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Abstract
We consider optimization problems with an objective function that is estimable using
a Monte Carlo oracle, constraint functions that are known deterministically through a
constraint-satisfaction oracle, and integer decision variables. Seeking an appropriately
defined local minimum, we propose an iterative adaptive sampling algorithm that,
during each iteration, performs a statistical local optimality test followed by a line
search when the test detects a stochastic descent direction. We prove a number of
results. First, the true function values at the iterates generated by the algorithm form
an almost-supermartingale process, and the iterates are absorbed with probability
one into the set of local minima in finite time. Second, such absorption happens
exponentially fast in iteration number and in oracle calls. This result is analogous
to non-standard rate guarantees in stochastic continuous optimization contexts that
involve sharpminima.Third, the oracle complexity of the proposed algorithm increases
linearly in the dimensionality of the local neighborhood. As a solver, primarily due
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to combining line searches that use common random numbers with statistical tests
for local optimality, the proposed algorithm is effective on a variety of problems. We
illustrate such performance using three problem suites, on problems ranging from 25
to 200 dimensions.

Keywords Local stochastic optimization · Simulation optimization · Adaptive
sampling · Integer variables

Mathematics Subject Classification 49Mxx · 65Kxx · 90Bxx · 90Cxx

1 Introduction

We consider simulation optimization (SO) problems in which the objective function
is an expectation that can only be observed with stochastic error, and the decision
variables can only assume integer values. Formally, we state the SO problem with
integer decision variables as

minimize: f (x) := E[F(x, ξ)] =
∫

F(x, ξ)dP(ξ)

subject to: gi (x) ≤ 0, i = 1, 2, . . . , r; x ∈ Zd ,

(Q)

where f : D → R,D ⊆ Rd is the real-valued objective function, P is the probability
measure induced by the random variable ξ , the constraint functions gi : D → R, i =
1, 2, . . . , r are real-valued, and Zd is the d-dimensional integer lattice. We allow
the constraints to be hidden [26]; that is, they may be observed as the output of a
deterministic constraint-satisfaction oracle. Thus, the oracle reveals only whether the
requested x satisfies the constraint set gi (x) ≤ 0, i = 1, 2, . . . , r . Accordingly, we
define the feasible set as

X := {x ∈ D ∩ Zd : gi (x) ≤ 0, i = 1, 2, . . . , r},

which may be very large or countably infinite.
Further, we consider the context of solving Problem Q only to local optimality.

Formally, we say that a feasible point x∗ ∈ X is anN1-local solution to Problem Q if
f (x∗) ≤ f (x) for all x ∈ N1(x∗) ∩ X, where

N1(x) := {x ∈ Zd : ‖x − x∗‖ ≤ 1}

and ‖·‖ refers to the L2 norm. The set of all N1-local solutions is L(N1). This con-
text enables us to exploit local structure when finding a point in L(N1); algorithms
developed in this context may later be incorporated into a method that seeks a global
solution.

In solving Problem Q to local optimality, we assume that the objective function
f can only be observed with error at each feasible point in the integer lattice. Let
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εi , i = 1, 2, . . . ,m be random fields that specify the error

εi (·) := F(·, ξi ) − f (·), (1)

where ξi , i = 1, 2, . . . ,m are independent and identically distributed (i.i.d.) random
variables. Then, the objective function estimator is

F̄(·,m) := f (·) + m−1 ∑m
i=1 εi (·). (2)

We emphasize that F̄(·,m) is observed pointwise inX, that is, the oracle takes as input
the decision variable x ∈ X and the random variables ξi , i = 1, 2, . . . ,m, and outputs
the objective function estimate

F̄(x,m) = m−1 ∑m
i=1 F(x, ξi )

at the decision variable x . Estimating the objective function at a specific point x ∈ X
thus involves obtaining m function observations (or simulation replications) from a
Monte Carlo simulation oracle or drawing m observations from a given database of
scenarios, and then constructing the estimator as the sample mean of the obtained
observations. And, in particular, the entire field F̄(·,m) is not observed at once. In
this sense, the problem we consider is the stochastic analogue of deterministic black
box oracle optimization [8,34]. (As the feasible region is a subset of Zd , the oracle
is necessarily a zeroth-order stochastic black box oracle.) Henceforth, we refer to the
Monte Carlo simulation oracle or database as the stochastic oracle.

SO problems of the nature we describe, called integer-ordered SO problems by
[13,38,39], constitute an important problem class. These problems arise in a variety of
applications including, but not limited to, inventory replenishment policy optimization
[17], revenue management [11], planning and scheduling [24,28], and determining
vaccine allocation strategies to prevent an epidemic outbreak [10]. At the time of
writing, about 40% of the problems in the simopt problem library [13] are integer-
ordered SO problems.

As a practical matter, obtaining a single observation of the objective function value
at x , F(x, ·),may require significant computational resources—on the order of several
seconds, minutes, or hours, depending on the application. Given the computational
expense, naïve solution methods, such as using the same large sample size at every
point visited by an algorithm, are unlikely to be useful. Instead, these problems require
sophisticated algorithms that appropriately control stochastic error and return a high-
quality solution with as few function evaluations as possible. Any reduction in the
number of function evaluations required to find a high-quality solution is likely to
enable decision-makers to solve important problems faster, or to solve new problems
they previously considered unsolvable.

1.1 Our approach and key results

Toward solving Problem Q, we propose an adaptive sampling [12,40,42,46] algorithm
called ADALINE that repeatedly performs a statistical local optimality test followed
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by a line search executed along a stochastic descent direction. The statistical local
optimality test consists of adaptively sampling points in a neighborhood of the current
candidate iterate until it finds a statistically better neighbor; the sample size required
to identify the statistically better neighbor is subsequently used in the procedures
that conduct the line search and identify new stochastic descent directions. Thus,
ADALINE is adaptive in the strict sense, that is, the sample size used for function
estimation within an iteration is a stopping time with respect to the sigma algebra of
generated observations.

We demonstrate that ADALINE’s iterates exhibit a certain strong type of almost
sure convergence. First, we prove that the true function values at the iterates generated
by the algorithm “almost” form a supermartingale [51, p. 94], whichwe discuss further
in Sect. 2, and are absorbed with probability one into the set of local minima after
a finite number of stochastic oracle calls (Theorem 1). Furthermore, under a mild
lower bound on the stopping times corresponding to the expended sample sizes in the
stochastic optimality test, we show that absorption into the set of local minima occurs
(Theorem 2) exponentially fast in the iteration number (Theorem 3) and the number of
oracle calls (Theorem 4). The last result (Theorem 4) stands in contrast to stochastic
continuous optimizationwhere thework complexity guarantee is usuallymuchweaker
[3], except in contexts involving sharpminima [22].Wealso demonstrate that the oracle
complexity increases linearly in the dimensionality of the problem (Theorem 4).

The theoretical results describing ADALINE’s behavior indicate a particularly
strong form of convergence and fast convergence rate properties. Along with a few
other stipulations, the results rely heavily on two key properties:

(a) If the current iterate is not an N1-local solution, the statistical local optimality
test terminates in finite time almost surely (Lemma 5); likewise, if the point being
tested is optimal, there is positive probability that the test never terminates.

(b) After each statistical local optimality test, the next line search direction is the
max-descent (analogue of the negative gradient) directionwith positive probability
(Property 1).

Although they are important requirements for convergence, properties like (a) and
(b) alone do not fully capture the requirements needed for ADALINE to perform
efficiently as a solver, especially in high dimensions. To this end, several heuristics
embedded in ADALINE ensure efficiency in the statistical local optimality test and in
finding a “good” stochastic descent direction:

(c) In the statistical local optimality test at the incumbent iterate, ADALINE uses a
discrete probability measure to select a feasible neighbor from which to obtain
additional objective function observations. ADALINE frequently updates the dis-
crete probability measure using weights that resemble the Student’s t statistic
[9,18,41,47] to ensure a higher probability of sampling points deemed likely to be
better than the incumbent.

(d) When finding a new stochastic descent direction at the end of a line search, ADA-
LINE first constructs an estimated descent cone from the feasible neighborhood
points that are estimated as better than the incumbent iterate; the descent cone may
be a small sub-space of descending feasible directions when operating close to a
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constraint. Then, ADALINE constructs an estimated descent direction by appro-
priately weighting all directions in the estimated descent cone. The chosenweights
are standardized estimated optimality gaps that resemble the Student’s t statistic.

The choices (c) and (d) are heuristic in the sense that they never directly enter the
convergence rate calculations. However, they are crucial for efficient implementation
in high dimensions.

Finally, whilewe have stated Problem Q as seeking anN1-local solution, our results
extend to problems that seek an Na-local solution in an analogous manner, where a
feasible point x∗ ∈ X is an Na-local solution to Problem Q if f (x∗) ≤ f (x) for all
x ∈ Na(x∗) ∩ X, and

Na(x) := {x ∈ Zd : ‖x − x∗‖ ≤ a}, a ≥ 1. (3)

Such extension to larger neighborhoods is seamless, at least in principle, because of our
proposed algorithm’s modular structure, where only the statistical local optimality test
is affected by the chosen value of a in (3). Furthermore, our statistical local optimality
test is a ranking and selection procedure [16,27,41] that can be executed on sets of the
typeNa(x). As a comment on further generalization, we observe that our assumption
of the feasible set X being a subset of the d-dimensional integers Zd is primarily
for easy exposition. Our results extend to countable metric spaces X that have no
accumulation points, thereby subsuming a vast array of problem contexts arising in
graph networks and genomics [10,31] that have recently become fertile.

