linear
programming under uncertain demand, Manag. Sci., 3 (1956), pp. 45–73.

[27] P. Glasserman, Monte Carlo Methods in Financial Engineering, Appl. Math. 53, Springer,
New York, 2004.

[28] P. Glynn and G. Infanger, Simulation-based confidence bounds for two-stage stochastic pro-
grams, Math. Program., 138 (2013), pp. 15–42.

[29] F. Hashemi, S. Ghosh, and R. Pasupathy, On adaptive sampling rules for stochastic recur-
sions, in Proceedings of the 2014 Winter Simulation Conference, A. Tolk, S. Y. Diallo,
I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds., IEEE, Piscataway, NJ, 2014,
pp. 3959–3970.

[30] Y. Herer, M. M. Tzur, and E. Yücesan, The multilocation transshipment problem, IIE
Trans., 38 (2006), pp. 185–200.

[31] J. Higle and S. Sen, Stochastic decomposition: An algorithm for two-stage linear programs
with recourse, Math. Oper. Res., 16 (1991), pp. 650–669.

[32] J. Higle and S. Sen, Stochastic Decomposition: A Statistical Method for Large Scale Stochastic
Linear Programming, Nonconvex Optim. Appl. 8, Springer, New York, 1996.

[33] T. Homem-de-Mello, Variable-sample methods for stochastic optimization, ACM Trans.
Model. Comput. Simul., 13 (2003), pp. 108–133.

[34] T. Homem-de-Mello and G. Bayraksan, Monte Carlo sampling-based methods for stochastic
optimization, Surv. Oper. Res. Manag. Sci., 19 (2014), pp. 56–85.

[35] S. Kim, R. Pasupathy, and S. G. Henderson, A guide to SAA, in Encyclopedia of Opera-
tions Research and Management Science, M. Fu, ed., Hillier Lieberman OR Ser., Elsevier,
London, 2014.

[36] P. L’Ecuyer, Randomized quasi-Monte Carlo: An introduction for practitioners, in Monte
Carlo and Quasi-Monte Carlo Methods, Springer, Cham, Switzerland, 2018, pp. 29–52.

[37] P. l’Ecuyer, C. Lécot, and B. Tuffin, A randomized quasi-Monte Carlo simulation method
for Markov chains, Oper. Res., 56 (2008), pp. 958–975.

[38] M. Ledoux and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes,
Springer, Berlin, 2011.

[39] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, New variants of bundle methods, Math.
Program., 69 (1995), pp. 111–147.

[40] F. Louveaux and Y. Smeers, Optimal investments for electricity generation: A stochastic
model and a test-problem, in Numerical Techniques for Stochastic Optimization, Springer,
Berlin, 1988, pp. 33–64.

[41] J. Luedtke and S. Ahmed, A sample approximation approach for optimization with proba-
bilistic constraints, SIAM J. Optim., 19 (2008), pp. 674–699.

[42] P. l’Ecuyer, Randomized quasi-Monte Carlo: An introduction for practitioners, in 12th Inter-
national Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Com-
puting (MCQMC2016), Springer, Cham, Switzerland, 2016, pp. 29–52.

[43] W.-K. Mak, D. P. Morton, and R. K. Wood, Monte Carlo bounding techniques for deter-
mining solution quality in stochastic programs, Oper. Res. Lett., 24 (1999), pp. 47–56.

[44] V. de Matos, A. Philpott, and E. Finardi, Improving the performance of stochastic dual
dynamic programming, J. Comput. Appl. Math., 290 (2015), pp. 196–208.

[45] M. D. McKay, R. J. Beckman, and W. J. Conover, Comparison of three methods for select-
ing values of input variables in the analysis of output from a computer code, Technometrics,
21 (1979), pp. 239–245.

[46] A. Nedić and D. Bertsekas, Convergence rate of incremental subgradient algorithms, in
Stochastic Optimization: Algorithms and Applications, Springer, Boston, 2001, pp. 223–
264.

[47] B. L. Nelson, Antithetic-variate splitting for steady-sate simulations, European J. Oper. Res.,
36 (1988), pp. 360–370.

[48] B. L. Nelson, Foundations and Methods of Stochastic Simulation: A First Course, Springer,
New York, 2013.

[49] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Appl. Optim.
87, Kluwer, Boston, 2004.

[50] Y. Nesterov, Lectures on Convex Optimization, 2nd ed., Springer, Cham, Switzerland, 2018.
[51] W. de Oliveira and C. Sagastizábal, Level bundle methods for oracles with on demand

accuracy, Optim. Methods Softw., 29 (2014), pp. 1180–1209, https://statweb.stanford.
edu/∼owen/mc/.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://statweb.stanford.edu/~owen/mc/
https://statweb.stanford.edu/~owen/mc/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1048 RAGHU PASUPATHY AND YONGJIA SONG

[52] A. B. Owen, Monte Carlo Theory, Methods and Examples, 2013, https://statweb.stanford.
edu/∼owen/mc/.

