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ABSTRACT

The ability to use sample data to generate confidence regions on quantiles is of recent interest. In particular,
developing confidence regions for multiple quantile values provides deeper information about the distribution
of underlying output data that may exhibit serial dependence. This paper presents an approach to generate
elliptical confidence regions using a cancellation method that employs overlapping batch quantile estimators.
Our approach results in a distribution-free statistic that is the analogue of the multivariate Student’s t random
variable, enabling construction of elliptical confidence regions while also clarifying the path to producing
analogous regions having other shapes. We present limited numerical results comparing the effect of fully
overlapping versus non-overlapping batches on the coverage probability and confidence region volume.
Ongoing research explores the effect of the extent of batch overlap on the evident trade-off between coverage
probability and the (scaled) volume of the confidence region, as the dimension grows.

1 INTRODUCTION

Let {Xn,n ≥ 1} be a real-valued discrete-time stationary stochastic process. Let F denote the cumulative
distribution function (cdf) of X j, j = 1,2, . . . ,n, and let

ξ := (ξ1,ξ2, . . . ,ξd); ξ := inf{x : F(x)≥ ηi}, 0 < η1 < η2 · · ·< ηd < 1,

denote a vector of quantiles associated with F . We seek a method to construct a (1−α)-confidence region
on ξ , that is, given α ∈ (0,1), we seek an ellipsoid In ⊂ Rd constructed from the initial segment of data
{X j,1 ≤ j ≤ n} such that P(ξ /∈ In)→ α as n → ∞. We emphasize that the “data” X1,X2, . . . come from a
time series and can exhibit severe serial correlation. And, while variance reduction methods can be used as
in Chu and Nakayama (2012a), Nakayama (2014), Dong and Nakayama (2018), Nakayama (2011), Dong
and Nakayama (2014) and the numerous other references therein, we do not employ these methods here.

Quantiles widely serve as key summary measures of random variables describing the functioning of a
system of interest, e.g., the completion time of a construction project, wait time experienced in a vehicular
traffic system, or the payouts from an insurance portfolio. Quantiles are almost always estimated using
output data generated from the system (or a simulation model of the sytstem), making confidence bounds
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on quantiles of natural interest since they quantify the “uncertainty” associated with the estimated quantile.
Due to their obvious utility, we say no more on motivating quantile confidence sets — see Dong and
Nakayama (2020) and references therein for further discussion.

2 NOTATION AND DEFINITIONS

(i) N refers to the set {1,2, . . . ,} of natural numbers. (ii) IA(x) is the indicator variable taking the value
1 if x ∈ A and 0 otherwise. Also, depending on the context, we write I(A) where I(A) = 1 if the event
A is true and 0 otherwise. (iii) Id refers to the d ×d identity matrix and M+

d to the space of symmetric
positive-definite matrices. We write A j and Bi, j to refer to the j-th element of the vector A and the (i, j)-th
element of the matrix B, respectively. (iv) For a d×d symmetric positive definite matrix A,

√
A refers to a

d×d positive definite matrix that satisfies
√

A
√

A = A. It is known that a d×d matrix A is postive definite
if and only if there exists a positive definite matrix

√
A such that

√
A
√

A = A. (iv) ∥x∥p, p ≥ 1 refers to

the Lp norm
(
∑

d
j=1 |x j|p

)1/p
of the vector x ∈Rd . We use the special notation ∥x∥ to refer to the L2 norm.

(v) For a d ×d matrix B, |B| refers to its determinant. (vi) Z(0, Id) denotes the standard normal random
vector in d dimensions, and χ2

ν refers to the chi-square random vector with ν degrees of freedom. (vii) For

a random sequence {Xn,n ≥ 1}, we write Xn
wp1→ X for almost sure convergence, Xn

p→X for convergence
in probability, and Xn

d→X for convergence in distribution (or weak convergence). (viii) σ(X1,X2, . . . ,Xn)
refers to the σ -algebra formed by the random variables X1,X2, . . . ,Xn. (ix) The empiricial cdf Fn and the
sample quantile estimator Qn are constructed from X j, j = 1,2, . . . ,n as follows:

Fn(x) :=
1
n

n

∑
j=1

I(−∞,x](X j), x ∈ R;

F−1
n (y) := min{x : Fn(x)≥ y}, y ∈ [0,1];

and the sectioning estimator of the η-quantile is

Qn(η) = (F−1
n (η1),F−1

n (η2), . . . ,F−1
n (ηd)). (1)

In the treatment that follows, we slightly abuse notation and use the same notation (for η) irrespective of
whether η is a scalar or a vector. This should cause no confusion since the dimension of η will be clear
from the context.