1.2 Existingmethods

Black-box oracle methods for solving constrained integer andmixed-integer problems
have a long history, resulting in a vast and mature literature. See [1,2,4,6,29,30] and
references therein for an opening into this area. The corresponding literature in the
stochastic context is sparse, especially when seeking a local solution for Problem Q,
is relatively much smaller. See [15,44,48] for recent work on methods that guaran-
tee convergence to a global solution, and [53,54] for those that exploit convexity in
discrete spaces [33]. As our focus is on methods that converge to a local solution,
we expand only upon this literature, including the popular partitioning-based algo-
rithms COMPASS [14] and Industrial Strength COMPASS (ISC) [52], as well as the
pseudogradient-based line search algorithm R- SPLINE [50].

First, operating on an explicitly-defined feasible space, COMPASS iteratively par-
titions and expends simulation effort to evaluate feasible points from the “most
promising area” of the feasible space to guarantee convergence to a local solution.
At the end of every iteration, COMPASS updates the most promising area by iden-
tifying and grouping solutions that are “close” to the best solution and then solving
an optimization problem. COMPASS implicitly exploits the structure of the objective
function, although the requirement to solve an optimization problem affects scalabil-
ity to higher dimensions. The Industrial Strength COMPASS (ISC), an enhancement
over COMPASS, returns good quality local solutions by restarting COMPASS several
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times from promising initial points obtained using a genetic algorithm. Then, a ranking
and selection [21] algorithm identifies the best of the local solutions.

Perhaps the closest algorithm to the present work, R- SPLINE, is a line search
based algorithm that identifies a local minimum by operating within a retrospec-
tive approximation (RA) framework [37]. An RA framework prescribes solving a
sequence of sample-path problems with increasing sample sizes; each sample-path
problem solved constitutes oneRA iteration.Within anRA iteration ofR- SPLINE, the
SPLINE sub-routine repeatedly conducts a pseudo-gradient based line search followed
by a neighborhood enumeration test for local optimality. Upon locating a confirmed
sample-path local minimum, the current RA iteration ends, and the next RA iteration
begins by using the solution from the last RA iteration as a warm start.

It is worthwhile to observe that while R- SPLINE is designed to control stochas-
tic error, it uses a pre-specified, deterministic rule for determining the sample size
sequence, possibly leading to inefficiencies by preventing a reversion to smaller sam-
ple sizes as the algorithm progresses. In a sense, the algorithm proposed in this paper
remedies this issue; it combines arguably the best aspect of R- SPLINE, line search,
with a module that adaptively decides how much to sample based on measures of
proximity to a solution. We compare a version of ADALINE with the implementation
of R- SPLINE from the simopt.org solver library in Sect. 5.

2 Preliminaries

We discuss notation, definitions, useful results, and standing assumptions.

2.1 Notation, definitions, and useful Results

First, we define notation. For x ∈ R, x+ := max{0, x}. For x = (x1, x2, . . . , xd) ∈
Rd , ‖x‖ := (

∑d
j=1 x

2
j )
1/2 is the Euclidean norm. For a sequence of real numbers (an),

we say an = O(1) if there exists c ∈ (0,∞) such that |an| < c for large enough n.
For a sequence of events (An)n≥0 defined on a probability space, we say that An i .o.
(“infinitely often”) if infinitely many of An occur, where An i .o. := lim supn An =
∩∞
n=1 ∪∞

j=n A j . For an event A, A with probability one (w.p.1) means P{A} = 1.
The following definition of a deleted neighborhood is useful throughout the paper

to denote the neighborhood of a point while excluding the point itself.

Definition 1 The deleted neighborhood of x ∈ X is N′
1(x) := N1(x) \ {x}.

In the convergence proofs, we require the notions of a max-descent function and
a mildly-coercive function. The max-descent of f at x represents the magnitude of
steepest descent of f at x .

Definition 2 Themax-descent function of f , denoted f −
Δ : D∩Zd → R, is f −

Δ (x) :=
min{ f (x̃) − f (x) : x̃ ∈ N1(x)} where D ⊆ Rd is the domain of f .

Thus, if a point x∗ ∈ D∩Zd satisfies f −
Δ (x) = 0, then x∗ is a local minimum of f .

The definition for mildly-coercive uses the max-descent function.
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Definition 3 A function f : D ∩ Zd → R is said to be mildly-coercive if
lim inf
k→∞ f −

Δ (xk) < 0 for any sequence (xk)k≥1 ⊂ D ∩ Zd such that ‖xk‖ → ∞.

Finally, we present several useful results that we invoke repeatedly to prove our
results. First, we require Borel-Cantelli’s first and second lemmas [5, p. 59], stated
here as Lemma 1.

Lemma 1 (Borel-Cantelli Lemmas) Let (An)n≥1 be a sequence of events defined on
a probability space.

1. If
∑∞

n=1 P{An} < ∞, then P{An i.o.} = 0.
2. If events An are independent and

∑∞
n=1 P{An} = ∞, then P{An i.o.} = 1.

We also require Lévy’s Extension of Lemma 1 part 2 [51, p. 124], presented here
as Lemma 2.

Lemma 2 (Lévy’s Extension of Borel-Cantelli) Let (An)n≥1 be a sequence of events
defined on a filtered probability space (Ω,F, (Fn)n≥0, P), where An ∈ Fn for each
n ≥ 1. If it holds that

∑∞
n=1 P{An+1 |Fn} = ∞, then P{An i.o.} = 1.

Next, we require Bernstein’s inequality [49, p. 33], stated here as Lemma 3, which
allows us to bound the tail behavior of the estimated error.

Lemma 3 (Bernstein Inequality) Let X1, X2, . . . , Xn be independent mean-zero sub-
exponential random variables (see [49, p. 31] and Assumption 3). Then, for every
t ≥ 0,

P
{∣∣∑n

i=1 Xi
∣∣ ≥ t

} ≤ 2 exp

{
−c0 min

( t2∑n
i=1 ‖Xi‖2ψ1

,
t

maxi‖Xi‖ψ1

)}
,

where c0 > 0 is an absolute constant, and the sub-exponential norm of a random
variable X is ‖X‖ψ1 := inf

{
t > 0 : E [

exp {|X |/t}] ≤ 2
}
.

Finally, in Lemma 4, we present a simplified version of the Robbins-Siegmund
Theorem [43], which provides conditions for an “almost-supermartingale.”

Lemma 4 (Simplified Robbins-Siegmund Theorem) Suppose (Zk)k≥0 and (Yk)k≥0
are positive-valued integrable stochastic processes, and let Zk and Yk be adapted to
Fk . Also, suppose (Zk)k≥0 is an almost-supermartingale, that is, for large enough k,
E[Zk+1 |Fk] ≤ Zk + Yk w.p.1 and

∑∞
k=0 Yk < ∞ w.p.1. Then, (Zk)k≥0 converges

w.p.1.

2.2 Standing assumptions

The following standing assumptions pertain to the nature of the objective function f
and the quality of theMonte Carlo estimator F̄ . First, we assume the objective function
f is bounded below.

Assumption 1 The function f : X → R is such that infx∈X f (x) > −∞.
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Thus, the objective function f is finite-valued but does not necessarily attain its
minimum. Next, we assume the objective function estimator is unbiased.

Assumption 2 Recall from (1) that εi (·) := F(·, ξi )− f (·), i = 1, 2, . . .. The sequence
(ξi )i≥1 is an i.i.d sequence with E[εi (x)] = 0 for each x ∈ X.

Then, if ε̄(·,m) := m−1 ∑m
i=1 εi (·), an unbiased estimator for f is F̄(·,m) :=

f (·) + ε̄(·,m). Recall that we observe F̄(·,m) pointwise in X; that is, we expend
simulation effort m at the point x to obtain the value F̄(x,m).

Further, we assume the unbiased estimator is of sufficient quality.

Assumption 3 The error εi (·) is sub-exponential with sub-exponential norm κ∗ < ∞;
that is, κ∗ := inf

{
t > 0 : E[

exp(supx∈X |ε1(x)| /t)
] ≤ 2

}
< ∞.

Assumption 3 implies that the moment generating function of supx∈X ε1(x) exists
and is finite in some open interval around 1/t = 0. Further, Assumption 3 guarantees
that for some universal constant c > 0 and for all t ≥ 0,

P

{
sup
x∈X

1

m

m∑
i=1

|εi (x)| > t

}
≤ P

{
1

m

m∑
i=1

sup
x∈X

|εi (x)| > t

}
≤ 2 exp

(
− mt

cκ∗
)
, (4)

where the second inequality in (4) follows from Lemma 3.
The next assumption pertains to how sampling is performed within ADALINE as

the search continues across the feasible set X to generate the sequence of iterates
(Xk)k≥1. Assumption 4 formalizes the idea that the objective function estimates con-
structed at points visited during different iterations of ADALINE are independent;
nevertheless, the assumption allows the algorithm to use what are called common
random numbers (CRN) [25] at points visited during the same iteration; we discuss
CRN further in §2.3. In Assumption 4, as is customary when rigorously analyzing ran-
dom sequences generated by an algorithm, we assume the presence of a filtered space
(Ω,F, (Fk)k≥0, P), where (Ω,F, P) is a probability triple as usual, and (Fk)k≥1 is
a filtration, that is, an increasing family F0 ⊆ F1 ⊆ · · · ⊆ F of sub-σ -algebras of F;
see [51].