[53] R. Pasupathy, On choosing parameters in retrospective-approximation algorithms for
simulation-optimization, in Proceedings of the 2006 Winter Simulation Conference, L. Per-
rone, F. Wieland, J. Liu, B. Lawson, D. Nicol, and R. Fujimoto, eds., IEEE, Piscataway,
NJ, 2006, pp. 208–215.

[54] R. Pasupathy, On choosing parameters in retrospective-approximation algorithms for stochas-
tic root finding and simulation optimization, Oper. Res., 58 (2010), pp. 889–901.

[55] R. Pasupathy, P. W. Glynn, S. Ghosh, and F. S. Hashemi, On sampling rates in simulation-
based recursions., SIAM J. Optim., 28 (2018), pp. 45–73.

[56] R. Pasupathy and B. W. Schmeiser, Retrospective-approximation algorithms for multidimen-
sional stochastic root-finding problems, ACM Trans. Model. Comput. Simul., 19 (2009).

[57] R. Pasupathy and Y. Song, Adaptive Sequential SAA for Solving Two-Stage Stochastic Linear
Programs, preprint, arXiv:2012.03761, 2020.

[58] E. Polak and J. Royset, Efficient sample sizes in stochastic nonlinear programming, J.
Comput. Appl. Math., 217 (2008), pp. 301–310.

[59] B. Polyak, Introduction to Optimization, Optimization Software, New York, 1987.
[60] B. T. Polyak, Nonlinear programming methods in the presence of noise, Math. Program., 1

(1978), pp. 87–97.
[61] S. M. Robinson, Analysis of sample-path optimization, Math. Oper. Res., 21 (1996), pp. 513–

528.
[62] J. Royset, On sample size control in sample average approximations for solving smooth sto-

chastic programs, Comput. Optim. Appl., 55 (2013), pp. 265–309.
[63] J. O. Royset and R. Szechtman, Optimal budget allocation for sample average approximation,

Oper. Res., 61 (2013), pp. 762–776.
[64] A. Ruszczynski and A. Shapiro, eds., Stochastic Programming. Handbook in Operations Re-

search and Management Science, Elsevier, New York, 2003.
[65] S. Sen, R. Doverspike, and S. Cosares, Network planning with random demand, Telecomm.

Syst., 3 (1994), pp. 11–30.
[66] S. Sen and Y. Liu, Mitigating uncertainty via compromise decisions in two-stage stochastic

linear programming: Variance reduction, Oper. Res., 64 (2016), pp. 1422–1437.
[67] A. Shapiro, Asymptotic behavior of optimal solutions in stochastic programming, Math. Oper.

Res., 18 (1993), pp. 829–845.
[68] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Mod-

eling and Theory, 2nd ed., SIAM, Philadelphia, 2014.
[69] A. Shapiro and T. Homem-de-Mello, A simulation-based approach to two-stage stochastic

programming with recourse, Math. Program., 81 (1998), pp. 301–325.
[70] A. Shapiro and T. Homem-de-Mello, On the rate of convergence of optimal solutions of

Monte Carlo approximations of stochastic programs, SIAM J. Optim., 11 (2000), pp. 70–
86.

[71] S. Shashaani, F. S. Hashemi, and R. Pasupathy, ASTRO-DF: A class of adaptive sampling
trust-region algorithms for derivative-free stochastic optimization, SIAM J. Optim., 28
(2018), pp. 3145–3176.

[72] M. Stein, Large sample properties of simulations using Latin hypercube sampling, Technomet-
rics, 29 (1987), pp. 143–151.

[73] R. Stockbridge and G. Bayraksan, Variance reduction in Monte Carlo sampling-based opti-
mality gap estimators for two-stage stochastic linear programming, Comput. Optim. Appl.,
64 (2016), pp. 407–431.

[74] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab., 22 (1994),
pp. 28–76.

[75] H. Wang, R. Pasupathy, and B. W. Schmeiser, Integer-ordered simulation optimization us-
ing R-SPLINE: Retrospective search using piecewise-linear interpolation and neighborhood
enumeration, ACM Trans. Model. Comput. Simul., 23 (2013), 17.

[76] D. Williams, ed., Probability with Martingales, Cambridge University Press, Cambridge, 1991.
[77] C. Wolf, C. Fábián, A. Koberstein, and L. Suhl, Applying oracles of on-demand accuracy

in two-stage stochastic programming–a computational study, European J. Oper. Res., 239
(2014), pp. 437–448.

[78] G. Zhao, A log-barrier method with Bender’s decomposition for solving two-stage stochastic
linear programs, Math. Program. Ser. A, 90 (2001), pp. 501–536.

D
ow

nl
oa

de
d

08
/1

4/
22

 to
 1

28
.2

10
.1

26
.1

99
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://statweb.stanford.edu/~owen/mc/
https://statweb.stanford.edu/~owen/mc/

	Introduction
	Summary and insight on main results
	Related literature
	Organization of the paper

	Problem setup
	Further notation and convention
	Assumptions

	Adaptive sequential SAA
	Consistency
	Iteration and work complexity guarantees
	Stopping in finite time
	Computational experiments
	Implementation details
	Numerical results
	Computational results on the DEAK instance family
	Computational results on other test instances

	Concluding remarks
	References

