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We propose a general purpose confidence interval procedure (CIP) for statistical functionals constructed

using data from a stationary time series. The procedures we propose are based on derived distribution-

free analogues of the 𝜒2
and Student’s 𝑡 random variables for the statistical functional context, and hence

apply in a wide variety of settings including quantile estimation, gradient estimation, M-estimation, CVAR-

estimation, and arrival process rate estimation, apart from more traditional statistical settings. Like the

method of subsampling, we use overlapping batches of time series data to estimate the underlying variance

parameter; unlike subsampling and the bootstrap, however, we assume that the implied point estimator of

the statistical functional obeys a central limit theorem (CLT) to help identify the weak asymptotics (called

OB-x limits, x=I,II,III) of batched Studentized statistics. The OB-x limits, certain functionals of the Wiener

process parameterized by the size of the batches and the extent of their overlap, form the essential machinery

for characterizing dependence, and consequently the correctness of the proposed CIPs. The message from

extensive numerical experimentation is that in settings where a functional CLT on the point estimator is

in effect, using large overlapping batches alongside OB-x critical values yields confidence intervals that are
often of significantly higher quality than those obtained from more generic methods like subsampling or the

bootstrap. We illustrate using examples from CVaR estimation, ARMA parameter estimation, and NHPP rate

estimation; R and MATLAB code for OB-x critical values is available at web.ics.purdue.edu/∼pasupath.
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2 Su et al.

1 INTRODUCTION
Let {𝑋 𝑗 , 𝑗 ≥ 1} be an 𝑆-valued discrete-time, stationary, observable stochastic process defined on

some probability space (Ω, F , 𝑃), and let \ : W → Θ ⊆ R denote a known statistical functional
(see [71, Chapter 6] or [55, Section 6.2]) defined on some space W of probability measures. In this

paper, we propose an overlapping batch (OB) confidence interval procedure (CIP) to construct an

interval 𝐼𝑛 ⊂ R using 𝑋 𝑗 , 𝑗 = 1, 2, . . . , 𝑛 such that

lim

𝑛→∞
𝑃 (𝜔 : \ (𝑃) ∈ 𝐼𝑛 (𝜔)) = 1 − 𝛼, (1)

for any specified constant 𝛼 ∈ (0, 1). Importantly, since {𝑋𝑛, 𝑛 ≥ 1} is a time series, the dependence

between random variables 𝑋𝑛, 𝑛 ≥ 1 is a key feature requiring careful treatment.

Remark. The initial segment 𝑋 𝑗 , 1 ≤ 𝑗 ≤ 𝑛 of the observable process {𝑋 𝑗 , 𝑗 ≥ 1} is assumed to be a
“collected dataset” or the output of a simulation that is exogenous to problem at hand. We assume no
facility for variance reduction, e.g., by changing the measure governing the process {𝑋 𝑗 , 𝑗 ≥ 1}, as is
sometimes possible in simulation settings. See [13, 25, 26, 49, 61, 62] for variance reduced confidence
interval problems in the quantile context.

1.1 Motivation
Statistical functionals subsume a variety of interesting quantities arising in modern data settings,

and are thus useful mathematical objects on which to construct confidence intervals. Consider,

for instance, the following examples of statistical functionals. In each case, let 𝑋 : Ω → S be an

S-valued random variable distributed according to 𝑃 , and let 𝑠 ∈ S denote an “outcome" in S.
(a) Expectation. For 𝑔 : S → R, define the expectation

\ (𝑃) := E[𝑔(𝑋 )] =
∫
S
𝑔(𝑠) 𝑑𝑃 .

(b) Quantile. For 𝑔 : S → R and 𝛾 ∈ (0, 1), define the (1 − 𝛾)-quantile
\ (𝑃) = \𝛾 (𝑃) := inf

𝑦∈R
{𝑃 (𝑔(𝑋 ) ≤ 𝑦) ≥ 1 − 𝛾}.

(c) Finite Difference Approximation. For 𝑔 : X × S → R where X := dom(𝑔) ⊆ R𝑑 , define the
finite-difference approximation of the directional derivative (assumed to exist) at 𝑥 ∈ int(X)
along 𝑢 ∈ R𝑑 :

\ (𝑃) = \𝑥,𝑢,𝜖 (𝑃) :=
1

𝜖
(E[𝑔(𝑥 + 𝜖𝑢, 𝑋 ) − 𝑔(𝑥,𝑋 )]) = 1

𝜖

(∫
S
(𝑔(𝑥 + 𝜖𝑢, 𝑠) − 𝑔(𝑥, 𝑠)) 𝑑𝑃

)
.

(d) General Optimization. For 𝑔 : X × S → R, where (X, 𝑑) is a metric space,

\ (𝑃) := inf

𝑥 ∈X
E[𝑔(𝑥, 𝑋 )] = inf

𝑥 ∈X

∫
S
𝑔(𝑥, 𝑠) 𝑑𝑃 .

(e) Root Finding. For 𝑔 : X × S → R, \ (𝑃) = \ ∈ X is such that∫
S
𝑔(\, 𝑠) 𝑑𝑃 = 0.

(f) Conditional Value at Risk (CVaR). For 0 < 𝛾 < 1, and 𝑔 : S → R,

\ (𝑃) = \𝛾 (𝑃) := E
[
𝑔(𝑆) | 𝑔(𝑆) > 𝑞𝛾

]
=

1

𝑃 (𝑔(𝑆) > 𝑞𝛾 )

(∫
S
𝑔(𝑠)I{𝑔(𝑠) > 𝑞𝛾 }𝑑𝑃

)
,

where the 𝛾-quantile 𝑞𝛾 := inf

{
𝑡 ∈ R :

∫
S I{𝑔(𝑠) ≤ 𝑡}𝑑𝑃 ≥ 𝛾

}
.
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Overlapping Batch Confidence Intervals on Statistical Functionals 3

(g) ARMA(𝑝 ,𝑞). The ARMA(𝑝, 𝑞) process is a discrete-time real-valued process {𝑌𝑡 , 𝑡 ≥ 1}
having 𝑝 “autoregressive” parameters, 𝜙 𝑗 , 𝑗 = 1, 2, . . . , 𝑝 , and 𝑞 “moving average” parameters,

\ 𝑗 , 𝑗 = 1, 2, . . . , 𝑞, and is expressed as

𝑌𝑡 = 𝑐 +
𝑝∑
𝑗=1

𝜙 𝑗𝑌𝑡−𝑗 +
𝑞∑
𝑗=1

\ 𝑗𝜖𝑡−𝑗 + 𝜖𝑡 ,

where {𝜖 𝑗 , 𝑗 ≥ 1} are independent and identically distributed (iid) random variables having

mean zero and unit variance. Given observations 𝑦𝑖 , 𝑖 = 1, 2, . . . , 𝑛 of the process {𝑌𝑡 , 𝑡 ≥ 1},
the estimators 𝑐, ˆ𝜙 𝑗 , 𝑗 = 1, 2, . . . , 𝑝 and

ˆ\ 𝑗 , 𝑗 = 1, 2, . . . , 𝑞 of the parameters 𝑐, 𝜙 𝑗 , 𝑗 = 1, 2, . . . , 𝑝

and \ 𝑗 , 𝑗 = 1, 2, . . . , 𝑞, are statistical functionals that can be estimated by minimizing the sum

of squared residuals [16]:

minimize:

𝑐,{𝜙 𝑗 ,1≤ 𝑗≤𝑝 },{\ 𝑗 ,1≤ 𝑗≤𝑞 }

𝑛∑
𝑖=𝑝+1

𝜖2

𝑖 ,

where the residuals are given by:

𝜖𝑖 :=


𝑦𝑖 − 𝑐 − ∑𝑝

𝑗=1
𝜙 𝑗𝑦𝑖−𝑗 −

∑𝑞

𝑗=1
\ 𝑗𝜖𝑖−𝑗 if 𝑖 ≥ 𝑝 + 1,

0 otherwise.

In addition to the above examples, a wide variety of quantities arising within classical statistics,

e.g., higher order moments, ratio of moments, 𝑘-means clustering, 𝛼-trimmed mean, Mann-Whitney

functional, and the simplical depth functional are all statistical functionals, making the question of

constructing confidence intervals on statistical functionals of wide interest. (See [74, Chapter 7]

and [55, Chapter 6] for other examples and a full treatment of statistical functionals.)

Remark. Whereas \ (𝑃) in some of the examples listed above are naturally R𝑑 -valued with 𝑑 > 1,
e.g., (g), the treatment in this paper is entirely real-valued, that is, \ (𝑃) ∈ R. Extending our methods
fromR toR𝑑 is straightforward but further extension into a function space involves non-trivial technical
aspects.

1.2 Notation and Terminology
(i) N refers to the set {1, 2, . . . , } of natural numbers. (ii) I𝐴 (𝑥) is the indicator variable taking the
value 1 if 𝑥 ∈ 𝐴 and 0 otherwise. Also, depending on the context, we write I(𝐴) where I(𝐴) = 1 if

the event 𝐴 is true and 0 otherwise. (iii) 𝑍 (0, 1) denotes the standard normal random variable, and

𝜒2

a refers to the chi-square random variable with a degrees of freedom. (iv) {𝑊 (𝑡), 𝑡 ≥ 0} refers to
the standard Wiener process [5, Section 37], and {𝐵(𝑡), 𝑡 ∈ [0,𝑇 ]}, 𝐵(𝑡) =𝑊 (𝑡) − 𝑡

𝑇
𝑊 (1) refers to

the Brownian bridge on [0,𝑇 ]. (v) For a random sequence {𝑋𝑛, 𝑛 ≥ 1}, we write 𝑋𝑛

wp1

→ 𝑋 to refer

to almost sure convergence, 𝑋𝑛

p

→𝑋 to refer to convergence in probability, and 𝑋𝑛

d→𝑋 to refer

to convergence in distribution (or weak convergence). (vi) We write 𝑋
d

= 𝑌 to mean that random

variables 𝑋 and 𝑌 have the same distribution. (vii) The empirical measure 𝑃𝑛 constructed from the

sequence {𝑋𝑛, 𝑛 ≥ 1} is given by 𝑃𝑛 (𝐴) = 𝑛−1
∑𝑛

𝑗=1
I𝐴 (𝑋 𝑗 ) for appropriate sets 𝐴.

1.3 Organization of the Paper
In the following section, we discuss literature on confidence intervals with a view toward providing

perspective on how the proposed methods fit within the existing literature. This is followed by

Section 3 where we present the main idea underlying the interval estimators we propose, along

, Vol. 1, No. 1, Article . Publication date: May 2018.
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4 Su et al.

with a synopsis of results. Section 4 includes key assumptions, followed by Section 5–7 which

present the theorems corresponding to the OB-I, OB-II, and OB-III limits. In Section 8, we present

brief discussion on questions that seem to arise frequently. We end with Section 9 where numerical

illustration using three different contexts illustrate the effectiveness of using large batch OB-I and

OB-II confidence intervals.

2 EXISTING LITERATURE, PERSPECTIVE, AND CONTRIBUTION
In this section, we provide an overview of CIPs in general. While we provide a large number

of references, our intent is not an encyclopedic account but to provide perspective on how the

proposed method fits within the literature.

2.1 CLT-based Methods

Confidence Interval Methods

CLT on
ˆ\𝑛 exists CLT not known to exist

e.g., subsampling [67], the bootstrap [22, 36, 67]“CLT-based" Methods

Consistent Methods

e.g., small batch (𝛽 = 0) OB-x

Cancellation Methods

e.g., large batch (𝛽 > 0) OB-x

Fig. 1. A taxonomy of methods for constructing confidence intervals on statistical functionals. Consistent
methods construct a consistent estimator of the variance constant 𝜎 , while cancellation methods allow the
use of large batches and construct ratio estimators that “cancel out" the variance constant 𝜎 .