3 CONFIDENCE REGIONS, SIMULTANEOUS CONFIDENCE INTERVALS, ETC.

Different phrases such as confidence regions, confidence sets, and simultaneous confidence intervals have
appeared in the literature. Towards lending clarity, notice that we have assumed {Xn,n ≥ 1} is a real-
valued process. More generally, one might assume that {Xn,n ≥ 1} is an S-valued stationary process,
θk : S →R,k = 1,2, . . . ,d are statistical functionals such that F = (F1,F2, . . . ,Fd) is the distribution function
associated with (θ1(X1),θ2(X1), . . . ,θd(X1)) ∈ Rd , and the quantiles are

ξ j := inf{x ∈ R : Fj(x)≥ η j}.

The confidence set construction problem is then that of finding a region

Bn :=
{

y ∈ Rd : ∥An(y−Qn(η))∥p ≤ Rn

}
, p ≥ 1 (2)

satisfying, for fixed α ∈ (0,1),
lim
n→∞

P(ξ ∈ Bn) = 1−α,

where
Qn(η) ∈ Rd ,Rn ∈ R,An ∈ M+

d and Qn(η),Rn,An ∈ σ(X1,X2, . . . ,Xn).
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Notice that different choices of An and p in (2) correspond to different shapes of the confidence region.
For example, when An = Id , the confidence region is shaped like a diamond with p = 1, the usual “Euclidean
ball” with p = 2, and a hypercube with p = ∞, all centered on Qn(η); similarly, if An is stipulated to be a
diagonal matrix, the confidence region is shaped like a hyperdiamond with p = 1, an ellipsoid with p = 2,
and a hyperrectangle with p = ∞, again all centered on Qn(η) and having axes that coincide with the
coordinate axes. What is commonly referred to as “simultaneous confidence intervals” in classical statistics
literature corresponds to the stipulation that An is diagonal and p = ∞ since it can then be seen that (2)
amounts to identifying dn ∈ Rd such that

lim
n→∞

P

(
d⋂

j=1

ξ j ∈ [Qn, j(η)−dn, j,Qn, j(η)+dn, j]

)
= 1−α.

The main result that we present later carries over with a few technical modifications towards construction of
the general region in (2). However, for brevity and to not obscure the essential insight, we limit ourselves
to the elliptical confidence region context in this paper.

4 LITERATURE

If the sequence {X j, j ≥ 1} is φ -mixing (Ethier and Kurtz 2009), F(ξi) = ηi,F ′(ξi) > 0,1 ≤ i ≤ d, and
∃κ > 0 and δ > 0 such that |F ′′(x)| ≤ κ for x ∈ ∪B(ξi,δ ), then it can be shown (Serfling 2009) that for
η = (η1,η2, . . . ,ηd) ∈ (0,1)d ,

√
nΣ

−1(Qn(η)−ξ )
d→N(0, I); Σi, j =

min(ηi,η j)−ηiη j

F ′(ξi)F ′(ξ j)
. (3)

Virtually all existing techniques for constructing confidence regions on quantiles directly or indirectly
exploit a central limit theorem (CLT) such as (3). Thus, a useful way of categorizing existing methods
for constructing quantile confidence regions is based on how the CLT in (3) is exploited, giving rise to
consistent and cancellation methods.
Remark 1 More general methods such as subsampling (Politis, Romano, and Wolf 1999) and the boot-
strap (Efron and Tibshirani 1994) do not assume (3) but assume that their chosen statistic has a weak limit
that is not necessarily Gaussian. In fact, subsampling does not stipulate even the existence of variance Σ.