Assumption 4 Each iterate Xk is adapted to the sigma algebra Fk coming from a
filtered probability space (Ω,F, (Fk)k≥0, P). Let K = K (k) ∈ Fk denote the (ran-
dom) number of i.i.d. random fields sampled so far in obtaining iterate Xk . Then for
all k ≥ 0, the sequence (εi )1≤i≤K is such that εi is Fk-measurable for all 1 ≤ i ≤ K ;
furthermore, for all i > K and all x ∈ X, we have E[εi (x) |Fk] = 0.

For some intuition surrounding Assumption 4, let us consider an example in which
the last postulatewould not hold. Suppose that in iteration i > K , loosely speaking, we
reach into the algorithm’s history anduse a randomfieldwehave observed before. Then
εi ∈ Fk , which impliesE[εi (x) |Fk] = εi (x). If it further holds that P{εi (x) = 0} = 0
for all x ∈ X, i = 1, 2, . . ., then E[εi (x) |Fk] = εi (x) �= 0 w.p.1.

2.3 Random fields and common random numbers

Within an iteration, ADALINE allows CRN, which is especially important during line
search. To make the notion of CRN precise, suppose an iterative algorithm estimates
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Fig. 1 The interpolated sample-path function for the one-bus scheduling problem [50] obtained with CRN
(dashed line) has fewer local minima than the function that results from independently estimating the
objective values at each x ∈ {0, 1, . . . , 30} (dotted line). Here, the arrival rate is λ = 1, and the number of
observations is m = 2

the function f at the locations x1, x2, . . . , xn ∈ X. Then, using CRN means using the
the same random variables (or, on a computer, random variates) ξi , i = 1, 2, . . . ,m
to observe F̄(x j ,m), j = 1, 2, . . . , n. Thus, using CRN when estimating f at
x1, x2, . . . , xn means observing the random field F̄(·,m) = m−1 ∑m

i=1 F(·, ξi ) at
x1, x2, . . . , xn, which is often called the sample-path function.

Depending on the application, CRN can be crucial to solving (Q) efficiently, since
it retains any objective function structure that may be inherent. To see CRN in the con-
text of a black-box SO problem, consider the discretized one-bus scheduling problem
[50], which we re-visit in the numerical Sec. §5. In this problem, passengers arrive to
a bus station according to a Poisson process with rate λ. A decision-maker would like
to schedule a bus at a time x ∈ [0, τ ] ∩ Z to minimize the expected total passenger
wait time. Figure 1 shows the (interpolated) true function f , the sample-path function
(obtainedwithCRN), and a corresponding estimated function obtained by independent
simulation replications at each x ∈ {0, 1, . . . , 30}. Notice that the sample-path func-
tion is “smoother” and has fewer N1-local minima than the corresponding estimated
function obtained by independent sampling.

CRN implicitly underlies the construction (and success) of algorithms in a sample-
average approximation (SAA) [20,45] framework. In contrast, a typical stochastic
approximation or stochastic gradient descent [7,23,35] type algorithm that uses amini-
batch of size m to observe F̄(x j ,m), j = 1, 2, . . . , n does not use CRN, but often
uses independent sampling, resulting in F̄(x j ,m), j = 1, 2, . . . ,m being mutually
independent.

3 The ADALINE algorithm for SOwith integer variables

Wenowprovide a high-level description ofADALINE.ADALINE repeatedly executes
three key procedures to produce the stochastic sequence (Xk)k≥0, where X0 ∈ X is
the initial guess and Xk+1 ∈ X, k ≥ 0 is the iterate obtained upon the kth iteration’s
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Algorithm 1: ADALINE Algorithm for SO with Integer Variables

Input: Initial point x0 ∈ X; stochastic oracle F̄(·, ·); minimum sample sizes (λk )k≥0; significance
level α ∈ (0, 1), number of obs. to obtain at once δ ∈ Z+.

1 Initialize: X0 ← x0; M0 ← λ0; N0 ← 0; search bound b1; search bound b2 ← √
d + 1

2 for k = 0, 1, 2, . . . do
3 [X̃k , Mk ] ← NE(Xk , M

0
k , λk , α, δ) /statistical optimality test

4 d̂k ← (X̃k − Xk )/‖X̃k − Xk‖ /initial search direction
5 Nk ← 1
6 repeat
7 X̃k ← LI(X̃k , d̂k , Mk , b1), Nk ← Nk + 1 /perform line search

8 if Nk < b2 then [d̂k , X̃k ,B] ← DA(X̃k , Mk , λk , α, δ) /get new direction
9 until Nk ≥ b2 or B /statistical optimality test needed

10 Xk+1 ← X̃k ; /accept candidate iterate

Note: On the initial iteration k = 0, we skip NE and begin with DA in step 8.

termination. Together with A for adaptive, the procedures form ADALINE’s name:
direction acquisition (DA), line search (LI), and neighborhood enumeration (NE).
Next, we provide an overview of each.

First, each iteration k begins with Procedure NE, as listed in Algorithm 1. Proce-
dure NE performs a statistical local optimality test at the current iterate Xk . If the
statistical local optimality test fails at Xk , which corresponds to finding a statistically
better neighbor X̃k , then Procedure NE terminates and returns X̃k as the candidate next
iterate. If the local optimality test does not fail, then Procedure NE does not terminate,
and ADALINE’s iterates are thus absorbed into a locally optimal point.

Assuming Procedure NE terminates with the better neighbor X̃k , ADALINE then
executes multiple line searches. Each line search in the current context mimics the
analogous line search procedure [36, Chapter 3] in the continuous context and pro-
ceeds as follows. Starting from X̃k , perform a one-dimensional search along a chosen
direction by visiting points that are separated by increasing distances, and as long as
the estimated objective values at the visited points continue to decrease. The estimated
objective function values at points that do not lie on the integer lattice are substituted
by objective function estimates at the corresponding nearest points on the lattice. The
line searches are conducted by Procedure LI, initially along a vector pointing in the
direction of the better neighbor, that is, X̃k − Xk , and subsequently in the stochastic
descent direction identified by Procedure DA. Importantly, both Procedures LI andDA
use the fixed sample sizeMk , which facilitates the use of CRN in the objective function
estimators. A formal listing of the line search procedure, including specifics on how
points are chosen along the line, is included in Appendix A.

Procedure DA also returns a Boolean variableBwhich is true if no better direction
can be found at sample size Mk ; that is, X̃k is the estimated best point in its neighbor-
hood at sample size Mk . In this case, iteration k concludes by accepting X̃k as the next
iterate Xk+1; iteration k + 1 commences with Procedure NE at Xk+1. If the Boolean
variable B is false and the limit on line searches has not been reached, then Proce-
dure LI performs another line search along the direction identified by Procedure DA.
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Given Procedure NE’s centrality to ADALINE’s efficiency and our asymptotic
results, we provide an explanation and listing of Procedure NE first, in Sect. 3.1. In
Sect. 3.2 and Sect. 3.3, we briefly discuss Procedures LI andDA, respectively. Detailed
listings of Procedures LI and DA appear in the appendices.

3.1 Procedure NE: statistical local optimality test

Procedure NE (Algorithm 2) adaptively obtains function observations at points in the
neighborhood N1(Xk) ∩ X until it identifies a statistically better neighbor, X̃k . First,
we describe the requirements for the better neighbor. Then, we describe the adaptive
sampling choices that make Procedure NE efficient. In Sect. 4, we show that if Xk is
not a local minimum, Procedure NE terminates w.p.1 under mild conditions.

3.1.1 Requirements for the better neighbor

Procedure NE imposes two requirements on the statistically better neighbor X̃k . First,
the number of observations used to estimate the function value at X̃k should be large
enough, that is, at least as large as a lower bound specified by a constant λk . Second,
whether X̃k is statistically better than Xk is determined using a ratio that is reminiscent
of a Student’s t statistic.

To make these two requirements precise, we first define some notation. Let Mk(x)
denote the number of function observations obtained so far at each point x ∈ N1(Xk)∩
X, where Procedure NE ensures Mk(Xk) ≥ Mk(x) for each x ∈ N′

1(Xk)∩X. Further,
let the lower bound sample size sequence (λk)k≥0 ⊆ Z+ satisfy λ−1

k (log k)1+γ =
O(1) for some constant γ > 0, which is a mild imposition on the rate of sample
size increase that follows from the analysis in Sect. 4. Finally, let the constant tα,ν be
the critical value of a Student’s t distribution with ν degrees of freedom [18] where
α ∈ (0, 0.5). Then, ProcedureNEadaptively searches for a neighbor X̃k ∈ N′

1(Xk)∩X
satisfying

Mk := Mk(X̃k) ≥ λk (5a)

Tk(X̃k) ≥ tα,νk (5b)

where νk = Mk(X̃k) − 1 and

Tk(x) := F̄(Xk, Mk(x)) − F̄(x, Mk(x))

ŝ.e.
(
F̄(Xk, Mk(x)) − F̄(x, Mk(x))

) for x ∈ N′
1(Xk). (6)

Condition (5a) ensures that the sample size Mk exceeds the threshold λk and condition
(5b) ensures that the difference in function estimates is significant in the sense of the
estimated coefficient of variation, Tk(X̃k), exceeding a fixed threshold. The estimated
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Algorithm 2: [X̃k, Mk] = NE(Xk, λk, α, δ)

Input: Center Xk ; minimum sample size λk ; significance level α ∈ (0, 1); number of observations
δ ≥ 1 to obtain at once.