Analogous to the taxonomy [42] of CIPs on the steady-state mean of a real-valued process, it is

instructive to categorize CIPs for statistical functionals based on whether a central limit theorem of

the form √
𝑛( ˆ\𝑛 − \ (𝑃)) d→𝜎𝑁 (0, 1) (2)

exists. In (2),
ˆ\𝑛 is an implied point estimator of \ (𝑃) constructed from the time series {𝑋𝑛, 𝑛 ≥ 1},

𝑁 (0, 1) is the standard normal random variable, and 𝜎 ∈ (0,∞) is an unknown parameter often

called the variance constant. Further, and as depicted in Figure 1, a CIP that assumes (2) may either

be a consistent method by which we mean that the CIP constructs another observable process

{�̂�𝑛, 𝑛 ≥ 1} from {𝑋𝑛, 𝑛 ≥ 1} to consistently estimate 𝜎 , that is,

�̂�𝑛
p

→𝜎 as 𝑛 → ∞; (3)

or a cancellation method by which we mean that the CIP constructs a non-vanishing process

{𝑌𝑛, 𝑛 ≥ 1} such that

(
√
𝑛( ˆ\𝑛 − \ (𝑃)), 𝑌𝑛)

d→ (𝜎𝑁 (0, 1), 𝜎𝑌 ) as 𝑛 → ∞, (4)

and 𝑌 is a well-defined random variable whose distribution can be computed, implying, among

other things, that 𝑌 does not depend on the unknown quantities 𝜎 and \ (𝑃).

, Vol. 1, No. 1, Article . Publication date: May 2018.
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Overlapping Batch Confidence Intervals on Statistical Functionals 5

In consistent methods, since (2) and (3) hold, Slutsky’s theorem (A.2) assures us that an asymp-

totically valid two-sided (1 − 𝛼) confidence interval on \ (𝑃) is

( ˆ\𝑛 − 𝑧1−𝛼/2

�̂�𝑛√
𝑛
, ˆ\𝑛 + 𝑧1−𝛼/2

�̂�𝑛√
𝑛
),

where 𝑧1−𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal distribution. It is in this sense that a

consistent method essentially reduces the confidence interval construction problem into the often

nontrivial problem [3, 13, 43] of consistently estimating the variance parameter𝜎 . Various consistent

methods exist in the steady-state mean context. For example, the regenerative method [15, 53],

the spectral procedure [4, 18–20, 73] with certain restrictions on the bandwidth, and the batch

means procedure where the variance parameter is estimated using one of various well-established

methods (e.g., NBM, OBM, weighted CvM or weighted area estimators) provided the batch size

tends to infinity in a way that the batch size expressed as a fraction of the total data size tends to

zero. See [1, 2] and references therein for a thorough account on estimating the variance parameter

associated with a steady-state real-valued process.

In contrast to consistent methods, cancellation methods are based on the important idea that 𝜎

need not be estimated consistently to construct a valid confidence interval on \ (𝑃). This seems

to have been first observed in the seminal account [70] introducing standardized time series

in the context of constructing confidence intervals on the steady state mean. Specifically, in

cancellation methods, since (2) and (4) hold, and 𝑌 is non-vanishing, applying the continuous

mapping theorem [6] leads to “cancellation” of 𝜎 in the sense that

√
𝑛( ˆ\𝑛 − \ (𝑃))

𝑌𝑛

d→ �𝜎 𝑁 (0, 1)
�𝜎 𝑌

, (5)

leading to the two-sided (1 − 𝛼) confidence interval

( ˆ\𝑛 − 𝑦𝛼/2

𝑌𝑛√
𝑛
, ˆ\𝑛 + 𝑦1−𝛼/2

𝑌𝑛√
𝑛
),

where 𝑦𝑞 is the 𝑞-quantile of 𝑁 (0, 1)/𝑌 . If constructing a consistent estimator of 𝜎 is the principal

challenge in consistent methods, selecting 𝑌𝑛 and characterizing 𝑌 turns out to be the principal

challenge in cancellation methods. Cancellation methods have been studied [11, 46, 48, 60, 70] in

the context of constructing confidence intervals on the steady-state mean, and more recently for

quantiles — see the exceptionally well-written articles [10, 27].

2.2 Subsampling
Subsampling and the bootstrap are examples of methods that are not CLT-based methods in the

sense that they do not assume knowledge of the normal weak limit in (2), although they assume the

existence of a weak limit. Subsampling is the culmination of decades of thought on using batches

for confidence intervals, and was formalized in a 1992 paper by Politis and Romano [66] (henceforth

abbreviated PR1992). See [67] for a book-length treatment that includes situations where \ (𝑃)
resides in a separable Banach space.

Remark. There is a long history of using batches within the classical statistics literature in the
context of constructing a confidence interval from time series data, e.g., interpenetration samples by
Mahalanobis [57], the jacknife by Quenouille [68], pseudoreplication by McCarthy [58], and subsam-
pling by Hartigan [51, 52]. There is also a corresponding history in the simulation literature dating
back to Conway [14], Mechanic and McKay [59], and Fishman [38] — precursors to the now mature
methods to construct confidence intervals on the steady-state mean using batched simulation output.

, Vol. 1, No. 1, Article . Publication date: May 2018.
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In the interest of easily conveying the essence of subsampling and the bootstrap, the ensuing

discussion assumes use of the Studentized statistic �̂�−1

𝑛 ( ˆ\𝑛 − \ (𝑃)), where ˆ\𝑛 is the point estimator

of \ (𝑃), and �̂�2

𝑛 is a point estimator of the variance parameter 𝜎2
. Suppose

𝜏𝑛

(
ˆ\𝑛 − \ (𝑃)

)
�̂�𝑛

d→ 𝐽 (𝑃); (6)

and define

𝐿𝑛 (𝑥) :=
1

𝑛 −𝑚𝑛 + 1

𝑛−𝑚𝑛+1∑
𝑗=1

I

{
𝜏𝑚𝑛

( ˆ\ 𝑗,𝑚𝑛
− ˆ\𝑛)

�̂� 𝑗,𝑚𝑛

≤ 𝑥

}
, 𝑥 ∈ R

=
1

𝑛 −𝑚𝑛 + 1

𝑛−𝑚𝑛+1∑
𝑗=1

I

{
𝜏𝑚𝑛

( ˆ\𝑚𝑛, 𝑗 − \ (𝑃))
�̂�𝑚𝑛, 𝑗

+
𝜏𝑚𝑛

(\ (𝑃) − ˆ\𝑛)
�̂�𝑚𝑛, 𝑗

≤ 𝑥

}
, (7)

where
ˆ\𝑛 is a point estimator of \ (𝑃) constructed from the entire data set (𝑋1, 𝑋2, . . . , 𝑋𝑛), \ 𝑗,𝑚𝑛

is

the estimator of \ (𝑃) constructed from the 𝑗-th subsample

(
𝑋 ( 𝑗−1)𝑚𝑛+1, 𝑋 ( 𝑗−1)𝑚𝑛+2, . . . , 𝑋 ( 𝑗−1)𝑚𝑛+𝑚𝑛

)
(see Figure 2 with offset 𝑑𝑛 = 1), {𝜏𝑛, 𝑛 ≥ 1} is a “scaling" sequence, and �̂�𝑛 is an estimate of what is

called the scale 𝜎 in PR1992, and what we call the variance constant in this paper. Also define

𝑈𝑛 (𝑥) :=
1

𝑛 −𝑚𝑛 + 1

𝑛−𝑚𝑛+1∑
𝑗=1

1

{
𝜏𝑚𝑛

( ˆ\𝑚𝑛, 𝑗 − \ (𝑃))
�̂�𝑚𝑛, 𝑗

≤ 𝑥

}
; 𝐸𝑛 :=

(
𝜏𝑚𝑛

(\ (𝑃) − ˆ\𝑛)
�̂�𝑚𝑛, 𝑗

≤ 𝑥

)
. (8)

Suppose that in addition to the assumption of the weak limit existence in (6), the following assump-

tions hold.

(A.1) the sequence {𝑋𝑛, 𝑛 ≥ 1} is stationary and strong-mixing (defined in Section 4);

(A.2) 𝜏𝑚𝑛
/𝜏𝑛 → 0,𝑚𝑛/𝑛 → 0; and

(A.3) the cdf 𝐽𝑛 (·, 𝑃) of the Studentized statistic 𝜏𝑛

(
ˆ\𝑛 − \ (𝑃)

)
/�̂�𝑛 is continuous (in its first argu-

ment).

The crucial insight of subsampling is that the empirical cdf 𝐿𝑛 can be used to approximate the

sampling distribution of the Studentized statistic by replacing
ˆ\𝑛 and �̂�𝑛 in (6) by their subsample

counterparts
ˆ\ 𝑗,𝑚𝑛

, �̂� 𝑗,𝑚𝑛
, and by replacing \ (𝑃) in (6) by ˆ\𝑛 . PR1992 formalize this by demonstrating

the intuitive result

sup

𝑥 ∈R
|𝐿𝑛 (𝑥) − 𝐽𝑛 (𝑥, 𝑃) |

p

→ 0. (9)

The assertion in (9) motivates constructing the following (two-sided) subsampling confidence

interval 𝐼𝑛,𝛼 on \ (𝑃), that can be shown to be asymptotically valid:

𝐼𝑛,𝛼 := ( ˆ\𝑛 − 𝑐𝑛,𝛼/2

�̂�𝑛

𝜏𝑛
, ˆ\𝑛 + 𝑐𝑛,𝛼/2

�̂�𝑛

𝜏𝑛
); 𝑐𝑛,𝑞 := inf{𝑥 : 𝐿𝑛 (𝑥) ≥ 𝑞}. (10)

Remark. Notice from (10) that subsampling assumes knowledge of the scaling 𝜏𝑛 but not the weak
limit 𝐽 . This will be true about the bootstrap as well.

We emphasize that PR1992’s main instrument for establishing that 𝐿𝑛 (𝑥)
p

→ 𝐽 (𝑥, 𝑃) is the “small

batch size" assumption in (A.2) above, which ensures that the probability of the event 𝐸𝑛 in (8)

tends to one, and the variance of𝑈𝑛 (𝑥) in (8) tends to zero.
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2.3 The Bootstrap
In the service of precisely explaining the bootstrap [22, 29, 35, 50], let’s enhance the notation

introduced previously to view point estimators as functionals, that is,
ˆ\ : D𝑛 → R and �̂�2

: D𝑛 → R,
where D𝑛 is the space of datasets of size 𝑛 with 𝑆-valued observations. So, the point estimator

ˆ\𝑛
of the statistical functional \ (𝑃) and the point estimator �̂�2

𝑛 of the variance constant 𝜎2
constructed

using the given dataset 𝑋1, 𝑋2, . . . , 𝑋𝑛 are

ˆ\𝑛 ≡ ˆ\ ({𝑋1, 𝑋2, . . . , 𝑋𝑛}); �̂�2

𝑛 ≡ �̂�2

𝑛 ({𝑋1, 𝑋2, . . . , 𝑋𝑛}) .

The bootstrap’s central idea is a method for approximating the sampling distribution of the

Studentized statistic

√
𝑛

(
ˆ\𝑛 − \ (𝑃)

)
/�̂�𝑛 . (The bootstrap assumes that the weak limit in (6) holds

with 𝜏𝑛 =
√
𝑛, although the assumption of the existence of a weak limit is often not stated explicitly.)