4.1 Consistent Methods

Consistent methods construct a consistent estimator Σn of the variance constant Σ in (3) implying that a
simple application of Slutsky’s theorem (Serfling 2009) allows us to construct the valid (1−α) elliptical
confidence region {

y ∈ Rd : n
∥∥∥√Σn

−1
(Qn(η)− y)

∥∥∥2
≤ χ

2
d,1−α

}
,

where χ2
d,1−α

:= min{x : P(χ2
d ≤ x)≥ 1−α} is the (1−α) critical value of the the chi-square distribution

with d degrees of freedom. While such an approach is attractive due to its simplicity, as Glynn (1996)
and Chu and Nakayama (2012b) note, constructing a consistent estimator (an estimator Σn satisfying Σn

p→Σ)
is a challenge because Σ involves the reciprocals 1/F ′(ξi),1≤ i≤ d which diverge as ηi → 1. This challenge
has led to various methods aimed specifically at consistent estimation of Σ in the service of constructing
confidence regions. For instance, see Chu and Nakayama (2012b) for consistent finite-difference estimators
of the reciprocal of the density, and the large literature (Falk 1986; Babu 1986) dedicated to the question of
estimating the density or its reciprocal. Lei, Alexopoulos, Peng, and Wilson (2020) and Lei, Alexopoulos,
Peng, and Wilson (2022) are more recent examples that use a generalized likelihood ratio estimator of the
density to construct a consistent method.
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4.2 Cancellation Type Methods

A crucial insight is that it is not necessary to consistently estimate Σ in order to construct a valid confidence
region on the quantile vector ξ . This fact is exploited by cancellation methods (Glynn and Iglehart 1985;
Glynn and Iglehart 1990) which explicitly or implicitly construct a process {Sn,n ≥ 1},Sn ∈M+

d such that

(
√

n(Qn(η)−ξ ),S2
n)

d→(
√

ΣN(0, Id),ΣS2) as n → ∞, (4)

where S2 ∈M+
d is a d×d symmetric positive definite random matrix whose distribution can be computed.

This implies, among other things, that S does not depend on the unknown quantities Σ and ξ . Under (4),
the continuous mapping theorem (Billingsley 1999) allows “cancelling” the unknown Σ:

(
√

n
√

S2
n

−1
(Qn(η)−ξ )

d→
(
�
�

√
Σ

√
S2
)−1

�
�

√
ΣN(0, Id)

d
= S−1N(0, Id), (5)

giving rise to the asymptotically valid (1−α) elliptical confidence set{
y : n∥

√
S2

n

−1
(Qn(η)− y)∥2 ≤ t̃2

1−α

}
, (6)

where t̃2
1−α

is the (1−α)quantile of∥S−1N(0, Id)∥2 such that t̃2
1−α

:=min
{

t : P(∥S−1N(0, Id)∥2 ≤ t)≥ 1−α
}
.

Of course, the choice of S2
n is not unique and this constitutes both the challenge and the room for nov-

elty within cancellation methods. Also, in arriving at (6), while nothing has been assumed about the
independence between S and N(0, Id), common choices of Sn will lead to their independence.

An early application of the cancellation method to the construction of confidence regions for quantiles
appears in Calvin and Nakayama (2013), where the authors assume that the following functional central
limit theorem is in effect:

⌊nt⌋√
n

(
Q⌊nt⌋(η)−ξ )

) d→τηW (t), 0 ≤ t ≤ 1, (FCLT)

where

τη :=

√
η(1−η)

F ′(ξ )
; ξ := inf{x ∈ R : F(x)≥ η}; η ∈ (0,1),

and the weak convergence is in D[0,1] endowed with the Skorokhod metric. Calvin and Nakayama (2013)
argue that under (FCLT), it can be shown that(√

n(Qn(η)−ξ ) ,Tn
) d→ (τηW (1),τηB) , (7)

where the standardized time series (Schruben 1983) {Tn,n ≥ 1} is defined as

Tn :=
⌊nt⌋√

n

(
Q⌊nt⌋(η)−Qn(η)

)
∈ D[0,1].

The importance of (7) is that it allows for construction of a functional of Tn that can then be used to
obtain an analogue of Sn in (4) toward constructing a confidence region using (5) and (6). For example,
when d = 1, Calvin and Nakayama (2013) argue, based on methods introduced in Alexopoulos, Argon,
Goldsman, Tokol, and Wilson (2007) for the steady-state mean context, that the weak limit S appearing
in (5) is the chi-square random variable with one degree of freedom (χ2

1 ) when Sn is chosen as the weighted
area estimator (Goldsman, Meketon, and Schruben 1990) of Σ:

Sn :=

(
1
n

n

∑
j=1

w
(

j
n

)
Tn

(
j
n

))2

,
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where the weighting function w : [0,1] → R is twice differentiable and E
[∫ 1

0 w(t)B(t)dt
]
= 1. Calvin

and Nakayama (2013) also provide expressions for the weak limit S when the weighted area estimator
is constructed using nonoverlapping and overlapping batches. Alexopoulos, Boone, Goldsman, Lolos,
Dingeç, and Wilson (2020) extend the work of Calvin and Nakayama (2013) from i.i.d. data to dependent
data relying on a geometric moment contraction condition (GMC) (Wu 2005).