Output: Upon termination, better neighbor X̃k ∈ N′
1(Xk ) ∩ X, sample size Mk

1 Initialize: set of neighbors observed A ← ∅; μ∗ ← 0.001
2 foreach x ∈ N′

1(Xk ) ∩ X do Mk (x) ← 0, Tk (x) ← 0
3 repeat /if Xk is an N1-local minimizer, loop may not terminate
4 foreach x ∈ N′

1(Xk ) ∩ X do update μk (x) using (8)

5 calculate Alow := {x ∈ A : Mk (x)/(
∑

x∈A Mk (x)) ≤ μ∗|N′
1(Xk ) ∩ X|−1}

6 if Alow �= ∅ then /ensure all neighborhood points sampled i.o.
7 independently sample a point W+ from Alow with equal probability
8 else
9 use μk to independently sample a point W+ from N′

1(Xk ) ∩ X
10 W− ← Xk − (W+ − Xk ) /get opposite neighbor point

11 obtain δ i.i.d. function observations at each of W+ and W− (using CRN)
12 Mk (W

+) ← Mk (W
+) + δ and Mk (W

−) ← Mk (W
−) + δ

13 Δ∗ ← max{(Mk (x) − Mk (Xk ))
+ : x ∈ N′

1(Xk ) ∩ X} /calc. obs. at Xk
14 obtain Δ∗ i.i.d. function observations at Xk (using CRN),
15 Mk (Xk ) ← Mk (Xk ) + Δ∗
16 use (6) to update Tk (W

+), Tk (W
−).

17 until there exists a point in N′
1(Xk ) ∩ X that satisfies (5a) and (5b)

18 W∗ ← argmax{Tk (X) : X ∈ N′
1(Xk ) ∩ X, X satisfies (5a) and (5b)}

19 return X̃k ← W∗, Mk ← Mk (W
∗)

standard error in equation (6) is defined as

ŝ.e.
(
F̄(x1, n) − F̄(x2, n)

) :=
√

σ̂ 2
n (x1, x2)

n

and σ̂ 2
n (x1, x2) := n−1 ∑n

i=1

(
(F(x1, ξi ) − F(x2, ξi )) − (F̄(x1, n) − F̄(x2, n)

)2
.

3.1.2 Adaptively sampling the neighborhood points

There are many ways to identify a better neighbor X̃k satisfying the conditions in (5a)
and (5b). Procedure NE accomplishes this task by adaptively sampling the neighbor-
hood points according to a discrete probability measure μk supported onN′

1(Xk) ∩X
and updating the statistic Tk(·) until it identifies such a point. As the adaptive sampling
progresses by obtaining δ function observations at a time, Procedure NE updates the
discrete measure μk (Step 4) to guide the sampling effort toward points that are likely
to be better than Xk . Judiciously updating the discrete measure μk is important for
efficiency as it determines which neighbor is observed next. We now describe this step
in further detail.

Procedure NE updates μk(x), x ∈ N′
1(Xk) ∩ X through a subjective probability

calculation. Let the set A ⊆ N′
1(Xk) ∩ X denote the set of neighbors of Xk whose

estimated objective function values have already been observed with sample size
greater than or equal to δ. Let Ac denote the set of unobserved neighbors of Xk ; that
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is, Ac := (N′
1(Xk) ∩ X) \ A. Further, let

B := {x ∈ A : F̄(x, Mk(x)) < F̄(Xk, Mk(x))}

be the set of observed neighbors currently estimated as better than the incumbent
iterate Xk , where each neighbor is compared to the incumbent iterate using its own
same sample size and CRN. Then, defining 0/0 := 0, we calculate the subjective
probability of selecting a point from the observed set A as

μk{Ac} = p0 × |Ac|
|B| + p0 × |Ac| ; μk{A} = 1 − μk{Ac}, (7)

where p0 ∈ (0, 1) represents the subjective probability of an unobserved point having a
better objective function value than the point Xk . Thus, p0 represents the “exploration /
exploitation” trade-off, and p0×|Ac| is the subjective expected number of unobserved
points in the neighborhood that are better than the incumbent Xk . (The default value
p0 = 0.5 is used within the solver and for all reported numerical experiments.)

Given (7), we calculate the individual subjective probabilities as

μk(x) :=
{

μk{Ac} × |Ac|−1 x ∈ Ac

μk{A} × P{Tν(x)>Tk (x)}∑
x∈A P{Tν(x)>Tk (x)} x ∈ A,

(8)

where Tν(x) is a Student’s t random variable with ν(x) = Mk(x) degrees of freedom
and Tk(·) is the Student’s t analogue in (6). The subjective discrete measure μk(·) is
thus the uniform measure conditional on the unobserved points, and is proportional to
the Student’s t analogue conditional on the already observed points.

Finally, notice that simulation replications are always obtained δ at a time, δ ∈ Z+.
The choice of δ should be made based on the time taken for each stochastic oracle
call, the dimensionality d, and whether the oracle calls are performed in parallel [16].
While we can make robust choices for δ in practice, little is known theoretically about
the relationship between the best value of δ, dimension d, and the time required to
perform each stochastic oracle call.

3.2 Procedure LI: performing the line search

Procedure LI is a monotone-decreasing line search procedure that observes each point
along the direction d̂k with CRN at sample size Mk . Procedure LI terminates upon
encountering a point whose estimated objective function value is inferior to the esti-
mated objective function value at the previous point observed. In the first call to
Procedure LI, the line search is performed along X̃k − Xk , that is, along the vector
pointing in the direction of the best neighbor of Xk , as judged by Procedure NE. On
subsequent calls, the direction is determined by Procedure DA. Procedure LI must
also ensure that no more than b1 points are visited during the line search, to prevent
chase-offs when sample sizes are low. We make the requirements of Procedure LI
precise in Sect. 4. A formal listing of Procedure LI appears in Sect. A.
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3.3 Procedure DA: finding a direction

Recall that within an iteration of ADALINE, Procedure DA provides a direction to
all but the first call to Procedure LI. To find a feasible direction that is also likely
to be a descent direction, at a candidate iterate X̃k , Procedure DA first constructs an
estimated descent cone. Then, Procedure DA constructs an estimated descent direction
by weighting the directions in the estimated descent cone.

More specifically, first, Procedure DA attempts to locate d + 1 feasible neigh-
bors of X̃k that are affinely independent. That is, these points are vertices of a
randomly-oriented (d+1)-simplex formed by their convex hull; label these neighbors
as v1, v2, . . . , vs , where s ≤ d + 1 and s < d + 1 if Procedure DA cannot find d + 1
such points. At each vertex, obtain Mk function observations and construct the objec-
tive function estimators F̄(v j , Mk), j = 1, 2, . . . , s. Then, the estimated descent cone
C(X̃k) at X̃k is the set of estimated descent directions, that is,

C(X̃k) := {v j − X̃k : F̄(v j , Mk) < F̄(X̃k, Mk), j = 1, 2, . . . , s}.

If the estimated descent cone is nonempty, the estimated descent direction is aweighted
combination of vectors in C(X̃k), where the weights are the Student’s t analogue
corresponding to each vector: d̂k := ∑

d̂∈C(X̃k )
Tk(d̂ + Xk) × d̂, where Tk(·) is the

Student’s t analogue in (6). Notice that when the point X̃k lies on or close to the
boundary of the feasible region, the descent cone C(X̃k) may be a small sub-space.
This property is by design and has been observed to be important for good practical
performance.

If Procedure DA attempts to construct the estimated descent cone C(X̃k) but cannot,
then none of the neighbors of X̃k have a better estimated objective function value
than X̃k’s. Thus, Procedure DA terminates iteration k by setting the Boolean B to
true, so that ADALINE then accepts X̃k as the next iterate Xk+1. A formal listing of
Procedure DA appears in Sect. B.

4 Asymptotic analysis

We are now ready to analyze the behavior of ADALINE’s iterates, (Xk)k≥0. To do
so, we require additional notation for the intermediate states visited between iterates
Xk and Xk+1. The first intermediate state is the “better neighbor” of Xk found dur-
ing Procedure NE, henceforth denoted X̃k,1. Other intermediate states may result as
output from one or more calls to Procedure LI, henceforth denoted X̃k,2, . . . , X̃k,Nk ,

where Nk ≤ b2 is the total number of intermediate states. The estimated objective
function value at each intermediate state is observed with a sample size Mk . Recall
from Assumption 4 that Xk is adapted to the sigma algebra Fk coming from a filtered
probability space (Ω,F, (Fk)k≥0, P). For each k ≥ 0 and all j , let X̃k, j , Mk , and Nk

be Fk-measurable. Figure 2 illustrates the states and intermediate states.
In case Procedure NE does not terminate in some iteration k, such that the residence

time in Xk is infinite, then for all k′ ≥ k + 1, let Xk′ := Xk . Further, let Nk′ = 1 and
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X0

˜X0,1 ˜X0,2 . . .

X1

˜X0,N0
˜X1,1 ˜X1,2 . . .

˜X1,N1

X2

˜X2,1 ˜X2,2 . . .