And, whereas subsampling constructs the empirical cdf 𝐿𝑛 in (7) using subsamples, the bootstrap

accomplishes the objective of estimating the sampling distribution of

√
𝑛

(
ˆ\𝑛 − \ (𝑃)

)
/�̂�𝑛 through

the following two steps:

(1) resample, that is, use a “resampling measure” 𝑃𝑛 to generate 𝐵 datasets {𝑋 ∗
𝑗,𝑖 , 1 ≤ 𝑗 ≤ 𝑛}, 𝑖 =

1, 2, . . . , 𝐵, e.g., iid draws with replacement from the original dataset; and

(2) compute, that is, use the generated datasets {𝑋 ∗
𝑗,𝑖 , 1 ≤ 𝑗 ≤ 𝑛}, 𝑖 = 1, 2, . . . , 𝐵 to compute “boot-

strap realizations”
ˆ\ ({𝑋 ∗

𝑗,𝑖 , 1 ≤ 𝑗 ≤ 𝑛}), 𝑖 = 1, 2, . . . , 𝐵 of the point estimator and “bootstrap

realizations”

𝑆𝑛,𝑖 :=
√
𝑛

(
ˆ\ ({𝑋 ∗

𝑗,𝑖 , 1 ≤ 𝑗 ≤ 𝑛}) − ˆ\𝑛

)
�̂�𝑛

, 𝑖 = 1, 2, . . . , 𝐵

of the Studentized statistic.

The bootstrap then uses observations 𝑆𝑛,𝑖 , 𝑖 = 1, 2, . . . , 𝐵 to compute the empirical cdf 𝐽𝑛 (·, 𝑃𝑛)
used to approximate the sampling distribution function 𝐽𝑛 (·, 𝑃) of

√
𝑛

(
ˆ\𝑛 − \ (𝑃)

)
/�̂�𝑛 , yielding the

following two-sided (1 − 𝛼) confidence interval on \ (𝑃):

( ˆ\𝑛 − 𝐽−1

𝑛 (1 − 𝛼/2), ˆ\𝑛 + 𝐽−1

𝑛 (1 − 𝛼/2)) . (11)

As can be observed in the statement and proof of the bootstrap’s main theorem [67, Theo-

rem 1.2.1], consistency follows upon assuming that the resampling and compute steps above

are such that (i) the resulting approximation 𝐽𝑛 in a sense consistently approximates 𝐽𝑛 (·, 𝑃),
e.g., 𝜌𝐿 (𝐽𝑛 (·, 𝑃), 𝐽𝑛 (·, 𝑃𝑛))

wp1

→ 0 as 𝑛 → ∞, where 𝜌𝐿 is the Lévy metric [21, Section 15.1]; and

(ii) the distribution 𝐽 (·, 𝑃) of the weak limit 𝐽 (𝑃) in (6) is continuous and strictly increasing at

inf{𝑥 : 𝐽 (𝑥, 𝑃) ≥ 1 − 𝛼}.
Since its original introduction in 1979 [34], the bootstrap has received tremendous attention

due to its simplicity and wide applicability, resulting in popular refinements [30–33], the ability to

handle time series [7, 8], extensions to the functional context [24], higher-order corrections[50, 56]

to improve coverage accuracy, and most recently a computationally “cheap” version [54]. Debates

on whether subsampling or the bootstrap is better have continued, but it is now known that

subsampling is more general in that the bootstrap requires the behavior of the bootstrap distribution

𝐽𝑛 (·, 𝑃𝑛) to be smooth (around 𝑃 ) when seen as a function of its second argument. We go into no

further detail on this point but see [67, Section 2.3]. Also see [41] for an interesting theorem on the

sense in which the bootstrap in its basic form is not valid if the variance parameter does not exist.

, Vol. 1, No. 1, Article . Publication date: May 2018.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Su et al.

2.4 Further Perspective and Summary of Contribution
The uniqueness of any CIP (including subsampling, the bootstrap, and what we propose here)

stems from the manner in which the procedure approximates the sampling distribution of its

chosen statistic. So, while subsampling uses the empirical cdf 𝐿𝑛 in (7) formed from subsamples,

and the bootstrap uses resampling, the methods proposed in this paper approximate the sampling

distribution of the Studentized statistic ( ˆ\𝑛−\ (𝑃))/�̂�𝑛 by characterizing its weak limit. In particular,

we assume the existence of a functional CLT governing
ˆ\𝑛 and exploit the resulting structure to

characterize the weak limit of ( ˆ\𝑛 − \ (𝑃))/�̂�𝑛 .
To be clear, neither subsampling nor the bootstrap assume a CLT (let alone a functional CLT)

on
ˆ\𝑛 , and this is their strength. However, our argument is that there exist numerous important

contexts where a functional CLT on
ˆ\𝑛 holds and can be usefully exploited if we can identify

the weak limit of the statistic in use. For example, vis-à-vis subsampling, knowledge of the weak

limit allows replacing the empirical quantiles 𝑐𝑛,𝑞 in (10) by their limiting counterparts, in the

process allowing to dispense with subsampling’s key stipulation that batch sizes be small, that is,

𝑚𝑛/𝑛 → 0.

To further clarify, we now provide a summary of contribution.

(1) This work presents CLT-based overlapping batch CIPs for constructing confidence intervals

on statistical functionals. There exists a well-developed literature on CLT-based OB CIPs for

the steady-state mean, and more recently for quantiles, but the only treatment of statistical

functionals through CLT-based methods that we are aware of is [60, Section 2.4].

(2) We derive the weak limits (called OB-x limits, x=I,II,III) of the statistic underlying each of

the proposed OB CIPs. Of these, the OB-II limit and its bias-correction factor (Theorem 6.1)

have not appeared in the literature even in the steady-state mean context to the best of our

knowledge; OB-II might prove to be especially relevant in computationally intensive settings.

The OB-I and OB-III limits (Theorem 5.1 and Theorem 7.1, respectively) have appeared in the

literature but in the steady-state mean [1, 2] and the quantile [10] contexts. The asymptotic

moment expression for the OB-I limit (Theorem 5.2) has not appeared elsewhere but the

corresponding result for the special case of fully overlapping batches in the steady-state

mean context appeared in [20].

(3) To aid future investigation of computationally intensive contexts, our analysis of overlapping

batches is general in the sense that it introduces an offset parameter 𝑑𝑛 whose value connotes

the extent of batching, e.g., 𝑑𝑛 = 1 connotes fully overlapping batches and 𝑑𝑛 ≥ 𝑚𝑛 connotes

non-overlapping batches. We shall see (Theorem 5.2) that the effect of the extent of overlap

features prominently in the asymptotic variance of the variance estimator.

(4) Extensive numerical experimentation over a variety of applications indicates that cancellation

methods resulting from the use of large batches, that is, when 𝑚𝑛/𝑛 → 𝛽 > 0, exhibits

behavior that is consistently better. Aspects responsible for such better behavior are not yet

fully understood and should form the topic of future investigation.

(5) We provide access to code (that includes a critical value calculation module for OB-I, OB-

II, and OB-III) for constructing confidence intervals on a statistical functional using our

recommended OB-x methods.

3 MAIN IDEA AND SYNOPSIS OF RESULTS
To set the stage for precisely describing the proposed confidence interval procedure, consider

partitioning the available “data” 𝑋1, 𝑋2, . . . , 𝑋𝑛 into 𝑏𝑛 possibly overlapping batches each of size

𝑚𝑛 as shown in Figure 2. The first of these batches consists of observations 𝑋1, 𝑋2, . . . , 𝑋𝑚𝑛
, the

second consists of observations 𝑋𝑑𝑛+1, 𝑋𝑑𝑛+2, . . . , 𝑋𝑑𝑛+𝑚𝑛
, and so on, and the last batch consists of
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observations 𝑋 (𝑏𝑛−1)𝑑𝑛+1, 𝑋 (𝑏𝑛−1)𝑑𝑛+2, . . . , 𝑋𝑛 . The quantity 𝑑𝑛 ≥ 1 represents the offset between

batches, with the choice 𝑑𝑛 = 1 corresponding to “fully-overlapping” batches and any choice

𝑑𝑛 ≥ 𝑚𝑛 corresponding to “non-overlapping” batches. Notice then that the offset 𝑑𝑛 and the

number of batches 𝑏𝑛 are related as

𝑑𝑛 =
𝑛 −𝑚𝑛

𝑏𝑛 − 1

. (12)

Suppose that the batch size𝑚𝑛 and the number of batches 𝑏𝑛 are chosen so that the following limits

exist:

lim

𝑛→∞
𝑚𝑛

𝑛
= 𝛽 ∈ [0, 1); lim

𝑛→∞
𝑏𝑛 = 𝑏 ∈ {2, 3, . . . ,∞}. (13)

batch 1

batch 2

batch 3

1 𝑚𝑛

𝑑𝑛 + 1 𝑑𝑛 +𝑚𝑛

2𝑑𝑛 + 1

Fig. 2. The figure depicts partially overlapping batches. Batch 1 consists of observations 𝑋 𝑗 , 𝑗 = 1, 2, . . . ,𝑚𝑛 ;
batch 2 consists of observations 𝑋 𝑗 , 𝑗 = 𝑑𝑛 + 1, 𝑑𝑛 + 2, . . . , 𝑑𝑛 + 𝑚𝑛 , and so on, with batch 𝑖 consisting
𝑋 𝑗 , 𝑗 = (𝑖 − 1)𝑑𝑛 + 1, (𝑖 − 1)𝑑𝑛 + 2, . . . , (𝑖 − 1)𝑑𝑛 +𝑚𝑛 . There are thus 𝑏𝑛 := 𝑑−1

𝑛 (𝑛 −𝑚𝑛) + 1 batches in total,
where 𝑛 is the size of the dataset.

Note that 𝛽 = 0 and 𝑏 = ∞ are allowed in (13). We will sometimes refer to 𝛽 as the asymptotic
batch size and to 𝑏 as the asymptotic number of batches. Also, we will refer to 𝛽 = 0 as the small
batch regime, and to 𝛽 > 0 as the large batch regime.

3.1 “Centering” the Confidence Interval
Suppose we have at our disposal a method to construct a point estimator

ˆ\ ({𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢}) of \ (𝑃)
using any batch (𝑋ℓ , 𝑋ℓ+1, . . . , 𝑋𝑢), ℓ,𝑢 ∈ {1, 2, . . . , 𝑛} of consecutive observations from the available

data 𝑋 𝑗 , 1 ≤ 𝑗 ≤ 𝑛. For now, we place no restrictions on
ˆ\ ({𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢}) but a natural choice

for
ˆ\ ({𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢}), especially in the non-parametric setting, is the “plug-in” estimator \ (𝑃ℓ,𝑢),

where 𝑃ℓ,𝑢 is the empirical measure constructed from 𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢. For example, when 𝑋 𝑗 , 1 ≤
𝑗 ≤ 𝑛 are real-valued and \ (𝑃) is the population mean E[𝑋1] =

∫
𝑥 𝑃 (d𝑥), the point estimator

ˆ\ ({𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢}) is the sample mean of the observations 𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢; and likewise, when \ (𝑃)
is the 𝛾-quantile min{𝑥 : 𝑃 (𝑋1 ≤ 𝑥) ≥ 𝛾} of 𝑋1, the natural choice for the point estimator is the

empirical quantile 𝐹−1

ℓ,𝑢 (𝛾) := min{𝑥 : 𝐹ℓ,𝑢 (𝑥) ≥ 𝛾}, where 𝐹ℓ,𝑢 (𝑥) = (𝑢− ℓ +1)−1
∑𝑢

𝑗=ℓ I{𝑋 𝑗 ≤𝑥 }, 𝑥 ∈ R
is the usual empirical cumulative distribution function (cdf) constructed from the observations

𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢.