Prior to Calvin and Nakayama (2013), Alexopoulos, Goldsman, and Wilson (2012) present an application
of a technique similar to cancellation (in the sense of not needing consistent estimation of the variance
parameter) toward the construction of a confidence interval on a quantile associated with the steady-state
distribution of a real-valued discrete time stochastic process. Specifically, the authors use a fixed number
(b < ∞) of non-overlapping batches to construct the batch quantile estimators Q j,m(η) := F−1

j,m(η),Fj,m(x) =

m−1
∑

jm
k=( j−1)m+1 I(−∞,x)(Xk), j = 1,2, . . . ,b;m = n/b, and then crucially demonstrate under GMC (in lieu

of strong mixing) that as n → ∞,

√
m(Q1,m(η)−ξ ,Q2,m(η)−ξ , . . . ,Qb,m(η)−ξ )

d→ N

(
0,

η(1−η)∑
ℓ=∞
ℓ=−∞ ρℓ

f 2(ξ )
Ib

)
, (8)

where ρℓ = Corr(I(X1 ≤ ξ ),I(Xℓ+1 ≤ ξ )) is the lag-ℓ correlation associated with the process {I(X j ≤ ξ ), j ≥
1}. If Q̄n(η) = b−1

∑
b
j=1 Q j,m(η) is the batching estimator and S̄2

n is the sample variance constructed from
Q j,m, j = 1,2, . . . ,b, then under (8), the continuous mapping theorem (Billingsley 1999) assures us that√

b(Q̄n − ξ )/S̄n converges weakly to the Student’s t random variable with b− 1 degrees of freedom,
yielding the (1−α) confidence interval Q̄n ± tα/2,b−1S̄n/

√
b. Sequest (Alexopoulos, Goldsman, Mokashi,

Tien, and Wilson 2019) and Sequem (Alexopoulos, Goldsman, Mokashi, and Wilson 2017) incorporate
notable implementation enhancements to the essential idea introduced in Alexopoulos, Goldsman, and
Wilson (2012).

The idea presented in (Alexopoulos, Goldsman, and Wilson 2012) is of particular relevance to what
we present here. In fact, the main theorem that we present here can be seen as replacing the batching
estimator Q̄n used in (Alexopoulos, Goldsman, and Wilson 2012) with the sectioning estimator Qn, and
then generalizing along the following three directions: (i) allowing any degree of batch overlap ranging
from fully overlapping to non-overlapping; (ii) ξ ∈ Rd implying that the confidence regions reside in an
arbitrarily high but finite dimension; and (iii) number of batches b can be finite or infinite depending on
the extent of batch overlap. As our main theorem will make clear, (i), (ii), and (iii) cause deviations from
the classical Student’s t weak limit, and thereby the nature of the constructed confidence region.

4.3 Bahadur Representations

In this subsection we summarize two strong approximation theorems that are crucially invoked when
proving the main results of this paper. Bahadur’s remarkable result, now known informally as the Bahadur
representation, presents an almost sure bound on the rate at which the error in the sample quantile decays
to zero, while Sen extends the results to φ -mixing random variables.
Theorem 1 (Bahadur Representation for Sample Quantile, see Bahadur (1966)) Suppose (i) F(ξ ) = η ,
(ii) F is twice differentiable at ξ , (iii) F ′(ξ )> 0, and (iv) ∃κ < ∞ such that |F ′′(x)|< κ for all x ∈ B(ξ ,δ )
and some δ > 0. Then∣∣√n{ f (ξ )(Qn(η)−ξ )− (η −Fn(ξ ))}

∣∣= O(n−1/4 logn) a.s.