Fig. 2 The states X0, X1, X2, . . . are the locations where ADALINE performs the statistical optimality
test via Procedure NE. Between states Xk and Xk+1, k ≥ 0, ADALINE visits Nk ≥ 1 intermediary points
X̃k, j , j = 1, 2, . . . Nk . The point X̃k,1 is the “better neighbor” of Xk from Procedure NE. The remaining
points result from calls to Procedure LI

X̃k′,1 := Xk for all k′ ≥ k + 1. In this way, we ensure the better neighbors from NE,
denoted by X̃k′,1, are defined as equal to Xk .

The following Lemma 5 asserts that in Procedure NE, ADALINE “escapes” an iter-
ate Xk that is not a local minimumw.p.1. Recall that the set of allN1-local minimizers
is L(N1) := {x∗ ∈ X : f (x∗) ≤ f (x) for all x ∈ N1(x∗) ∩ X}.
Lemma 5 (Escape Lemma) If x /∈ L(N1), then for each k ≥ 0, we have P{Xk′ = x,
X̃k′,1 = x for all k′ ≥ k + 1 | Xk = x,Fk} = 0 w.p.1

Proof (Sketch) For a contradiction, let x /∈ L(N1), and suppose that there exists k ≥ 0
such that Xk′ = x, X̃k′,1 = x for all k′ ≥ k + 1, given Xk = x,Fk . Since x /∈ L(N1),
there exists a better neighborhood point x̃ ∈ N1(x) such that f (x̃) < f (x). Let
x̃∗ be the “worst” of these, x̃∗ = argmax{ f (x̃) : x̃ ∈ N1(x), f (x̃) < f (x)}. Let
κ∗ := f (x) − f (x̃∗) > 0. Since Procedure NE does not terminate, there must never
be a neighborhood point that satisfies both (5a) and (5b). However, notice there exists
a random but finite total number of function observations beyond which x̃∗ satisfies
all conditions w.p.1. (From Step 6 in Algorithm 2, the parameter μ∗ > 0 ensures that
each neighborhood point is sampled i.o. when Procedure NE is non-terminating.) ��

Along with our assumptions in Sect. 2.2, the following three properties of ADA-
LINE, noted in Sect. 3 and written precisely here, are important for its convergence
and convergence rate characteristics.

Property 1 (Sufficient Decrease in Procedure NE) For large enough k, given that Xk is
not a local minimum, there is positive probability that Procedure NE returns a “best”
neighborhood point of Xk as the better neighbor X̃k,1 w.p.1. That is, there exists
κ1 > 0 such that for large enough k, P

{
X̃k,1 ∈ argmin{ f (x) : x ∈ N1(Xk)}

∣∣ Xk /∈
L(N1), Fk

} ≥ κ1 w.p.1

Property 2 (Monotone Line Search) For each iteration k ≥ 0 and Procedure LI
call that results in intermediate point X̃k, j with sample size Mk , let the points
visited by Procedure LI in iteration k and line search j be denoted Wk, j,0 :=
X̃k, j−1,Wk, j,1,Wk, j,2, . . . ,Wk, j,Lk, j := X̃k, j , where Lk, j ≤ b1 is the total num-
ber of better points visited in Procedure LI. The line search ensures

F̄(Wk, j,0, Mk) ≥ F̄(Wk, j,1, Mk) ≥ . . . ≥ F̄(Wk, j,Lk, j , Mk) w.p.1.

Property 3 (Finite Searches) The iterates satisfy supk≥0‖Xk − Xk+1‖ < ∞.
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Property 1, connoting sufficient decrease following the statistical optimality test,
holds by the logic of Procedure NE and the Escape Lemma (Lemma 5). From a rank-
ing and selection standpoint, this property corresponds to using a procedure whose
probability of false selection is strictly less than one — a very mild condition. Prop-
erty 2 holds because the line search logic in Procedure LI ensures that the function
estimates are non-increasing until the penultimate visited point, which is accepted as
a candidate iterate. Finally, recall that due to the limits on the line search length b1
and number of line searches b2, no more than b1 × b2 points are visited by ADALINE
on its way from Xk to Xk+1 for all k ≥ 0. Thus, Nk ≤ b1 × b2 for all k ≥ 0, which
ensures Property 3 holds.

Using these properties, we now show that the function estimate sequence at ADA-
LINE’s iterates converge w.p.1 to the corresponding sequence of true function values,
as long as the lower bound sample size sequence λk increases faster than logarithmi-
cally.

Lemma 6 Suppose the lower bound sample size sequence (λk)k≥0 increases faster
than logarithmically. That is, (λk)k≥0 is such that, for some γ > 0,

λ−1
k (log k)1+γ = O(1). (9)

Recall that Mk ≥ λk denotes the exit sample size from Procedure NE condition (5a).
Then the following hold:

1. As k → ∞, F̄(Xk, Mk) − f (Xk) → 0 w.p.1;
2. As k → ∞, F̄(X̃k, j , Mk) − f (X̃k, j ) → 0 w.p.1;

Proof (Part 1) Let Xk ∈ X be the current iterate. Then for every t ≥ 0,

P
{
F̄(Xk, Mk) − f (Xk) > t

} ≤ P
{
supm≥λk

F̄(Xk,m) − f (Xk) > t
}

≤ ∑∞
m=λk

P
{
F̄(Xk,m) − f (Xk) > t

} ≤ ∑∞
m=λk

P
{
supx∈X ε̄i (x,m) > t

}

≤
∞∑

m=λk

2 exp
(− mt

cκ∗
) = 2 exp (−λk t/(cκ∗))

1 − exp (−t/(cκ∗))
(10)

where the inequality in (10) follows from (4) and the equality in the same line follows
because we have the sum of a geometric series.

Let κa := t/(c κ∗) and κb := 2(1 − exp (−κa))
−1. Since (λk)k≥0 satisfies the

sample size increase condition in (9), we have

∑∞
k=0 P

{
F̄(Xk, Mk) − f (Xk) > t

} ≤ κb
∑∞

k=0 exp (−λkκa) < ∞. (11)

Using the first Borel-Cantelli lemma (Lemma 1) on (11) concludes the proof.
(Part 2) We omit the proof, which follows from similar arguments. ��
Using the results proved thus far, we are now ready to characterize the convergence

and convergence rate of ADALINE. In the following Theorem 1 part (1), we prove that
ADALINE’s iterates form an almost-supermartingale process in the sense of Lemma4.
This per se does not guarantee that (Xk)k≥0 converges to a local minimum; we prove
this fact in Theorem 1 part (2).
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Theorem 1 Suppose the lower bound sample size sequence (λk)k≥0 is such that, for
some γ > 0, λ−1

k k1+γ = O(1). Then the following assertions hold.

1. The function value sequence ( f (Xk))k≥0 is an almost-supermartingale. That is,
there exists a positive-valued integrable sequence (Yk)k≥0 such that for large
enough k, E[ f (Xk+1) |Fk] ≤ f (Xk) + Yk w.p.1 and

∑∞
k=1 Yk < ∞ w.p.1

2. The max-descent function sequence ( f −
Δ (Xk))k≥0 (see Definition 2) satisfies

limk→∞ f −
Δ (Xk) = 0 w.p.1

Proof (Part 1) Under Assumption 1, f is bounded below. Let v∗ := infx∈X f (x),
v∗ > −∞, denote the infimum of f , so that Gk := f (Xk) − v∗ is the non-negative
optimality gap of Xk . Recall that Xk, X̃k,1, X̃k,2, . . . , X̃k,Nk = Xk+1 are the points
visited by ADALINE’s iteration k, where Nk ≤ b2 is finite. Let X̃k,0 := Xk and write

f (Xk+1) − f (Xk) = f (X̃k,1) − f (Xk) + ∑Nk
j=2

(
f (X̃k, j ) − f (X̃k, j−1)

)
. (12)

Recall ε̄(x,m) := m−1 ∑m
i=1 εi (x) = F̄(x,m) − f (x) for each x ∈ X. After appro-

priate algebra, (12), condition (5), and Property 2 imply that w.p.1,

Gk+1 − Gk

= ε̄(Xk, Mk) − ε̄(X̃k,1, Mk) + (∑Nk
j=2 ε̄(X̃k, j−1, Mk) − ε̄(X̃k, j , Mk)

)
+ F̄(X̃k,1, Mk) − F̄(Xk, Mk) + (∑Nk

j=2 F̄(X̃k, j , Mk) − F̄(X̃k, j−1, Mk)
)

≤ ε̄(Xk, Mk) − ε̄(X̃k,1, Mk) + (∑Nk
j=2 ε̄(X̃k, j−1, Mk) − ε̄(X̃k, j , Mk)

)
= (∑Nk−1

j=0 ε̄(X̃k, j , Mk)
) − ε̄(X̃k,Nk , Mk) − ∑Nk

j=2 ε̄(X̃k, j−1, Mk)

= ε̄(X̃k,0, Mk) − ε̄(X̃k,Nk , Mk). (13)

From (4), for all j ∈ {0, 1, 2, . . . , Nk}, all k, and all t ≥ 0,

P
{ ∣∣ε̄(X̃k, j , Mk)

∣∣ > t
} ≤ 2 exp

(−λk t/(cκ
∗)

)
. (14)

Integrating (14) with respect to t , for all j ∈ {0, 1, 2, . . . , Nk} and all k,

E
[∣∣ε̄(X̃k, j , Mk)

∣∣] ≤ 2cκ∗λ−1
k ; (15)

thus, |ε̄(X̃k, j , Mk)| is integrable. Under the required sample size increase rate, for
each j ∈ {0, 1, 2, . . . , Nk},

∞∑
k=0

E
[∣∣ε̄(X̃k, j , Mk)

∣∣] = E
[ ∞∑
k=0

∣∣ε̄(X̃k, j , Mk)
∣∣] ≤

∞∑
k=0

2cκ∗λ−1
k < ∞, (16)

which implies
∑∞

k=0

∣∣ε̄(X̃k, j , Mk)
∣∣ < ∞. Notice that the above arguments hold if we

replace ε̄(X̃k, j , M̃k, j ) with ε̄(X̃k, j−1, M̃k, j ).
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From equation (13), using Assumption 4 and recalling that for all j the random
variables X̃k, j , Mk , and Nk are Fk-measurable, we have

E
[
f (Xk+1) |Fk

] − f (Xk) = E
[
Gk+1 − Gk |Fk

]
≤ |ε̄(X̃k,0, Mk)| + |ε̄(X̃k,Nk , Mk)| w.p.1. (17)

Since the right-hand side of (17) is finite w.p.1, along with Lemma 6 and (16), imply
( f (Xk) − v∗)k≥0 is a positive-valued almost-supermartingale.