When ℓ = 1 and 𝑢 = 𝑛, that is, all available observations are utilized in constructing the point

estimator of \ (𝑃), we obtain what is often called the sectioning estimator [62], given special notation

here since we heavily invoke this estimator throughout the rest of the paper:

ˆ\𝑛 := ˆ\ ({𝑋 𝑗 , 1 ≤ 𝑗 ≤ 𝑛}). (14)

The asymptotic variance parameter 𝜎2
, assumed to exist and defined as

𝜎2
:= lim

𝑛→∞
E

[(√
𝑛( ˆ\𝑛 − \ (𝑃))

)
2

]
, (15)
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will play a crucial role in our later analysis. Also, owing to the manner in which we will con-

struct batches, we use special notation for the point estimators constructed from the observations

(𝑋 (𝑖−1)𝑑𝑛+1, 𝑋 (𝑖−1)𝑑𝑛+2, . . . , 𝑋 (𝑖−1)𝑑𝑛+𝑚𝑛
) in the 𝑖-th batch (see Figure 2):

ˆ\𝑖,𝑚𝑛
:= ˆ\ ({𝑋 𝑗 , (𝑖 − 1)𝑑𝑛 + 1 ≤ 𝑗 ≤ (𝑖 − 1)𝑑𝑛 +𝑚𝑛}), 𝑖 = 1, 2, . . . , 𝑏𝑛 (16)

and 𝑏𝑛 =
𝑛−𝑚𝑛

𝑑𝑛
+ 1.

We shall see shortly that the sectioning estimator appearing in (14) is a candidate for centering

the confidence interval that we construct. An alternative to the sectioning estimator is the batching
estimator [62], obtained by averaging the point estimators

ˆ\𝑖,𝑚𝑛
, 𝑖 = 1, 2, . . . , 𝑏𝑛 , that is,

¯\𝑛 :=
1

𝑏𝑛

𝑏𝑛∑
𝑖=1

ˆ\𝑖,𝑚𝑛
. (17)

The sectioning and batching point estimators are the two natural choices for “centering” the

confidence intervals on \ (𝑃). We will see that confidence intervals constructed with the batching

estimator might be especially useful in computationally intensive contexts.

3.2 Estimating the Variance Constant 𝜎2

Since the variance constant 𝜎2
(defined in (15)) is a measure of the inherent variability of the

point estimator
ˆ\𝑛 , 𝜎

2
’s estimation plays a key role in the confidence intervals we construct. The

expression in (15) suggests that a natural estimator of 𝜎2
is the sample variance of

ˆ\𝑖,𝑚𝑛
, 𝑖 =

1, 2, . . . , 𝑏𝑛 defined in (16), after appropriate scaling:

�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) :=

1

^1 (𝛽)
𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑖=1

( ˆ\𝑖,𝑚𝑛
− ˆ\𝑛)2, ^1 (𝛽) = 1 − 𝛽, (18)

where 𝛽 defined in (13) is the limiting batch size. It will become clear from our later analysis that

^1 (𝛽) appearing in (18) is a “bias-correction” constant introduced to make �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) asymptoti-

cally unbiased.

Notice that the estimator �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) of the variance constant 𝜎2

appearing in (18) uses the

sectioning estimator
ˆ\𝑛 when computing the sample variance. An alternative is to use the batching

estimator
¯\𝑛 in place of the sectioning estimator to obtain the second candidate estimator of the

variance constant 𝜎2
:

�̂�2

OB-II
(𝑚𝑛, 𝑏𝑛) :=

1

^2 (𝛽, 𝑏)
𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑖=1

( ˆ\𝑖,𝑚𝑛
− ¯\𝑛)2, (19)

where, as we shall see in Theorem 6.1, the bias-correction constant has the more complicated form

^2 (𝛽, 𝑏) :=


1 𝛽 = 0;

1 − 2

(
min{ 𝛽

1−𝛽 , 1}
)
+ 1

𝛽

(
min{ 𝛽

1−𝛽 , 1}
)

2

− 2

3

1−𝛽
𝛽

(
min{ 𝛽

1−𝛽 , 1}
)

3

𝛽 > 0, 𝑏 = ∞;

1 − 1

𝑏
− 2

𝑏

∑𝑏
ℎ=1

(
1 − ℎ

𝑏−1

1−𝛽
𝛽

)+
(1 − ℎ/𝑏) 𝑏 ∈ N \ 1,

(20)

and 𝑏 defined in (13) is the limiting number of batches.

A third estimator �̂�2

OB-III
(𝑚𝑛, 𝑏𝑛) of the variance constant 𝜎2

that we consider, called the weighted

area estimator [2, 47, 48, 70], is given as follows:

�̂�2

OB-III
(𝑚𝑛, 𝑏𝑛) :=

1

𝑏𝑛

𝑏𝑛∑
𝑖=1

𝐴𝑖,𝑚𝑛
, (21)
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where

𝐴𝑖,𝑚𝑛
:=

(
1

𝑚𝑛

𝑚𝑛∑
𝑗=1

𝑓 ( 𝑗

𝑚𝑛

) 𝜎 𝑇𝑖,𝑚𝑛
( 𝑗

𝑚𝑛

)
)

2

; 𝑇𝑖,𝑚𝑛
(𝑡) :=

⌊𝑚𝑛𝑡⌋
(

ˆ\𝑖, ⌊𝑚𝑛𝑡 ⌋ − ˆ\𝑖,𝑚𝑛

)
𝜎
√
𝑚𝑛

, 𝑡 ∈ [0, 1], (22)

and 𝑓 : [0, 1] → R+ is a chosen weighting function that satisfies

E

[(∫
1

0

𝑓 (𝑡)𝑊 (𝑡) 𝑑𝑡
)2

]
= 1; and 𝑓 ∈ 𝐶2 [0, 1] . (23)

The structure of the “standardized time series” {𝑇𝑖,𝑚𝑛
(𝑡), 𝑡 ∈ [0, 1]} in (22) hints at why �̂�2

OB-III
(𝑚𝑛, 𝑏𝑛)/𝜎2

is an analogue of the classical chi-square random variable. Specifically, notice that {𝑇⌊𝑠𝑚𝑛 ⌋,𝑚𝑛
(𝑡), 𝑡 ∈

[0, 1]} for each 𝑠 ∈ [0,∞) should converge weakly (as𝑚𝑛 → ∞), modulo some regularity conditions,

to the standard Brownian bridge

𝐵𝑠 (𝑡) := {𝑊 (𝑠 + 𝑡) −𝑊 (𝑠) − 𝑡 (𝑊 (𝑠 + 1) −𝑊 (𝑠)), 𝑡 ∈ [0, 1]} , 𝑠 ∈ [0,∞) .

Correspondingly, and since

∫
1

0
𝑓 (𝑡)𝐵𝑠 (𝑡)

𝑑
= 𝑍 (0, 1) if 𝑓 is chosen as stipulated in (23), 𝐴 ⌊𝑠𝑚𝑛 ⌋,𝑚𝑛

should converge weakly to 𝜎2𝑍 2 (0, 1) 𝑑
= 𝜎2𝜒2

1
, in effect justifying the weighted area estimator

�̂�2

OB-III
(𝑚𝑛, 𝑏𝑛).

The weighted area estimator appearing in (21) has been the topic of much research over the

last three decades in the context of estimating the variance constant of a stationary time series.

See [2, 39, 46, 70? ] for a detailed account that includes treatment of other estimators of the variance

constant.

3.3 Structure of the Proposed Confidence Intervals
The proposed interval has the same elements as a classical confidence interval, namely:

(A) a “centering” variable, e.g., the sectioning estimator
ˆ\𝑛 ∈ R, or the batching estimator

¯\𝑛 ∈ R,
as described in Section 3.1;

(B) a point estimator of the asymptotic variance 𝜎2
, e.g., �̂�2

OB-x
(𝑚𝑛, 𝑏𝑛), x = I, II, III; and

(C) a statistic whose weak limit supplies the critical values associated with the confidence interval.

Once the elements in (A)–(C) are specified, a (1 − 𝛼) confidence interval on \ (𝑃) can then be

constructed in the usual way.

For example, when the sectioning estimator
ˆ\𝑛 is used in (A), the variance estimator �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)

is used in (B), and the Studentized root

𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ˆ\𝑛 − \ (𝑃))
�̂�
OB-I

(𝑚𝑛, 𝑏𝑛)
d→𝑇

OB-I
(𝛽, 𝑏), (24)

is used in (C), we obtain the (two-sided) confidence interval{
𝑦 ∈ R : −𝑡

OB-I,1−𝛼
2

(𝛽, 𝑏) ≤
√
𝑛( ˆ\𝑛 − 𝑦)

�̂�
OB-I

(𝑚𝑛, 𝑏𝑛)
≤ 𝑡

OB-I,1−𝛼
2

(𝛽, 𝑏)
}
, (25)

where

𝑡
OB-I,𝑞 (𝛽, 𝑏) = inf {𝑟 : 𝑃 (𝑇

OB-I
(𝛽, 𝑏) ≤ 𝑟 ) = 𝑞} , 𝑞 ∈ (0, 1)

is the 𝑞-quantile (or critical value) of the random variable 𝑇
OB-I

(𝛽, 𝑏). (A one-sided confidence

interval analogous to (25) is straightforward.)
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Similarly, using the batching estimator
¯\𝑛 in (A), the variance estimator �̂�2

OB-II
(𝑚𝑛, 𝑏𝑛) in (B), and

the Studentized root

𝑇
OB-II

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ¯\𝑛 − \ (𝑃))
�̂�
OB-II

(𝑚𝑛, 𝑏𝑛)
d→𝑇

OB-II
(𝛽, 𝑏), (26)

in (C), we obtain our second proposed (two-sided) confidence interval{
𝑦 ∈ R := −𝑡

OB-II,1−𝛼
2

(𝛽, 𝑏) ≤
√
𝑛( ¯\𝑛 − 𝑦)

�̂�
OB-II

(𝑚𝑛, 𝑏𝑛)
≤ 𝑡

OB-II,1−𝛼
2

(𝛽, 𝑏)
}
, (27)

where

𝑡
OB-II,𝑞 (𝛽, 𝑏) = inf {𝑟 : 𝑃 (𝑇

OB-II
(𝛽, 𝑏) ≤ 𝑟 ) = 𝑞} , 𝑞 ∈ (0, 1)

is the 𝑞-quantile (or critical value) of the random variable 𝑇
OB-II

(𝛽, 𝑏).
And, finally, using the sectioning estimator

ˆ\𝑛 in (A), the variance estimator �̂�2

OB-III
(𝑚𝑛, 𝑏𝑛) in (B),

and the Studentized root

𝑇
OB-III

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ¯\𝑛 − \ (𝑃))
�̂�
OB-III

(𝑚𝑛, 𝑏𝑛)
d→𝑇

OB-III
(𝛽, 𝑏), (28)

in (C), we obtain our third proposed (two-sided) confidence interval{
𝑦 ∈ R : −𝑡

OB-III,1−𝛼
2

(𝛽, 𝑏) ≤
√
𝑛( ˆ\𝑛 − 𝑦)

�̂�
OB-III

(𝑚𝑛, 𝑏𝑛)
≤ 𝑡

OB-III,1−𝛼
2

(𝛽, 𝑏)
}
, (29)

where

𝑡
OB-III,𝑞 (𝛽, 𝑏) = inf {𝑟 : 𝑃 (𝑇

OB-III
(𝛽, 𝑏) ≤ 𝑟 ) = 𝑞} , 𝑞 ∈ (0, 1)

is the 𝑞-quantile (or critical value) of the random variable 𝑇
OB-III

(𝛽, 𝑏).