Theorem 2 (Bahadur Representation Under φ -Mixing, see Sen (1972)) Suppose {X j,1≤ j ≤ n} is φ -mixing
with constants φ( j)≥ 0 satisfying 1 ≥ φ(1)≥ φ(2)≥ ·· · ≥ 0, and ∑φ 1/2( j)< ∞. Suppose F is absolutely
continuous in some neighborhood of ξ with a continuous density function f such that 0 < f (ξ ) < ∞.
Furthermore, suppose f ′(x) = (d/dx) f (x) is positive and bounded in some neighborhood of ξ . Then,∣∣√n{ f (ξ )(Qn(η)−ξ )− (η −Fn(ξ ))}

∣∣= O(n−1/8 logn) a.s.
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While Theorem 2 is our essential instrument to handle dependence, we could have equally used a
number of other Bahadur representations (Wu 2005) that have appeared recently.

5 MAIN THEOREM

An estimator Σn of the d × d asymptotic covariance matrix Σ appearing in (3) can be constructed using
overlapping batches of data as follows. Suppose we partition the data into possibly overlapping batches of
size mn and having initial observations offset by an amount dn. (See Figure 1 for a clear idea.), The i-th
batch consists of data X j, j = (i−1)dn +1,(i−1)dn +2, . . . ,(i−1)dn +mn where i = 1,2, . . . ,bn and the
number of batches bn = d−1

n (n−mn)+1. The empirical distribution from the ith batch is then

batch 1

batch 2

batch 3
1 mn

dn +1 dn +mn

2dn +1

Figure 1: The figure depicts partially overlapping batches. Batch 1 consists of observations X j, j =
1,2, . . . ,mn; batch 2 consists of observations X j, j = dn + 1,dn + 2, . . . ,dn +mn, and so on, with batch
i consisting X j, j = (i− 1)dn + 1,(i− 1)dn + 2, . . . ,(i− 1)dn +mn. There are thus bn := d−1

n (n−mn)+ 1
batches in total, where n is the size of the dataset.

Fi,mn(x) =
1

mn

(i−1)dn+mn

∑
k=(i−1)dn+1

I(−∞,x](xi),

yielding the quantile estimators constructed from the various batches:

Qi,mn := (F−1
i,mn

(η1),F−1
i,mn

(η2), . . . ,F−1
i,mn

(ηd)), i = 1,2, . . . ,bn. (9)

The section estimator in (1) and the batch quantiles in (9) together suggest the following natural estimator
Σmn of Σ:

Σmn :=
1

1− (mn/n)
mn

bn

bn

∑
j=1

(Q j,mn(η)−Qn(η))(Q j,mn(η)−Qn(η))T . (10)

As we shall see shortly, the factor (1−mn/n)−1 ensures that the estimator Σmn is asymptotically unbiased.
Also define the corresponding “Studentized random vector”

Tmn :=
√

n Σ
− 1

2
mn (Qn(η)−ξ ).

We are now ready to state the main result that characterizes the weak convergence behavior of the
matrix sequence {Σmn ,n ≥ 1} and the vector sequence {Tmn ,n ≥ 1}.
Theorem 3 (OB-I Limits χ2

OB−I(β ,b) and TOB−I(β ,b)) Suppose that the postulates of Theorem 2 hold and
that

β := lim
n

mn

n
> 0; b := lim

n
bn ∈ {2,3, . . . ,∞}.

Define the “Brownian bridge” random vector

B(u,β ) :=Wd(u+β )−Wd(u)−βWd(1), u ∈ [0,1−β ],β ∈ (0,1),

where {Wd(t),0 ≤ t ≤ 1} is the d-dimensional standard Wiener process. Then the sequences {Σmn ,n ≥
1},{Tmn ,n ≥ 1} satisfy
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Σmn

d→
√

Σ χ2
OB−I(β ,b)

√
Σ

T
; Tmn

d→χ−1
OB−I(β ,b)Wd(1) =: TOB−I(β ,b), (11)

where

χ2
OB−I(β ,b) :=

{
1

κ1(β ,b)
1

β (1−β )

∫ 1−β

0 B(u,β )B(u,β )T du b = ∞

1
κ1(β ,b)

1
β

1
b ∑

b
j=1 B(c j,β )B(c j,β )

T b = N\{1},

c j = ( j−1)(1−β )/(b−1), and χ−1
OB−I(β ,b) :=

(
χ2

OB−I(β ,b)
)− 1

2 , and where κ1(β ,b) = (1−β ).