(Part 2) Since ( f (Xk) − v∗)k≥0 is a positive-valued almost-supermartingale,
Lemma 4 implies ( f (Xk) − v∗)k≥0 converges w.p.1, hence ( f (Xk))k≥0 converges
w.p.1 Now, for a contradiction, suppose that with positive probability the max-descent
function sequence ( f −

Δ (Xk))k≥0 does not tend to zero. Then, with positive proba-
bility, there exists ε > 0 and a sub-sequence (k�)�≥1 such that f −

Δ (Xk�
) < −ε;

that is, on the subsequence, Xk�
has a neighbor that is at least ε-better, so that

min{ f (x̃) − f (Xk�
) : x̃ ∈ N1(Xk�

)} < −ε for all � ≥ 1. Then,

∑∞
i=0 P{ f (Xi+1) − f (Xi ) ≤ −ε |Fi }

≥ ∑∞
�=1 P{ f (Xk�+1) − f (Xk�

) ≤ −ε |Fk�
}

≥ ∑∞
�=1 P

{
f (Xk�+1) ≤ min{ f (x) : x ∈ N1(Xk�

)} |Fk�

}
≥ ∑∞

�=1 κ1 = ∞, (18)

where (18) follows from Properties 1 and 2 . The filtered version of the Borel-Cantelli
lemma (Lemma 2) implies that w.p.1, P{ f (Xi+1) − f (Xi ) ≤ −ε i.o.} = 1, which
contradicts the fact that f (Xk) is bounded from below. ��

The second part of Theorem 1 is analogous to convergence proofs in the smooth
deterministic context [34] which demonstrate that ‖∇ f (xk)‖ → 0. Importantly, The-
orem 1 says nothing about whether ADALINE’s iterates attain a local minimum; it
only states that ADALINE’s iterates approach a region with zero max-descent in the
limit w.p.1. This result is the best one can prove since the assumptions imposed on f do
not preclude situations where the max-descent function tends to zero along sequences
(Xk)k≥0 that diverge.

We now state a stronger theorem that asserts absorption into the set of local minima
under the restriction that the function f ismildly-coercive (Definition 3).Moreover, we
show that such absorption happens exponentially fast in iteration number. Theorem 2
does not, however, imply absorption into a singleton within L(N1).

Theorem 2 (If f is mildly-coercive, ADALINE’s iterates are absorbed into the set of
local minima L(N1) in finite time.) Let the postulates of Theorem 1 hold, and let f
be mildly-coercive. Then the sequence (Xk)k≥0 of ADALINE’s iterates is such that for
large enough k, Xk ∈ L(N1) w.p.1

Proof Under the postulates of Theorem 1, ( f −
Δ (Xk))k≥0 → 0 w.p.1 Furthermore, f

is mildly-coercive. Then, there exists a finite setW, independent of ω ∈ Ω , such that
Xk ∈ W for large enough k w.p.1 Now, for a contradiction, suppose that (Xk)k≥0 does
not become absorbed in the set of local minima, that is, with positive probability, there
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exists a subsequence (Xk�
)�≥1 such that Xk�

/∈ L(N1). Since W is finite, there exists
ε′ > 0 such that lim inf�→∞ f −

Δ (Xk�
) < −ε′. Then, the theorem holds by the same

proof as Theorem 1 part (2). ��

Next, we show that the total number of stochastic oracle calls made before absorp-
tion into the set of local minima is finite w.p.1. Furthermore, the probability of
non-absorption into the set of local minima decays exponentially fast in the num-
ber of stochastic oracle calls.

Theorem 3 (The probability of ADALINE’s iterates remaining unabsorbed into the set
of local minimizers decays exponentially fast in iteration number.) Suppose the lower
bound sample size sequence (λk)k≥1 is such that λ−1

k k1+γ = O(1) for some γ > 0,
so that for large enough k, there exists c2 ∈ (0,∞) such that λk > k1+γ c−1

2 . Also, let
f be mildy-coercive (see Definition 3). Then for characterizable constant κ2 > 0 and
large enough iteration number k0,

P
{ ∞∪
k=k0

Xk /∈ L(N1)
}

≤ 16bcc2κ∗

κ2
exp

(
− (k0 − 1)1+γ κ2

2bcc2κ∗

)
.

Proof Let the (good) event the process (Xk)k≥0 lives in the local set forever
after iteration k0 be Ak0 := ∩∞

k=k0

(
Xk ∈ L(N1)

)
. Further, let the (bad) events

that there are an infinite number of “jumps up” and “jumps down” after itera-
tion k0, respectively, be Bup

k0
:= ∩∞

k=k0 ∪∞
j=k

(
f (X j ) < f (X j+1)

)
and Bdown

k0
:=

∩∞
k=k0 ∪∞

j=k

(
f (X j ) > f (X j+1)

)
. Finally, let Bsame

k0
denote the (bad) event that the

process remains in the some non-local point forever after iteration k0, Bsame
k0

:=
∪x /∈L(N1) ∩∞

k=k0
( f (Xk) = f (x)) . Notice that

P{Ac
k0} ≤ P{Bup

k0
} + P{Bdown

k0 } + P{Bsame
k0 }. (19)

We now quantify the probabilities of each event on the right side of (19), beginning
with Bup

k0
. From the proof of Theorem 2, for large enough k, the sequence (Xk)k≥1

remains within a fixed and bounded set W w.p.1. Thus, there exists κ2 > 0 such that
| f (x1) − f (x2)| > κ2 for all x1, x2 ∈ W such that f (x1) �= f (x2). Then, using (13),
for large enough k0 ≥ 2,

P{Bup
k0

} ≤ ∑∞
k=k0 P{ f (Xk+1) − f (Xk) > 0}

≤
∞∑

k=k0

P
{|ε̄(X̃k,0, Mk)| >

κ2

2b

} + P
{|ε̄(X̃k,Nk , Mk)| >

κ2

2b

}

≤
∞∑

k=k0

4 exp

(
− λk κ2

2bcκ∗

)
≤

∞∑
k=k0

4 exp
(− k1+γ κ2

2bcc2κ∗
)

(20)

≤
∫ ∞

k0−1
4 exp

(− x1+γ κ2

2bcc2κ∗
)
dx ≤ 8bcc2κ∗

κ2
exp

(− (k0 − 1)1+γ κ2

2bcc2κ∗
)
, (21)
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where the first inequality in (20) is from (4). Also, for large enough k0,

P{Bdown
k0 } = P{Bdown

k0 ∩ Bup
k0

} + P{Bdown
k0 ∩ (Bup

k0
)c}

≤ P{Bdown
k0 ∩ Bup

k0
} + 0 ≤ 8bcc2κ∗

κ2
exp

(
− (k0 − 1)1+γ κ2

2bcc2κ∗
)
, (22)

where the 0 before the second inequality in (22) follows because, since the function
is bounded below, it is impossible to have an infinite number of jumps down while
having only a finite number of jumps up. The second inequality in (22) follows from
(21). Considering the event Bsame

k0
, by Property 1, P{Bsame

k0
} = 0. Substitute this result,

along with the results in (21) and (22), into the expression in (19) to yield the result. ��
Theorem 3 is interesting but does not provide a full sense of the efficiency of the

algorithm because the convergence rate in this theorem has been expressed in terms
of the number of iterations as opposed to the number of oracle calls. This inadequacy
of iteration complexity as a measure of efficiency is evident in that, thus far, we have
imposed no upper bound on the rate of increase of the sample sizes. In the result that
follows, we thus attempt to capture the efficiency of the proposed algorithm through a
work complexity result that expresses the convergence rate in terms of the total number
of oracle calls.