Remark. Sometimes \ is known to reside in a constrained set Θ ⊂ R, in which case the sectioning
estimator ˆ\𝑛 , and all the batch estimators ˆ\𝑖,𝑚𝑛

, 𝑖 = 1, 2, . . . , 𝑏𝑛 should be suitably projected onto Θ, as
should the intervals in (25), (27), and (29). This will cause a corresponding change in the weak limits
along with the critical values; we do not detail this case since we view it as a distraction.

The preceding discussion should emphasize that the Studentized root 𝑇
OB-x

(𝑚𝑛, 𝑏𝑛), x = I, II, III

forms the essential element of the confidence intervals we propose. And, since the exact distribu-

tion of 𝑇
OB-x

(𝑚𝑛, 𝑏𝑛), x = I, II, III is unknown in general, the outlined procedure approximates its

distribution by the (purported) weak limit 𝑇
OB-x

(𝛽, 𝑏), x = I, II, III.

3.4 Synopsis of Results
The proposed intervals (25), (27), and (29) rely crucially on the existence of the following weak

limits:

𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ˆ\𝑛 − \ (𝑃))
�̂�
OB-I

(𝑚𝑛, 𝑏𝑛)
d→ 𝑇

OB-I
(𝛽, 𝑏); (OB-I Limit)

𝑇
OB-II

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ¯\𝑛 − \ (𝑃))
�̂�
OB-II

(𝑚𝑛, 𝑏𝑛)
d→ 𝑇

OB-II
(𝛽, 𝑏); (OB-II Limit)

𝑇
OB-III

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ˆ\𝑛 − \ (𝑃))
�̂�
OB-III

(𝑚𝑛, 𝑏𝑛)
d→ 𝑇

OB-III
(𝛽, 𝑏), (OB-III Limit)

where 𝛽 and 𝑏 are the limiting batch size and number of batches as defined in (13). The existence

of the weak limits 𝑇
OB-x

, x = I,II,III, however, needs to be established and their characterization will

occupy much of the rest of the paper. Furthermore, on our way to characterizing𝑇
OB-x

, x = I,II,III, we

will also establish the weak limits of the estimators �̂�2

OB-x
(𝑚𝑛, 𝑏𝑛), x = I, II, III of the variance constant
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Table 1. A synopsis of results. In the service of constructing confidence intervals on \ (𝑃), we construct three
Studentized roots𝑇OB-x (𝑚𝑛, 𝑏𝑛), x=I,II,III obtained using combinations of candidates for the point estimator of
\ (𝑃) and for the point estimator of 𝜎2. The three Studentized roots give rise to the OB-x, x=I,II,III weak limits,
whose nature depends on the limiting batch size 𝛽 := lim𝑛→∞𝑚𝑛/𝑛 and the limiting number of batches
𝑏 := lim𝑛→∞ 𝑏𝑛 . Expressions for the weak limits 𝑇OB-x (𝛽, 𝑏), x=I,II,III appear in Theorems 5.1–7.1. Critical
values for the OB-I and OB-II distributions appear on page 17 and page 24.

Centering Var. Batch Regime Variance Estimator Statistic

(𝑚𝑛/𝑛 → 𝛽
?

= 0) (�̂�2

OB-x
(𝑚𝑛, 𝑏𝑛) →?) (𝑇

OB-x
(𝑚𝑛, 𝑏𝑛)

d→ ?)

OB-I ˆ\𝑛
𝛽 = 0 �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)

p

→𝜎2 𝑍

𝛽 > 0 �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)

d→𝜎2𝜒2

OB-I
(𝛽, 𝑏) 𝑇

OB-I
(𝛽, 𝑏)

OB-II
¯\𝑛

𝛽 = 0 �̂�2

OB-II
(𝑚𝑛, 𝑏𝑛)

p

→𝜎2 𝑍

𝛽 > 0 �̂�2

OB-II
(𝑚𝑛, 𝑏𝑛)

d→𝜎2𝜒2

OB-II
(𝛽, 𝑏) 𝑇

OB-II
(𝛽, 𝑏)

OB-III ˆ\𝑛
𝛽 = 0 �̂�2

OB-III
(𝑚𝑛, 𝑏𝑛)

p

→𝜎2 𝑍

𝛽 > 0 �̂�2

OB-III
(𝑚𝑛, 𝑏𝑛)

d→𝜎2𝜒2

OB-III
(𝛽, 𝑏) 𝑇

OB-III
(𝛽, 𝑏)

𝜎2
. The random variables 𝑇

OB-x
, x = I, II, III and �̂�

OB-x
, x = I, II, III should be seen as distribution-free

statistical functional analogues of the Student’s 𝑡 and 𝜒2
random variables, respectively.

As summarized in Table 1, the nature of 𝑇
OB-x

, x = I, II, III (and those of �̂�
OB-x

, x = I, II, III) depend

on the limiting batch size 𝛽 and the limiting number of batches 𝑏. In particular, depending on

whether 𝛽 = 0 (small batch regime) or 𝛽 > 0 (large batch regime), the statistics behave quite

differently. For example, the small batch regime (𝛽 = 0) produces the normal limit (𝑍 statistics)

along with consistent estimation of 𝜎2
, whereas the large batch regime (𝛽 > 0) produces limits that

are functionals of the Wiener process along with no consistent estimation of 𝜎2
. The asymptotic

number of batches 𝑏 affects the nature of the limiting distributions in the large batch regime. See

Table 1 for a synopsis.

4 KEY ASSUMPTIONS
In this section, we state and comment on various regularity assumptions that will be invoked when

proving the technical results. Not all of these assumptions are “standing assumptions” in that some

of the results to follow (especially when 𝛽 = 0) will need only a subset of the assumptions.

Assumption 1 (Stationarity). The 𝑆-valued sequence {𝑋𝑛, 𝑛 ≥ 1} is stationary, that is, for any
𝑛 𝑗 , 𝑗 = 1, 2, . . . , 𝑘 < ∞ and 𝑘 < ∞, the distribution of (𝑋𝑛1+𝜏 , 𝑋𝑛2+𝜏 , 𝑋𝑛3+𝜏 , . . . , 𝑋𝑛𝑘+𝜏 ) does not depend
on 𝜏 ∈ Z+.
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Assumption 2 (Strong Mixing Condition). Suppose G,H are sub-𝜎-algebras of F in the
probability space (Ω, F , 𝑃). Recall that the strong mixing constant 𝛼 (G,H) is given by

𝛼 (G,H) = sup

𝐴∈G
sup

𝐵∈H
|𝑃 (𝐴𝐵) − 𝑃 (𝐴)𝑃 (𝐵) |

=
1

2

sup

𝐴∈G
E [|𝑃 (𝐴|H) − 𝑃 (𝐴) |]

=
1

2

sup

𝐴∈H
E [|𝑃 (𝐴|G) − 𝑃 (𝐴) |] . (30)

We assume that the 𝑆-valued sequence {𝑋𝑛, 𝑛 ≥ 1} has strong mixing [37, pp. 347] constants 𝛼𝑛 :=

𝛼 (F𝑘 , F𝑘,𝑛) satisfying 𝛼𝑛 ↘ 0 as 𝑛 → ∞, where F𝑘 := 𝜎 (𝑋1, 𝑋2, . . . , 𝑋𝑘 ), F𝑘,𝑛 := 𝜎 (𝑋𝑘+𝑛, 𝑋𝑘+𝑛+1, . . .)
denote sub-𝜎-algebras of F “separated by 𝑛.”

Assumption 3 (Central Limit Theorem). The sequence { ˆ\𝑛, 𝑛 ≥ 1} of section estimators satisfies
a central limit theorem (CLT), that is,

√
𝑛( ˆ\𝑛 − \ (𝑃)) d→𝜎𝑁 (0, 1), (31)

where 𝑁 (0, 1) is the standard normal random variable and 𝜎 < (0,∞) is a finite, positive constant.

Assumption 4 (Asymptotic Moment Existence). The sequence { ˆ\𝑛, 𝑛 ≥ 1} of section estimators
is such that, for some 𝛿0 > 0,

E

[(√
𝑛( ˆ\𝑛 − \ (𝑃))

)
2+𝛿0

]
→ 𝜎2+𝛿0 as 𝑛 → ∞, (32)

where 𝜎 is the constant appearing in Assumption 3.

Assumption 5 (Strong Invariance). The sequence { ˆ\𝑛, 𝑛 ≥ 1} of section estimators satisfies
the following strong invariance principle. On a rich enough probability space, there exists a standard

Wiener process {𝑊 (𝑡), 𝑡 ≥ 0} and a stationary stochastic process {�̃�𝑛, 𝑛 ≥ 1} 𝑑
= {𝑋𝑛, 𝑛 ≥ 1} such that

as 𝑛 → ∞,

sup

0≤𝑡 ≤𝑛

���𝜎−1

(
ˆ\ ⌊𝑡 ⌋ − \ (𝑃)

)
− 𝑡−1𝑊 (𝑡)

��� ≤ Γ 𝑛−1/2−𝛿√
log𝑛 a.s., (33)

where the constant 𝛿 > 0 and the real-valued random variable Γ satisfies E[Γ] < ∞.

Assumption 1 on the stationarity of the sequence {𝑋𝑛, 𝑛 ≥ 1} is mild and standard in settings

where a confidence interval is sought. Assumption 2 on strong mixing is a weak asymptotic

independence condition imposed to rigorize the intuitive idea that the dependence between events

formed from subsets of the sequence {𝑋𝑛, 𝑛 ≥ 1} in the far past and the far future decays to zero as

their separation diverges. Assumption 1 and Assumption 2 are used only in our results involving

small batches, that is, when𝑚𝑛/𝑛 → 0.

As discussed in the introductory part of the paper, Assumption 3 on the existence of a CLT on

ˆ\𝑛 , is fundamental to the methods presented here. While there are exceptions [67], a CLT holds in

numerous useful settings where a confidence interval is desired, e.g., mean estimation [71], quantile

estimation [71], gradient estimation [3], M-estimation [72], CVaR estimation [23], acf and spectral

density estimation [9], and robust statistics [40], apart from other more standard estimation settings

in statistics. Assumption 4 goes only a little further than Assumption 3 to stipulate the existence of

the (2 + 𝛿0)-th moment of
ˆ\𝑛 (for some 𝛿0 > 0) and its convergence to 𝜎2+𝛿

. It can be shown that

Assumption 4 implies the uniform integrability of the sequence {
√
𝑛( ˆ\𝑛 − \ (𝑃)), 𝑛 ≥ 1}.
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The inequality in (33) of Assumption 5, sometimes called “strong invariance,” essentially stipulates

that the scaled process

{√
𝑛𝜎−1

(
ˆ\ ⌊𝑡 ⌋ − \ (𝑃)

)
, 𝑡 ≤ 𝑛

}
can be approximated uniformly to within 𝑛−𝛿

almost surely, by a suitable standard Wiener process on a rich enough probability space. As argued

in Philipp and Stout [65], and Glynn and Iglehart [45], Assumption 5 holds for a variety of weakly

dependent processes. See [17] for strong invariance theorems on partial sums, empirical processes,

and quantile processes.

As will become evident, Assumption 5 is used only in proving results that involve large batches,

that is, when𝑚𝑛/𝑛 → 𝛽 > 0. We believe all these results will still hold with a functional CLT on

ˆ\𝑛 instead of Assumption 5. (Loosely, strong approximation⇒ functional CLT⇒ CLT — see, for

instance, [44, 71].) Despite this increased generality that a functional CLT affords, we have chosen

to remain with Assumption 5 since the resulting proofs are more intuitive.