Proof Sketch. Recall Equation (10) and substitute β = mn/n. Since Σ is a variance matrix there exists√
Σ such that Σ =

√
Σ
√

Σ
T

and define

B̃ j,mn := m−1
n

(
Wd

(
( j−1)

n−mn

bn −1
+mn

)
−Wd

(
( j−1)

n−mn

bn −1

))
, j = 1,2, . . . ,bn.

Then,

(1−β )Σmn =
mn

bn

bn

∑
j=1

[
(Q j,mn(η)−Qn)(Q j,mn(η)−Qn)

T − (
√

ΣB̃ j,mn −
√

Σn−1Wd(n))(
√

ΣB̃ j,mn −
√

Σn−1Wd(n))T
]

+
√

Σ×

(
1
bn

bn

∑
j=1

(
√

mnB̃ j,mn −
√

mn

n
Wd(n)

)(
√

mnB̃ j,mn −
√

mn

n
Wd(n)

)T
)
×
√

Σ
T
=: En + In.

Using Theorem 2, we can show after lots of algebra that En
wp1→ 0, and that In converges weakly to the

appropriate limit as bn → b = ∞. A similar calculation holds for the b < ∞ context.

5.1 Further Observations

A number of points related to Theorem 3 are salient.

(a) Notice that χ2
OB−I(β ,b) ∈ M+

d is a random matrix and TOB−I(β ,b) := χ−1
OB−I(β ,b)W (1) ∈ Rd is a

random vector. They should be seen as the χ2 and Student’s t analogues for the context of
constructing confidence regions on objects other than the population mean.

(b) The matrix Σmn does not consistently estimate the covariance matrix Σ. This is due to the increased
variance stemming from the use of large batches as connoted by β > 0. It is in this sense that we
can “get away with” using large batches and not estimating the covariance matrix consistently. It
can be shown that if β = 0, that is, if mn/n → 0, then χ2

OB−I(β ,b) degenerates to the identity matrix
and Σmn consistently estimates Σ.

(c) Depending on the values of the limiting batch size β and the limiting number of batches b, the
random vector TOB−I(β ,b) can deviate quite significantly from the standard normal random vector
Z or the Student’s t random vector Tν . For this reason, it is generally not advisable to substitute
TOB−I(β ,b) with Z or Tν in an attempt at approximation. To facilitate using TOB−I(β ,b) as is, code
that generates critical values for ∥TOB−I(β ,b)∥p, p ≥ 1 is available upon request.

The section estimator Qn in Theorem 3 can be replaced by what has been called the batching estima-
tor (Nakayama 2014):

Q̄n :=
1
bn

bn

∑
j=1

Q j,mn(η).

The batching estimator Q̄n presents a higher bias, lower variance, and lower computational complexity
alternative to the section estimator Qn. The batching estimator and the batch quantiles in (9) together
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suggest the following alternative to Σmn when estimating Σ:

Σ̄mn :=
1

κ2(β ,b)
mn

bn

bn

∑
j=1

(Q j,mn(η)− Q̄n)(Q j,mn(η)− Q̄n)
T ,

where κ2(β ,b) is the “bias correction” factor. A theorem analogous to Theorem 3 but with Q̄n replacing
Qn(η), and with Σ̄mn replacing Σmn , yields the OB-II limits χ2

OB−II(β ,b) and TOB−II(β ,b). We defer details
of such a theorem and the nature of the κ2(β ,b) to a forthcoming paper.

5.2 The OB-I Confidence Ellipsoid

Theorem 3 can be directly used to construct an elliptical (1−α) confidence region on ξ . To see this, note
that (11) implies

√
n
√

Σ
−1
mn
(Qn −q) d→

√
χ2

OB−I(β ,b)
−1

Wd(1). (12)

Using the continuous mapping theorem (Billingsley 1999) on (12) with the mapping function g(x) = ∥x∥2,
we have

n
∥∥∥√Σ

−1
mn
(Qn −q)

∥∥∥2 d→
∥∥∥∥√χ2

OB-I

−1
Wd(1)

∥∥∥∥2

, (13)

yielding the (1−α) elliptical confidence set

Cn :=
{

y ∈ Rd :
√

n
∥∥∥√Σ

−1
mn
(Qn − y)

∥∥∥≤tOB-I,2,1−α

}
=

{
ỹ = (ỹ1, ỹ2, . . . , ỹd) ∈ Rd :