Theorem 4 Let the postulates of Theorem 3 hold, and let the expected number of
stochastic oracle calls expended by Procedure NE during iteration k be denoted Vk :=∑

x∈N1(Xk )∩X E[Mk(x) |Fk]. Then, there exists a constantΛ < ∞ such that for large
enough k,

Vk I {Xk /∈ L(N1)} ≤ (λk + Λ) d w.p.1. (23)

Further, let λk ≤ γ0(log k)1+γ1 for some γ0, γ1 > 0. Then the total expected num-
ber of oracle calls outside the set of local minima and after iteration k0, Wk0 :=∑∞

k=k0 E [Vk I {Xk /∈ L(N1)}], satisfies, for some Λ̃ < ∞,

Wk0 ≤ λk0 Λ̃ d as k0 → ∞. (24)

Proof Since (23) is trivially true if Xk ∈ L(N1), let’s suppose Xk /∈ L(N1). We
know from arguments in the proof of Theorem 2 that there exists a finite set W,
independent of ω ∈ Ω , such that Xk ∈ W for large enough k w.p.1 Consequently,
there exists δ > 0 such that the “best” neighbor of Xk is at least δ better, that is,
f (Xk) − min{ f (x) : x ∈ N1(Xk)} ≥ δ > 0. For x ∈ argmin{ f (x) : x ∈ N1(Xk)},
notice that

E[Mk(x) |Fk] = ∑∞
m=1 P{Mk(x) > m |Fk}

= λk + ∑∞
m=λk

P{F̄(Xk,m) ≤ F̄(x,m) |Fk}
≤ λk + ∑∞

m=λk
P{F̄(Xk,m) − f (Xk) ≤ F̄(x,m) − f (x) − δ |Fk}

≤ λk + ∑∞
m=λk

P{m−1 ∑m
i=1 supx∈X |εi (x)| ≥ δ

2 |Fk}
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≤ λk +
∞∑

m=λk

2 exp

(
− mδ

2cκ∗

)
≤ λk + Λ, (25)

where the penultimate inequality in (25) follows from Assumption 3 and ∞ > Λ :=∑∞
m=0 2 exp

(− mδ
2cκ∗

)
>

∑∞
m=λk

2 exp
(− mδ

2cκ∗
)
. Conclude from (25) and |N1(Xk) ∩

X| ≤ d that (23) holds.
To see that (24) holds, combine (25) with Theorem 2. ��
Theorem 4 makes three important assertions pertaining to the oracle efficiency of

the proposed algorithm. First, the bound in (23) asserts that the total expected oracle
calls spent at a sub-optimal point is almost surely bounded by the lower bound sample
size λk for large k. Second, the asymptotic inequality in (24) asserts that the total
work done (past a large iteration k0) at sub-optimal points is bounded by the lower
bound sample size at k0. These two inequalities point to choosing a λk according to
the minimum lower bound stipulated through (9). Third, both inequalities (23) and
(24) indicate a linear dependence on dimension d.

5 Numerical illustration

In this section, we illustrate the performance of ADALINE on a variety of prob-
lems within two problem suites: bus scheduling problems and ill-conditioned discrete
quadratic problems.

5.1 Bus scheduling problem suite

Suppose passengers arrive to a bus depot according to a homogeneous Poisson process
with rate λ. We wish to schedule d buses in a fixed time interval [0, τ ] to minimize
the total expected wait time of all passengers arriving in the interval. We assume the
following: (a) each bus has infinite capacity; (b) pre-scheduled buses depart at time 0
and at time τ ; (c) λ = 10, and (d) τ = 100. The decision variable is the departure times
of the d buses, (x1, · · · , xd), where each departuremust occur in the interval [0, τ ].We
consider any of the d! permutations of (x1, · · · , xd) to be equivalent. For simplicity,
henceforth, label the buses so that x0 := 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd ≤ xd+1 := τ .

While the simulation oracle only has access to the randompassenger arrival times on
each simulation replication, for comparing algorithmic performance, we calculate the
total expectedwait time as g(x) = (λ/2)

∑d+1
i=1 (xi−xi−1)

2.Whenmod(τ, d+1) = 0,
the optimal bus schedule x∗ has buses departing every τ/(d + 1) time units, with a
correspondingminimum expected wait time of g(x∗) = λτ 2/(2(d+1)). For example,
in the 9-bus scheduling problem, the solution is one of the 9! permutations of x∗ =
(10, 20, 30, 40, 50, 60, 70, 80, 90), and the total expectedwait time is 5000 time units.

We compare the performances of ADALINE and R-SPLINE on the 9, 20, 50, and
100 bus scheduling problems in Fig. 3. Our comparison is based on 1000 independent
replications of each algorithm, starting from the same initial point x0 = (1, . . . , 1) ∈
Rd . The algorithm parameters in both ADALINE and R-SPLINE are fixed ahead of
time, without tuning. For example, in R-SPLINE, the sample size increase rate was
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Fig. 3 Bus Scheduling: The figure shows 25th, 50th, 75th, and 90th percentiles of the optimality gap at the
end of t total stochastic oracle calls, calculated across 1000 independent runs of each algorithm on the 9,
20, 50, and 100 bus scheduling problems

c1 = 1.1, and the initial step length and the step size expansion factor during line
search were s0 = 2 and c = 2. In ADALINE the lower bound sample size sequence
was λk = �max(2 log k, 2)�; the initial step size and step expansion factors during the
line search were

√
d and 2.0, respectively. In the kth iteration, the percent optimality

gap is calculated as 100(g(Xk) − g(x∗))/g(x∗).
In all four plots of Fig. 3, ADALINE demonstrates superior performance relative to

R- SPLINE, where ADALINE’s superiority is more dramatic on higher-dimensional
problems. While R- SPLINE forces sampling 2d neighbors after every line search,
ADALINE’s adaptive sampling framework allows it to begin a new line search as
soon as it determines a direction that, with sufficient probability, is a descent direction.
In addition, the bus scheduling problem suite is deterministically constrained, and
ADALINE handles direction-finding at the constraint better than R- SPLINE.

5.2 News vendor with dynamic consumer substitution

Suppose a random number of customers labeled 1, 2, . . . , N arrive in sequence to a
store on any day, each wishing to purchase a particular product chosen from d + 1
available options that are labeled 0, 1, 2, . . . , d. Assume that the option labeled “0”
is the “no purchase” option indicating that either the customer chooses not to buy,
or that none of the products are available. The cost price and the selling price per
unit of product under option j ∈ {0, 1, 2, . . . , d} are c j and s j , respectively, with
c0 = s0 = 0. The store also incurs a unit cost p associated each product stocked at
the beginning of the day.

Arriving customers are assumed to make their product choice through an implicit
utility maximization process. Formally, suppose the vector x(i) = (x1(i), x2(i), . . . ,
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xd(i)) ∈ [0,∞)d represents the stocking level when the i-th customer arrives at the
store, and that the set

Si := {
j ∈ {1, 2, . . . , d} : x j (i) > 0

} ∪ {0}

represents the choices available to this customer. The i-th customer then assigns an
(unknown) utilityUj (i), j ∈ Si to each available option, and then selects that product
Di having the highest utility:

Di := arg max
j∈Si

U j (i).

The choice vector (D1, D2, . . . , DN ) thus represents a “sample-path” corresponding
to the store’s operation on a day, has a distribution that is unknown in closed-form but
from which observations can be simulated.

Under the above setting,wewish to identify the stocking levels x = (x1, x2, . . . , xd)
∈ [0,∞)d that maximize the store’s expected profit each day, that is, we wish to solve
the optimization problem:

maximize
x∈[0,∞)d

E

[
N∑
i=1

(sDi − cDi )Di

]
− p ×

d∑
j=1

x j , (26)

where the expectation “integrates out” the randomness due to the number of customers
N and the randomness in their choices.

The optimization problem just outlined, a variation of which appears in [32], is not
solvable in closed-form.Themain challenge to algorithmic solutions is the obvious and
severe combinatorial nature of the problem. For testing the performance of ADALINE
on (26), we deliberately choose problem settings for which a closed-form solution
can be calculated. For example, let the random variable N be discrete uniform over
{a, a + 1, a + 2, . . . , b × d} where a = 10 and b = 5, and the number of products d
will be varied to yield different optimization problems of the kind (26). Let Uj (i) =
Vj (i) + ξ j (i), where Vj (i) = 1 + j, j = 1, 2, . . . , d and V0(i) = −∞ for each
i = 1, 2, . . . , N , and ξ j (i), j = 1, 2, . . . , d, i = 1, 2, . . . , N are i.i.d. Gumbel [19]
random variables, implying that for all i = 1, 2, . . . , N :

P(Di = 0) = 0; and P(Di = j) = exp{Vj }∑d
j=1 exp{Vj }

, j = 1, 2, . . . , d.

Finally, suppose we choose si , ci , i = 1, 2, . . . , d so that argmax{s j − c j : j =
1, 2, . . . , d} is unique, that is, the option yielding the highest unit profit is unique.With
these choices, we can demonstrate that the optimal solution to (26) is to stock only
the option yielding the largest unit profit, that is, x∗

j = 0 if j �= argmax{s j − c j : j =
1, 2, . . . , d}, and that x∗

j = �b− (p/(s j − c j ))× (b−a+1)� if j = argmax{s j − c j :
j = 1, 2, . . . , d}.
Figure 4 illustrates the performance of ADALINE and R- SPLINE when solv-

ing (26) for d = 5, 15, 25, 50. Figure 4 displays the 25th, 50th, 75th and 90th
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Fig. 4 Newsvendor with Dynamic Consumer Substitution: The figure shows 25th, 50th, 75th, and 90th
percentiles of the optimality gap, measured in the decision space, at the end of t total stochastic oracle calls,
calculated across 1000 independent runs of each algorithm on the 5, 15, 25, and 50 dimension newsvendor
problems

percentiles of the optimality gap measured as the L2 norm of the difference ‖Xt − x∗‖
between the solution Xt returned by the algorithm after expending t units of com-
putational effort and the optimal solution x∗. We use this metric instead of the usual
optimality gap f (Xt ) − f (x∗) because this quantity is unknown in closed form, and
estimating it with any accuracy would require enormous computational effort.