5 THE OB-I LIMIT
In this section, we characterize the weak limit of

𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ˆ\𝑛 − \ (𝑃))
�̂�
OB-I

(𝑚𝑛, 𝑏𝑛)
, (34)

as described in Section 3.4. Along the way, we also characterize the asymptotic behavior of the

variance estimator �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛). The ensuing Section 5.1 treats the 𝛽 := lim𝑛→∞𝑚𝑛/𝑛 > 0 (large

batch) regime, and Section 5.3 treats the 𝛽 = 0 (small batch) regime.

5.1 Large Batch Regime for OB-I
Theorem 5.1 that follows asserts that �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)/𝜎2

and 𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) converge weakly to certain

functionals of the Wiener process that we denote 𝜒2

OB-I
(𝛽, 𝑏) and 𝑇

OB-I
(𝛽, 𝑏), respectively. It is

important that Theorem 5.1 needs the strong invariance Assumption 5 to hold so that the dependence

across batches can be characterized precisely.

Theorem 5.1 (OB-I Large Batch Regime). Suppose that Assumptions 1–5 hold, and that 𝛽 =

lim𝑛→∞𝑚𝑛/𝑛 ∈ (0, 1) . Assume also that 𝑏𝑛 → 𝑏 ∈ {2, 3, . . . ,∞} as 𝑛 → ∞. Define

𝜒2

OB-I
(𝛽, 𝑏) :=



1

^1 (𝛽, 𝑏)
1

𝛽 (1 − 𝛽)

∫
1−𝛽

0

(𝑊 (𝑢 + 𝛽) −𝑊 (𝑢) − 𝛽𝑊 (1))2 𝑑𝑢 𝑏 = ∞;

1

^1 (𝛽, 𝑏)
1

𝛽𝑏

𝑏∑
𝑗=1

(
𝑊 (𝑐 𝑗 + 𝛽) −𝑊 (𝑐 𝑗 ) − 𝛽𝑊 (1)

)
2

𝑏 ∈ N \ {1},

(35)

where ^1 (𝛽, 𝑏) = 1 − 𝛽 and 𝑐 𝑗 := ( 𝑗 − 1) 1−𝛽
𝑏−1

. Then, as 𝑛 → ∞,

�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)

d→𝜎2𝜒2

OB-I
(𝛽, 𝑏); and 𝑇

OB-I
(𝑚𝑛, 𝑏𝑛)

d→ 𝑊 (1)√
𝜒2

OB-I
(𝛽, 𝑏)

. (36)

The following theorem characterizes the (asymptotic) moments of the OB-I variance estimator

�̂�2

OB-I (𝑚𝑛, 𝑏𝑛).
Theorem 5.2 (OB-I Moments). Let the postulates of Theorem 5.1 hold. If the random variable Γ

appearing in Assumption 5 satisfies E[Γ4] < ∞, and |𝑚𝑛/𝑛 − 𝛽 | = 𝑜 (𝑛−𝛿 ), then

E[�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)] = 𝜎2 +𝑂 (𝜖1,𝑛); 𝜖1,𝑛 :=

𝑛−𝛿

𝛽𝛿^1 (𝛽, 𝑏)
(
√

2 log
2 𝛽𝑛 log

2 𝑛 +
√

2 log
2 𝑛) (37)

and 𝛿 > 0 is the constant appearing in Assumption 5.
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Recalling that 𝑏 := lim𝑛 𝑏𝑛 ∈ {2, 3, . . . ,∞}, suppose further that

[ := lim

𝑛

𝑏𝑛

𝑛
∈ [0,∞),

implying that necessarily

𝑑 := lim

𝑛
𝑑𝑛 = lim

𝑛

𝑛 −𝑚𝑛

𝑏𝑛 − 1

=


1−𝛽
[

[ > 0;

∞ [ = 0.

Then, after redefining ∞× 0 = 0, we have that

lim

𝑛
Var(�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)) =

𝜎4

(1 − 𝛽)2

(
2

(
1 − 2𝛽 + 3𝛽2

)
˜̀0 + 6 (1 − 𝛽)2 `0 − 8𝑑 (1 − 𝛽)`1 + 4`2

)
, (38)

where ˜̀0, `0, `1, `2 are given by

˜̀0 :=


1

2

(
1−2𝛽

1−𝛽

)
2

I{𝛽≤1/2} if 𝑏 = ∞,

1

2

(
1 − 1

𝑏
⌈ 𝛽

1−𝛽 (𝑏 − 1)⌉
) (

1 − 1

𝑏
⌈ 𝛽

1−𝛽 (𝑏 − 1)⌉ + 1

𝑏

)
I{𝛽≤1/2} if 𝑏 < ∞;

(39)

and defining 𝛾 :=
𝛽

1−𝛽 ∧ 1,

`0 :=


𝛾

(
1 − 𝛾

2

)
if 𝑏 = ∞,

1

𝑏
⌊𝛾 (𝑏 − 1)⌋

(
1 − 1

2

1

𝑏
⌊𝛾 (𝑏 − 1)⌋ − 1

2

)
if 𝑏 < ∞;

`1 :=
1

6

𝛾2
[

𝛽
(3 − 2𝛾) I{𝑏=∞},

`2 :=
1

2

𝛾3

(
[

𝛽

)
2
(

2

3

− 1

2

𝛾

)
I{𝑏=∞} . (40)

We make some further observations before providing the proofs of Theorem 5.1 and Theorem 5.2.

(a) The estimator �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) does not consistently estimate the variance parameter 𝜎2

, but

converges weakly to the product of 𝜎2
and the random variable 𝜒2

OB-I (𝛽, 𝑏) appearing in (36).

As in all cancellation methods, the weak limit of 𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) does not involve 𝜎2
since it

“cancels out.” We slightly abuse notation for ease of exposition and use (36)) to define the𝑇
OB-I

random variable:

𝑇
OB-I

(𝛽, 𝑏) :=
𝑊 (1)√
𝜒2

OB-I (𝛽, 𝑏)
, (𝛽, 𝑏) ∈ (0, 1) × N \ {1}.

(b) The factor ^1 (𝛽, 𝑏) = 1− 𝛽 is a “bias correction” factor introduced to ensure that �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)

is asymptotically unbiased.

(c) The expression for 𝜒2

OB-I
(𝛽, 𝑏) in Theorem 5.1 seems to have appeared first in [1, pp. 326] for

the steady-state mean context and assuming fully overlapping batches, that is, for 𝑑𝑛 = 1 and

𝑏 = ∞. (The reader should be aware that while 𝑏 in the current paper refers to the limiting

number of batches, 𝑏 in [1] refers to the ratio 𝑛/𝑚𝑛 → 𝛽−1
. Furthermore, a simple re-scaling

of the Wiener process is needed to see that the expression appearing in Theorem 5.1 and

that in [1, pp. 326] are equivalent.) Similarly, the special case of fully overlapping batches

, Vol. 1, No. 1, Article . Publication date: May 2018.
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and 𝑏 = ∞ for Var(�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)) in Theorem 5.2 appears in [20, pp. 290] for the context of

the steady-state mean.

(d) We can show through calculus on (38) that inf𝛽∈(0,1)
{
lim𝑛→∞ Var(�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛))

}
= 0 is

approached as 𝛽 → 0. (The infimum is not attained although there is a local minimum around

𝛽 = 0.467.) This suggests using small batches but we will argue later that this is counter to

what is seen in practice and that using (38) as a means to decide the quality of confidence

intervals is misleading.

(e) The offset parameter 𝑑𝑛 comes into play through its effect on the limiting number of batches

𝑏. Specifically, notice that since 𝑏𝑛 = 1 + (𝑛 −𝑚𝑛)/𝑑𝑛 and𝑚𝑛/𝑛 → 𝛽, the asymptotic number

of batches 𝑏 = ∞ if 𝑑𝑛/𝑛 = 𝑜 (1), and 𝑏 < ∞ if lim𝑛 𝑑𝑛/𝑛 > 0 (assuming it exists).

(f) The table in Figure 3 displays the critical values 𝑡
OB-I,1−𝛼 (𝛽, 𝑏) := min𝑥 𝑃 (𝑇OB-I

(𝛽, 𝑏) ≤ 𝑥) ≥
1 − 𝛼 associated with the 𝑇

OB-I
distribution as a function of 1 − 𝛼 and for different values of

the parameters 𝛽, 𝑏. R and MATLAB code for calculating the critical values can be obtained

through https://web.ics.purdue.edu/∼pasupath.

5.2 Proofs of Theorem 5.1 and Theorem 5.2
Proof of Theorem 5.1. Since Assumption 5 holds, we will establish the first assertion in (36) by

comparing individual terms that comprise �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) against corresponding terms constructed

from the Wiener process. Specifically, let’s define

�̃� 𝑗,𝑚𝑛
:=𝑚−1

𝑛

(
𝑊 (( 𝑗 − 1)𝑛 −𝑚𝑛

𝑏𝑛 − 1

+𝑚𝑛) −𝑊 (( 𝑗 − 1)𝑛 −𝑚𝑛

𝑏𝑛 − 1

)
)
, 𝑗 = 1, 2, . . . , 𝑏𝑛 (41)

and observe that

(1 − 𝛽)�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) =

𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1

[(
ˆ\ 𝑗,𝑚𝑛

− ˆ\𝑛

)
2

− 𝜎2

(
�̃� 𝑗,𝑚𝑛

− 𝑛−1𝑊 (𝑛)
)

2

]
︸                                                            ︷︷                                                            ︸

𝐸𝑛 (𝑚𝑛,𝑏𝑛)

(42)

+ 𝜎2
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

(
√
𝑚𝑛�̃� 𝑗,𝑚𝑛

−
√
𝑚𝑛

𝑛
𝑊 (𝑛))

)
2

︸                                            ︷︷                                            ︸
𝐼𝑛

=: 𝐸𝑛 (𝑚𝑛, 𝑏𝑛) + 𝐼𝑛 . (43)

Noticing that

ˆ\ 𝑗,𝑚𝑛
− ˆ\𝑛 =

(
ˆ\ 𝑗,𝑚𝑛

− 𝜎�̃� 𝑗,𝑚𝑛

)
︸               ︷︷               ︸

𝑈 𝑗,𝑚𝑛

+𝜎
(
�̃� 𝑗,𝑚𝑛

− 𝑛−1𝑊 (𝑛)
)

︸                   ︷︷                   ︸
𝐻 𝑗,𝑚𝑛

+
(
𝑛−1𝜎𝑊 (𝑛) − ˆ\𝑛

)
︸                ︷︷                ︸

𝐶𝑛

, (44)

we can then write

𝐸𝑛 (𝑚𝑛, 𝑏𝑛) =𝑚𝑛

(
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑈 2

𝑗,𝑚𝑛
+ 2

𝜎

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑈 𝑗,𝑚𝑛
𝐻 𝑗,𝑚𝑛

+ 2

𝐶𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑈 𝑗,𝑚𝑛
+ 2

𝜎𝐶𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝐻 𝑗,𝑚𝑛
+𝐶2

𝑛

)
.

(45)

Now, we see that except for a set of measure zero in the probability space implied by Assumption 5,

there exists Γ(𝜔) such that, uniformly in 𝑗 ,

|𝑈 𝑗,𝑚𝑛
| ≤ Γ(𝜔)𝑚−1/2−𝛿

𝑛

(
log

2𝑚𝑛

)
1/2

; |𝐶𝑛 | ≤ Γ(𝜔)𝑛−1/2−𝛿 (
log

2 𝑛
)

1/2

, (46)

, Vol. 1, No. 1, Article . Publication date: May 2018.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Su et al.