(ỹ1 −Qn,1)
2

t2
OB-I,2,1−α

λ1,n
+

(ỹ2 −Qn,2)
2

t2
OB-I,2,1−α

λ2,n
+ · · ·+

(ỹd −Qn,d)
2

t2
OB-I,2,1−α

λd,n
≤ 1

}
, (14)

where the second equality in (14) is obtained after the coordinate transformation ỹ=UT y using an appropriate
unitary matrix U , tOB-I,2,1−α is the (1−α) quantile of ∥TOB-I∥=

∥∥∥√χ2
OB-I

−1
Wd(1)

∥∥∥, and λ j,n, j = 1,2, . . . ,d
are the eigenvalues associated with the positive definite matrix Σmn . (In the notation, tOB-I,2,1−α appearing
in (14), the second subscript of tOB-I,2,1−α corresponds to the fact that tOB-I,2,1−α is a quantile of the L2 norm
of the random vector TOB-I.) We see from (14) that Cn is an ellipsoid centered at Qn(η) and having the
conveniently scaled volume(

vol(Cn)

vol(Bd(0,1))

)1/d

= tOB-I,2,1−α

(
d

∏
j−1

√
λ j,n

)1/d

= tOB-I,2,1−α |Σmn |
1/2d , (15)

where Bd(0,1) is the unit ball in Rd .

6 EXPERIMENTAL RESULTS

This section presents the results of numerical experiments to explore the effects of increasing batch sizes
and the effect of overlapping batches. For sample size n, the batch size is mn = βn. For nonoverlapping
batches, the number of batches is bn = n/mn and the limiting number of batches as n → ∞ is b = bn. For
overlapping batches, we take the maximum level of overlap, so set dn = 1 and set bn = n(1−β )+1. In this
case, the limiting number of batches as n → ∞ is b = ∞. We report the coverage of confidence intervals when
estimating a single quantile, as well as the size of the confidence interval regions when d ≥ 1. Note that
we use our same estimator for nonoverlapping batches as for overlapping batches (varying the parameter
dn to adjust the level of overlap). Future work will compare the effects of numerous other nonoverlapping
batch estimators in the literature that employ alternative cancellation or consistent estimation methods.
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6.1 IID Exponential Data

We use i.i.d. values of the exponential distribution with rate 1 to test the performance of the overlapping
batch means method. Table 1 shows the results calculating a single quantile using both nonoverlapping and
overlapping batch means. We present the coverage and mean half-width estimate from 2000 independent
replications for each experiment.

Table 1: Independent data, d = 1: Coverage values for 95% confidence intervals with average half-widths
in parentheses for the quantile estimate for p = 0.99 of i.i.d. exponential data using 2000 independent
replications.

NOLB
n β = 0.01 β = 0.05 β = 0.10 β = 0.20

100 0.587 (0.763) 0.830 (1.308) 0.888 (1.634) 0.912 (2.328)
200 0.695 (0.668) 0.861 (1.013) 0.898 (1.214) 0.932 (1.752)

1,000 0.817 (0.419) 0.923 (0.603) 0.945 (0.688) 0.955 (0.910)
OLB

n β = 0.01 β = 0.05 β = 0.10 β = 0.20
100 0.595 (0.765) 0.823 (1.272) 0.864 (1.563) 0.889 (1.957)
200 0.682 (0.657) 0.837 (0.985) 0.894 (1.169) 0.911 (1.506)

1,000 0.825 (0.414) 0.928 (0.585) 0.923 (0.666) 0.938 (0.765)

Table 1 shows that increasing the value of β yields greater coverage and greater halfwidths. Meanwhile,
the OLB approach has slightly worse coverage, but narrower half-widths. Using the same data length n,
overlapping batches with a larger β may deliver adequate coverage with smaller half-widths compared
to using NOLB methods. We observe that for small β = 0.01, the performance of nonoverlapping and
overlapping are similar, and the discrepancy increases with larger batches as the effect of the overlap
becomes greater.