Both algorithms ADALINE and R- SPLINE reliably solve problems within this
problem suite, rapidly approaching the vicinity of the optimal solution and then
exhibiting a trajectory that resembles a random walk. ADALINE predictably domi-
nates R- SPLINE except in the 90th percentile, where the performances of ADALINE
andR- SPLINE are comparable. ADALINE’s dominance as the dimension d becomes
larger should be no surprise considering ADALINE’s local optimality test, which
is especially efficient relative to R- SPLINE when sampling in a high-dimensional
neighborhood. As an example, when d = 25, the number of vertices in any unit
cube containing the optimal solution is approximately 225 ≈ 101.5 × 106, rendering
effective local searching especially important for efficiency.

Another difference between ADALINE and R- SPLINE that becomes evident dur-
ing implementation is the effect of CRN. When CRN is effective, e.g., when the
variance of N is negligible, R- SPLINE tends to be very effective and difficult to
beat. This is because R- SPLINE is designed to exploit the structure in sample-paths,
yielding trajectories that look like those obtained from the execution of an algorithm
solving a deterministic problem. As the variance of N grows, however, CRN becomes
less effective, allowing the statistical local search features of ADALINE to become
more important.
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Fig. 5 Ill-Conditioned Quadratic: The figure shows 25th, 50th, 75th, and 90th percentiles of the optimality
gap at the end of t total stochastic oracle calls, calculated across 60 independent runs of each algorithm on
the 25, 50, 100, and 200 dimension quadratic problems

5.3 Ill-conditioned discrete quadratic problem suite

We consider the d-dimensional ill-conditioned discrete quadratic problem

minimizex∈Zd f (x) := E[F(x, ξ)] = xᵀBx (27)

where B is a d×d, symmetric, positive-definitematrix, and F(x, ξ) = xᵀBx+ξ1(x)+
ξ2. In the expression for F(x, ξ), ξ1(x) is a real-valued normal random variable with
mean zero and standard deviation σ1 × ‖Bx‖, where σ1 = 5; ξ2 is a normal random
variable with mean zero and standard deviation σ2 = 5.

The problem is designed to be challenging in three ways. First, the variance of
the objective function estimates are proportional to the squared norm of the function
gradient, implying that sample sizes should be chosen judiciously. Second, the matrix
B can be ill-conditioned in the sense of having large condition number κ , especially
when the dimension d is large. Third the sample path problems are elliptically sym-
metric with a possible local maximum at zero, depending on the random variables
ξ1(x) and ξ2.

We apply ADALINE and R-SPLINE on the above problem with the same algo-
rithm parameter values as in the bus scheduling problem and with the initial solution
x∗ = (10, · · · , 10). Figure 5 illustrates the performance of the algorithms, where the
optimality gap is calculated as ‖Xk‖.

Both ADALINE and R-SPLINE exhibit good performance on this problem, with a
rapid initial approach to the vicinity of the solution at the origin. The performance of
both algorithms are comparable during the low to moderate amounts of oracle effort,
after whichADALINE seems to perform better. This is again due to the superior Proec-
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dure NE within ADALINE which allows termination soon after a descent direction is
identified with a high probability. No such mechanism exists in R-SPLINE, where at
least d+1 points are observed during each call of the neighborhood enumeration step.
For the same reason, one can observe that R-SPLINE’s trajectory is more step-like,
and is especially pronounced for d = 200.

Acknowledgements The third author fondly remembers his personal and research interactionswith Shabbir
Ahmed. Shabbir was an amazing scholar who made fundamental contributions to stochastic programming.
The third author also thanks A. Villukanti and S. Venkatramanan at the Biocomplexity Institute, University
of Virginia for discussions that led to the incorporation of some ideas within ADALINE, and its name.

A Procedure LI: line search

Procedure LI, listed inAlgorithm3, is straightforward. Startingwith the candidate next
iterate X̃k , LI successively observes objective estimates obtained with sample size Mk

at points that are “closest” to the line X̃k+t d̂k, t ∈ R, as long as the observed objective
estimates are monotone decreasing. More precisely, given the starting pointW0 := X̃k

and direction d̂k , LI obtains objective estimates at points W� := argmin
{‖x − (X̃k +

2�−1 s0 d̂k)‖: x ∈ X \ {X̃k}
}
, � = 1, 2, 3, . . . where s0 is a fixed constant that defaults

to s0 = 1. The argmin operation is computationally trivial since the neighbors of the
point X̃k + t d̂k can be obtained by rounding. The line search proceeds as long as
the sequence F̄(W�, Mk), � = 0, 1, 2, . . . is non-increasing, or a pre-specified limit
on the maximum number of steps in the line search is reached. Finally, Procedure LI
performs a simple bisection search to find a better point between the penultimate point
and the last point, as the last step size may be large.

Algorithm 3: X̃k = LI(X̃k, d̂k, Mk, b1)

Input: candidate next iterate X̃k ; direction d̂k ; sample size Mk ; limit b1
Output: updated candidate next iterate X̃k

1 Initialize: s0 ← 1, � ← 0, W� ← X̃k , and F̄(W�, Mk ) ← F̄(X̃k , Mk )

2 repeat /begin monotone decreasing search
3 � ← � + 1

4 W� ← argmin
{‖x − (X̃k + 2�−1 s0 d̂k )‖: x ∈ X \ {X̃k }

}
, observe F̄(W�, Mk )

5 until F̄(W�, Mk ) > F̄(W�−1, Mk ) or � ≥ �b1/2�
6 Initialize: Wlow ← W�−1,Whigh ← W� /begin bisection

7 while ‖Wlow − Whigh‖ >
√
d do

8 set Wmid ← argmin
{‖x − (Wlow + Whigh)/2‖: x ∈ X}

, observe F̄(Wmid, Mk )

9 if F̄(Wmid, Mk ) < F̄(Wlow, Mk ) then Whigh ← Wlow, Wlow ← Wmid
10 else Whigh ← Wmid

11 return X̃k ← Wlow /accept point

123



Adaptive sampling line search for local SO on integers

B Procedure DA: estimating a descent direction

Procedure DA estimates a descent direction d̂k at the candidate iterate X̃k or finds
that X̃k is an estimated local minimizer in its N1-neighborhood. DA performs the
following steps:

1. DA enumerates the neighbors of X̃k looking for (a) at least d+1 feasible neighbors
that form a simplex with volume in d dimensions, and (b) at least one better
neighbor. (See Algorithm 4 steps 1–14.)

2. If there are no better neighbors, DA returns with B is true. (See Algorithm 4 step
15.)

3. Otherwise, DA constructs an estimated descent cone and estimated descent direc-
tion. (See Algorithm 4 steps 17–21.)

Finally, if DA identifies an estimated better neighbor, it updates the candidate next
iterate. As our analysis holds with or without this “hop,” for simplicity, we omit it
from Sect. 4.

Algorithm 4: [d̂k, X̃k,B] = DA(X̃k, Mk, λk, α, δ)

Input: candidate iterate, X̃k ; incumbent sample size, M̃k ; minimum sample size, λk ; significance
level, α ∈ (0, 1); number of observations δ to obtain at once.

Output: estimated descent direction d̂k and Boolean B.
1 Generate Y = (y1, . . . , yd ) where each y j is a random variate uniform on {−1, 1}.
2 Initialize: V ← ∅, B ← 1 /first pass through d neighbors
3 for j = 1, . . . , d do
4 v j ← X̃k + y j e j where e j is a vector of zeros with 1 in the j th place
5 if v j is feasible then
6 V ← V ∪ {v j }; if F̄(v j , Mk ) < F̄(X̃k , Mk ) then B ← 0

7 Initialize: j ← 0, c ← 0 /second pass on “other side”
8 while (B = 1 or |V| < d + 1) and j < d do
9 j ← j + 1 and ṽ j ← X̃k − y j e j

10 if ṽ j is feasible then
11 if v j /∈ V or c = 0 then /if v j /∈ V or first feasible then add ṽ j
12 V ← V ∪ {ṽ j }, c ← 1; if F̄(ṽ j , Mk ) < F̄(X̃k , Mk ) then B ← 0
13 else if B = 1 and F̄(ṽ j , Mk ) < F̄(X̃k , Mk ) then
14 V ← (V \ {v j }) ∪ {ṽ j } andB ← 0 /replace v j with ṽ j

15 if B = 1 then
16 return d̂k ← 0, X̃k ,B /return: no better neighbors
17 else /construct estimated descent cone and direction
18 C(X̃k ) := {v j − X̃k : F̄(v j , Mk ) < F̄(X̃k , Mk ), v j ∈ V}
19 d̂k ← ∑

d̂∈C(X̃k )
Tk (d̂ + Xk ) × d̂ where Tk (·) is from (6)

20 v∗ ← argmin{F̄(v, M̃k ) : v ∈ V} /identify better neighbor

21 return d̂k , X̃k ← v∗, B /return: direction found
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