                                               OB-I CRITICAL VALUES 

 

                                                        b 

                 1-α          2      3      5     11     16     26     51    101    Inf 

 

                0.550      0.223  0.173  0.149  0.135  0.131  0.129  0.127  0.126  0.126 

                0.600      0.457  0.352  0.301  0.272  0.265  0.260  0.256  0.254  0.254 

                0.650      0.717  0.542  0.461  0.414  0.404  0.396  0.389  0.386  0.386 

β= 0.010        0.700      1.022  0.752  0.633  0.565  0.551  0.539  0.530  0.526  0.526 

                0.750      1.407  0.995  0.824  0.730  0.710  0.694  0.683  0.677  0.676 

                0.800      1.937  1.293  1.047  0.917  0.890  0.869  0.853  0.845  0.844 

                0.850      2.762  1.689  1.323  1.141  1.103  1.074  1.052  1.042  1.040 

                0.900      4.331  2.298  1.706  1.432  1.378  1.336  1.305  1.290  1.287 

                0.950      8.884  3.558  2.372  1.891  1.801  1.733  1.684  1.660  1.655 

 

                0.550      0.218  0.170  0.146  0.132  0.129  0.127  0.127  0.127  0.127 

                0.600      0.448  0.345  0.295  0.266  0.260  0.257  0.256  0.256  0.256 

                0.650      0.702  0.531  0.451  0.405  0.395  0.391  0.390  0.389  0.389 

β= 0.050        0.700      1.001  0.737  0.620  0.554  0.539  0.534  0.531  0.530  0.530 

                0.750      1.378  0.975  0.807  0.715  0.696  0.688  0.684  0.683  0.683 

                0.800      1.897  1.266  1.025  0.899  0.872  0.860  0.856  0.855  0.854 

                0.850      2.705  1.655  1.296  1.117  1.081  1.064  1.058  1.056  1.055 

                0.900      4.242  2.251  1.671  1.403  1.350  1.324  1.315  1.312  1.312 

                0.950      8.703  3.486  2.323  1.853  1.765  1.720  1.704  1.700  1.699 

 

                0.550      0.212  0.165  0.142  0.129  0.129  0.128  0.128  0.128  0.128 

                0.600      0.436  0.335  0.287  0.261  0.260  0.259  0.258  0.258  0.258 

                0.650      0.684  0.517  0.439  0.398  0.397  0.394  0.394  0.393  0.393 

β= 0.100        0.700      0.975  0.717  0.603  0.544  0.541  0.538  0.537  0.537  0.537 

                0.750      1.342  0.949  0.786  0.703  0.699  0.695  0.693  0.693  0.693 

                0.800      1.847  1.232  0.998  0.883  0.877  0.871  0.869  0.868  0.868 

                0.850      2.633  1.611  1.262  1.098  1.089  1.080  1.077  1.077  1.077 

                0.900      4.129  2.191  1.626  1.379  1.364  1.351  1.346  1.345  1.345 

                0.950      8.471  3.393  2.261  1.822  1.792  1.770  1.762  1.760  1.760 

 

                0.550      0.200  0.156  0.134  0.132  0.131  0.131  0.131  0.130  0.130 

                0.600      0.411  0.316  0.271  0.266  0.264  0.264  0.264  0.264  0.264 

                0.650      0.645  0.487  0.414  0.406  0.404  0.403  0.402  0.402  0.402 

β= 0.200        0.700      0.919  0.676  0.569  0.555  0.552  0.551  0.550  0.550  0.550 

                0.750      1.265  0.894  0.741  0.720  0.716  0.714  0.713  0.713  0.713 

                0.800      1.741  1.162  0.941  0.909  0.902  0.899  0.899  0.898  0.899 

                0.850      2.483  1.519  1.190  1.137  1.128  1.124  1.123  1.122  1.123 

                0.900      3.893  2.066  1.533  1.440  1.427  1.420  1.418  1.418  1.419 

                0.950      7.986  3.199  2.132  1.934  1.909  1.897  1.893  1.893  1.893 

 

                0.550      0.187  0.146  0.137  0.134  0.133  0.133  0.133  0.133  0.133 

                0.600      0.384  0.296  0.277  0.271  0.270  0.269  0.269  0.269  0.269 

                0.650      0.603  0.456  0.425  0.414  0.412  0.411  0.411  0.411  0.411 

β= 0.300        0.700      0.860  0.632  0.585  0.568  0.566  0.564  0.564  0.563  0.564 

                0.750      1.183  0.837  0.764  0.739  0.736  0.734  0.733  0.733  0.733 

                0.800      1.629  1.087  0.973  0.937  0.933  0.930  0.929  0.928  0.929 

                0.850      2.322  1.420  1.236  1.181  1.174  1.170  1.168  1.168  1.168 

                0.900      3.642  1.932  1.603  1.511  1.500  1.494  1.491  1.491  1.491 

                0.950      7.470  2.992  2.252  2.063  2.041  2.029  2.024  2.023  2.023 

 

                0.550      0.212  0.150  0.141  0.138  0.138  0.138  0.138  0.138  0.138 

                0.600      0.436  0.306  0.286  0.280  0.280  0.280  0.280  0.280  0.280 

                0.650      0.684  0.471  0.439  0.431  0.430  0.430  0.430  0.430  0.431 

β= 0.900        0.700      0.975  0.654  0.606  0.594  0.594  0.594  0.594  0.594  0.595 

                0.750      1.342  0.866  0.797  0.780  0.779  0.779  0.780  0.780  0.781 

                0.800      1.847  1.125  1.024  1.000  0.998  0.999  1.000  1.001  1.001 

                0.850      2.633  1.472  1.315  1.278  1.277  1.277  1.279  1.280  1.281 

                0.900      4.129  2.004  1.733  1.671  1.668  1.669  1.672  1.674  1.675 

                0.950      8.471  3.106  2.496  2.359  2.351  2.352  2.356  2.359  2.362 

 

                0.550      0.218  0.150  0.141  0.139  0.139  0.139  0.139  0.139  0.139 

                0.600      0.448  0.306  0.286  0.281  0.281  0.281  0.281  0.281  0.281 

                0.650      0.702  0.471  0.440  0.432  0.432  0.432  0.432  0.432  0.432 

β= 0.950        0.700      1.001  0.654  0.608  0.597  0.596  0.596  0.597  0.597  0.597 

                0.750      1.378  0.866  0.799  0.783  0.782  0.783  0.783  0.784  0.784 

                0.800      1.897  1.126  1.028  1.005  1.004  1.005  1.006  1.007  1.007 

                0.850      2.705  1.473  1.321  1.287  1.286  1.286  1.288  1.290  1.291 

                0.900      4.242  2.007  1.744  1.685  1.682  1.684  1.686  1.689  1.690 

                0.950      8.703  3.112  2.515  2.384  2.377  2.378  2.382  2.386  2.389 

 

 

Fig. 3. 𝑇OB-I critical values. The table displays critical values 𝑡OB-I,1−𝛼 (𝛽, 𝑏) := inf{𝑟 : 𝑃 (𝑇OB-I (𝛽, 𝑏) ≤ 𝑟 ) = 1−𝛼}
associated with the 𝑇OB-I distribution as a function of 1 − 𝛼 , the asymptotic batch size 𝛽 , and the asymptotic
number of batches 𝑏.

Furthermore, due to Theorem A.4, for any given 𝜖 > 0, except for a set of measure zero in the

probability space implied by Assumption 5, there exists 𝑛0 (𝜔, 𝜖) such that for all 𝑛 ≥ 𝑛0 (𝜔, 𝜖), and
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uniformly in 𝑗 ,

|𝐻 𝑗,𝑚𝑛
| ≤ (1 + 𝜖)

(
𝑚

−1/2

𝑛

(
2(log

2 𝑛 − log

𝑚𝑛

𝑛
)
)

1/2

+ 𝑛−1/2
(
2 log

2 𝑛
)

1/2

)
≤ (1 + 𝜖)𝑚−1/2

𝑛

((
2(log

2 𝑛 − log

𝑚𝑛

𝑛
)
)

1/2

+
(
2 log

2 𝑛
)

1/2

)
(47)

after ignoring non-integralities.

Plugging (46) and (47) in (45), we get

𝐸𝑛 (𝑚𝑛, 𝑏𝑛) ≤ Γ2 (𝜔)𝑚−2𝛿
𝑛 log

2𝑚𝑛

+ 2𝜎 (1 + 𝜖)Γ(𝜔)𝑚−𝛿
𝑛

( (
log

2𝑚𝑛

)
1/2 +

(
log

2 𝑛
)

1/2

) (
(2(log

2 𝑛 − log

𝑚𝑛

𝑛
))1/2 + (2 log

2 𝑛)1/2

)
+ 2𝜎 (𝑚𝑛

𝑛
) 1

2 Γ2 (𝜔)𝑚−2𝛿
𝑛

(
log

2𝑚𝑛 log
2 𝑛

)
1/2 + Γ2 (𝜔) (𝑚𝑛

𝑛
)𝑚−2𝛿

𝑛 log
2 𝑛. (48)

Notice that the second term appearing on the right-hand side of (48) is dominant and goes to zero

almost surely.

Now lets calculate the weak limit of 𝐼𝑛 := 𝜎2 1

𝑏𝑛

∑𝑏𝑛
𝑗=1

(√
𝑚𝑛�̃� 𝑗,𝑚𝑛

−
√
𝑚𝑛

𝑛
𝑊 (𝑛)

)
2

appearing in (42).

To facilitate calculation, define the lattice {0, 𝛿𝑛, 2𝛿𝑛, . . . , ⌊ 1

𝛿𝑛
⌋𝛿𝑛} having resolution 𝛿𝑛 :=

1−(𝑚𝑛/𝑛)
𝑏𝑛−1

,

and a corresponding projection operation ⌊𝑢⌋𝛿𝑛 := max{𝑘𝛿𝑛 : 𝑢 ≥ 𝑘𝛿𝑛, 𝑘 ∈ Z}, 𝑢 ∈ [0, 1 − 𝛿𝑛] .
Now, recalling that 𝑏𝑛 = 1 + 𝑑−1

𝑛 (𝑛 −𝑚𝑛), we can rewrite

𝐼𝑛 = 𝜎2
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

(
√
𝑚𝑛�̃� 𝑗,𝑚𝑛

−
√
𝑚𝑛

𝑛
𝑊 (𝑛)

)
2

= 𝜎2
1

𝑏𝑛

∫
1−𝑚𝑛

𝑛
+𝛿𝑛

0

(
1

√
𝑚𝑛

(
𝑊 (𝑛⌊𝑢⌋𝛿𝑛 +𝑚𝑛) −𝑊 (𝑛⌊𝑢⌋𝛿𝑛 )

)
−
√
𝑚𝑛

𝑛
𝑊 (𝑛)

)
2

1

𝛿𝑛
𝑑𝑢

= 𝜎2
𝑏𝑛 − 1

𝑏𝑛

𝑛

𝑛 −𝑚𝑛

∫
1−𝑚𝑛

𝑛
+𝛿𝑛

0

(
1

√
𝑚𝑛

(
𝑊 (𝑛⌊𝑢⌋𝛿𝑛 +𝑚𝑛) −𝑊 (𝑛⌊𝑢⌋𝛿𝑛 )

)
−
√
𝑚𝑛

𝑛
𝑊 (𝑛)

)
2

𝑑𝑢

𝑑
= 𝜎2

𝑏𝑛 − 1

𝑏𝑛

𝑛

𝑛 −𝑚𝑛

𝑛

𝑚𝑛

∫
1−𝑚𝑛

𝑛
+𝛿𝑛

0

(
𝑊 (⌊𝑢⌋𝛿𝑛 + 𝑚𝑛

𝑛
) −𝑊 (⌊𝑢⌋𝛿𝑛 ) −

𝑚𝑛

𝑛
𝑊 (1)

)
2

𝑑𝑢

→ 𝜎2
𝛽−1

1 − 𝛽

∫
1−𝛽

0

(𝑊 (𝑢 + 𝛽) −𝑊 (𝑢) − 𝛽𝑊 (1))2 𝑑𝑢 (49)

if 𝛿𝑛 → 0 as 𝑛 → ∞ which happens when 𝑏𝑛 → 𝑏 = ∞. This proves the 𝑏 = ∞ case appearing

in (36).