Next, we explore simultaneous confidence intervals for multiple quantiles of i.i.d. data where a coverage
region is generated. Table 2 displays these results for the exponential distribution (with rate 1) for simultaneous
confidence intervals for pi = 0.01,0.30,0.50,0.70,0.99, with dimension d = 5. In lieu of the half-widths
used in Table 1, we employ the formula for the volume of the multivariate normal ellipsoid, which is similar
to (15). We use the estimator Σmn as the estimate of the covariance matrix Σ. Instead of the χ2 statistic,
we use the appropriate critical value of the T -statistic calculated from (13) (estimated using numerical
simulation). Then, we report the mean observed root half-volume of the multidimensional confidence
ellipsoid. Table 2 reveals that using overlapping batches appears to reduce the volume of the coverage
regions. Values marked N/A imply the batch size was not large enough to generate a d-dimensional estimate.

6.2 Autoregressive Data

We simulate values of the AR(1) autoregressive process with lag 1 and coefficient α = 0.5. In this case, the
marginal distribution of the data series is N (0,σ2/(1−α2)) where σ2 is the variance of the noise terms
and is set to 1 in our experiments. Table 3 displays the results for confidence intervals calculated for a
single quantile of 0.90. As before, we observe narrower confidence interval half-widths for OLB resulting
from the greater number of batches. Coverage improves as the batch size increases and as n increases.

Table 4 shows results for d = 3 where the goal is to estimate simultaneously the 0.90, 0.95, and 0.99
quantiles for AR(1) dependent data. We observe higher sample sizes are needed for higher dimensional
settings to achieve adequate coverage. While the overlapping approach with large batch sizes appear to
achieve better coverage with smaller sample sizes, we note the computation time is much higher than for
nonoverlapping interval estimation.
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Table 2: Independent data, d = 5: Coverage values for 95% confidence intervals with mean root half-volumes
in parentheses for the joint quantile estimate for pi = 0.01,0.30,0.50,0.70,0.99 of i.i.d. exponential data
using 2000 independent replications.

NOLB
n β = 0.01 β = 0.05 β = 0.10

100 N/A 0.824 (3.162) 0.928 (4.215)
200 N/A 0.863 (2.741) 0.942 (3.915)

1,000 0.789 (1.998) 0.965 (2.259) 0.975 (3.100)
OLB

n β = 0.01 β = 0.05 β = 0.10
100 N/A 0.823 (3.016) 0.892 (3.135)
200 N/A 0.863 (2.584) 0.930 (2.902)

1,000 0.807 (1.995) 0.964 (2.116) 0.966 (2.271)

Table 3: Dependent data, d = 1: Coverage values for 95% confidence intervals with mean half-widths in
parentheses for the joint quantile estimate for p= 0.90 with AR(1) data using 2000 independent replications.

NOLB
n β = 0.01 β = 0.05 β = 0.10 β = 0.20

100 0.840 (0.372) 0.908 (0.464) 0.927 (0.535) 0.945 (0.749)
200 0.876 (0.291) 0.912 (0.347) 0.938 (0.407) 0.942 (0.547)

1,000 0.906 (0.146) 0.947 (0.176) 0.942 (0.190) 0.950 (0.252)
OLB

n β = 0.01 β = 0.05 β = 0.10 β = 0.20
100 0.832 (0.367) 0.889 (0.447) 0.912 (0.512) 0.926 (0.627)
200 0.859 (0.288) 0.922 (0.339) 0.933 (0.395) 0.946 (0.463)

1,000 0.910 (0.145) 0.937 (0.170) 0.951 (0.187) 0.954 (0.217)

Table 4: Dependent data, d = 3: Coverage values for 95% confidence intervals with mean half-volumes in
parentheses for the joint quantile estimate for p = 0.90,0.95,0.99 with AR(1) data using 2000 independent
replications.

NOLB
n β = 0.01 β = 0.05 β = 0.10

500 N/A 0.827 (3.051) 0.945 (4.158)
1,000 0.480 (1.811) 0.916 (3.075) 0.952 (3.782)
2,000 0.665 (1.912) 0.939 (2.821) 0.955 (3.509)
4,000 0.844 (2.027) 0.946 (2.625) 0.960 (3.166)

OLB
n β = 0.01 β = 0.05 β = 0.10

500 N/A 0.817 (2.924) 0.933 (3.627)
1,000 0.493 (1.808) 0.931 (2.966) 0.943 (3.272)
2,000 0.665 (1.911) 0.933 (2.694) 0.953 (3.064)
4,000 0.852 (2.022) 0.947 (2.524) 0.950 (2.767)
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