To prove the 𝑏 ∈ {2, 3, . . .} case, we observe that

𝐼𝑛 := 𝜎2
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

(
√
𝑚𝑛�̃� 𝑗,𝑚𝑛

−
√
𝑚𝑛

𝑛
𝑊 (𝑛)

)
2

𝑑
= 𝜎2

𝑛

𝑚𝑛

1

𝑏𝑛

𝑏𝑛∑
𝑗=1

(
𝑊 (( 𝑗 − 1) 1 − (𝑚𝑛/𝑛)

𝑏𝑛 − 1

+ 𝑚𝑛

𝑛
) −𝑊 (( 𝑗 − 1) 1 − (𝑚𝑛/𝑛)

𝑏𝑛 − 1

) − 𝑚𝑛

𝑛
𝑊 (1)

)
2

→ 𝜎2
1

𝛽

1

𝑏

𝑏∑
𝑗=1

(
𝑊 (( 𝑗 − 1) 1 − 𝛽

𝑏 − 1

+ 𝛽) −𝑊 (( 𝑗 − 1) 1 − 𝛽

𝑏 − 1

) − 𝛽𝑊 (1)
)

2

, (50)

as 𝑛 → ∞, proving the 𝑏 < ∞ case appearing in (36).
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Let’s now prove the second statement in (36) holds. From Assumption 5 we have�������√𝑛
(

ˆ\𝑛 − \ (𝑃)
)

𝜎
− 1

√
𝑛
𝑊 (𝑛)

������� ≤ Γ
1

𝑛𝛿

√
log𝑛 a.s., (51)

where Γ is a well-defined random variable with finite mean, and 𝛿 > 0. Hence

√
𝑛( ˆ\𝑛 − \ (𝑃)) = 1

√
𝑛
𝑊 (𝑛) + 𝐸𝑛 ; 𝐸𝑛 = 𝑜 ( 1

𝑛𝛿/2

) a.s. (52)

We can then write

𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ˆ\𝑛 − \ (𝑃))
�̂�
OB-I

(𝑚𝑛, 𝑏𝑛)
=

1√
𝑛
𝑊 (𝑛) + 𝐸𝑛√

1

1−𝛽 (𝐼𝑛 + 𝐸𝑛 (𝑚𝑛, 𝑏𝑛))
, (53)

where 𝐼𝑛 and 𝐸𝑛 (𝑚𝑛, 𝑏𝑛) were introduced in (42), and both 𝐸𝑛 (𝑚𝑛, 𝑏𝑛) and 𝐸𝑛 go to zero almost

surely. Now apply Theorem A.5 on (53) using the derived weak limits in (49) and (50) and observing

that
1√
𝑛
𝑊 (𝑛) 𝑑

=𝑊 (1), to conclude that the second assertion in (36) holds. □

Proof of Theorem 5.2. Let’s next prove the asymptotic expansion appearing in (38). Simple

algebra yields, for all 𝑗 = 1, 2, . . . , 𝑏𝑛,

E[(�̃� 𝑗,𝑚𝑛
− 𝑛−1𝑊 (𝑛))2] = 1

𝑚𝑛

− 1

𝑛
, (54)

implying that

E[𝐼𝑛] = (1 − 𝑚𝑛

𝑛
) 𝜎2. (55)

Plugging (55) and the inequality (48) in (42) (after noticing that Assumption 5 guarantees that

E[Γ2] < ∞), we conclude that as 𝑛 → ∞,

E[�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)] = 𝜎2 +𝑂 (𝜖1,𝑛), (56)

where 𝜖1,𝑛 is defined in (37) and we recall that 𝛿 is the constant appearing in Assumption 5. This

proves the assertion in (37).

Using a similar but tedious calculation, we find that

Var(𝐼𝑛) = 𝛽4

(
4𝛽−3 − 11𝛽−2 + 4𝛽−1 + 6

3(1 − 𝛽)4

)
𝜎4. (57)

Again plugging (57) and the inequality (48) in (42) (after noticing that Assumption 5 guarantees

that E[Γ4] < ∞), we conclude that as 𝑛 → ∞,

Var(�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)) = 𝛽4

(
4𝛽−3 − 11𝛽−2 + 4𝛽−1 + 6

3(1 − 𝛽)4

)
𝜎4 +𝑂 (𝜖2

1,𝑛), (58)

thus proving the assertion in (38). □

5.3 Small Batch Regime for OB-I
Theorem 5.1 characterizes the effect of using large batch sizes, that is, lim𝑛→∞𝑚𝑛/𝑛 = 𝛽 > 0 on

the asymptotic behavior of 𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) and �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛). Theorem 5.3 does the same but for the

small batch (𝛽 = 0) context. In particular, Theorem 5.3 asserts that when small batches are used,

�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) consistently estimates 𝜎2

, and that 𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) converges to the standard normal

distribution.
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Theorem 5.3 (OB-I Small BatchRegime). Suppose Assumptions 1–4 hold, and that 𝛽 = lim𝑛→∞𝑚𝑛/𝑛 =

0. Assume that the asymptotic number of batches 𝑏 := lim𝑛 𝑏𝑛 = ∞. Then, as 𝑛 → ∞,

�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛)

p
→𝜎2

; and 𝑇
OB-I

(𝑚𝑛, 𝑏𝑛)
d→𝑁 (0, 1). (59)

Proof. Since 𝛽 = 0, ^1 (𝛽) = 1 − 𝛽 = 0 and

�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) :=

𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑖=1

( ˆ\𝑖,𝑚𝑛
− ˆ\𝑛)2. (60)

Also, define

�̃�2

OB-I
(𝑚𝑛, 𝑏𝑛) :=

1

𝑏𝑛

𝑏𝑛∑
𝑖=1

𝑚𝑛 ( ˆ\𝑖,𝑚𝑛
− \ (𝑃))2︸                 ︷︷                 ︸

𝑅𝑖,𝑚𝑛

; �̃�2

OB-I
(𝑚𝑛, 𝑑𝑛 ; 𝑟 ) :=

1

𝑏𝑛

𝑏𝑛∑
𝑖=1

𝑅𝑖,𝑚𝑛
I[0,𝑟 ] (𝑅𝑖,𝑚𝑛

)︸               ︷︷               ︸
𝑅𝑖,𝑚𝑛 (𝑟 )

, (61)

We will first demonstrate that

�̃�2

OB-I
(𝑚𝑛, 𝑏𝑛)

p

→𝜎2. (62)

Notice that

E
[���̃�2

OB-I
(𝑚𝑛, 𝑏𝑛) − 𝜎2

��] ≤

I︷                                         ︸︸                                         ︷
E

[���̃�2

OB-I
(𝑚𝑛, 𝑏𝑛) − �̃�2

OB-I
(𝑚𝑛, 𝑑𝑛 ; 𝑟 )

��]
+ E

[���̃�2

OB-I
(𝑚𝑛, 𝑑𝑛 ; 𝑟 ) − 𝜎2 (𝑟 )

��]︸                               ︷︷                               ︸
II

+E
[��𝜎2 (𝑟 ) − 𝜎2

��]︸              ︷︷              ︸
III

,

(63)

where

𝜎2 (𝑟 ) := E
[
𝜎2𝑍 2I[0,𝑟 ] (𝜎2𝑍 2)

]
; 𝑍

𝑑
= 𝑁 (0, 1).

Let’s consider the first and last terms on the right-hand side of (63). Since �̃�2

OB-I
(𝑚𝑛, 𝑏𝑛)−�̃�2

OB-I
(𝑚𝑛, 𝑑𝑛 ; 𝑟 ) =

1

𝑏𝑛

∑
𝑖=1

𝑅𝑖,𝑚𝑛
I(𝑟,∞) (𝑅𝑖,𝑚𝑛

) ≥ 0, and 𝑅𝑖,𝑚𝑛
, 𝑖 = 1, 2, . . . , 𝑏𝑛 are identically distributed, we have

E
[���̃�2

OB-I (𝑚𝑛, 𝑏𝑛) − �̃�2

OB-I (𝑚𝑛, 𝑑𝑛 ; 𝑟 )
��] = E [

𝑅𝑖,𝑚𝑛
I(𝑟,∞) (𝑅𝑖,𝑚𝑛

)
]
. (64)

Furthermore, due to Assumption 4, we know that 𝑅𝑖,𝑚𝑛
is uniformly integrable (for each 𝑖), and

hence for any given 𝜖 > 0, there exists 𝑟0 = 𝑟0 (𝜖) (not dependent on 𝑖) such that for 𝑟 ≥ 𝑟0,

E
[
𝑅𝑖,𝑚𝑛

I(𝑟,∞) (𝑅𝑖,𝑚𝑛
)
]
≤ 𝜖 ; E

[
𝜎2𝑍 2I(𝑟,∞) (𝜎2𝑍 2)

]
≤ 𝜖. (65)

From (65), we see that the terms I and III in (63) satisfy, for 𝑟 ≥ 𝑟0,

E
[���̃�2

OB-I (𝑚𝑛, 𝑏𝑛) − �̃�2

OB-I (𝑚𝑛, 𝑑𝑛 ; 𝑟 )
��] ≤ 𝜖 ; E

[��𝜎2 (𝑟 ) − 𝜎2

��] ≤ 𝜖. (66)

Let’s now analyze the term II in (63). Write

E
[���̃�2

OB-I
(𝑚𝑛, 𝑑𝑛 ; 𝑟 ) − 𝜎2 (𝑟 )

��] ≤
√
Var(�̃�2

OB-I (𝑚𝑛, 𝑑𝑛 ; 𝑟 ))︸                      ︷︷                      ︸
𝐼3

+
��E [

�̃�2

OB-I (𝑚𝑛, 𝑑𝑛 ; 𝑟 )
]
− 𝜎2 (𝑟 )

��︸                               ︷︷                               ︸
𝐼4

. (67)

From Assumption 4 and since 𝑅𝑖,𝑚𝑛
, 𝑖 = 1, 2, . . . , 𝑏𝑛 have identical distributions, we know that

E
[
�̃�2

OB-I (𝑚𝑛, 𝑏𝑛)
]
→ 𝜎2

as 𝑛 → ∞. This fact and the uniform integrability of �̃�2

OB-I (𝑚𝑛, 𝑏𝑛) mean

that for any 𝜖 > 0, there exist ℓ = ℓ (𝜖) and 𝑟1 = 𝑟1 (𝜖) such that for 𝑛 ≥ ℓ and 𝑟 ≥ 𝑟1 the term 𝐼4
in (67) satisfies ��E [

�̃�2

OB-I (𝑚𝑛, 𝑑𝑛 ; 𝑟 )
]
− 𝜎2 (𝑟 )

�� ≤ 𝜖. (68)
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To quantify term 𝐼3 in (67), write

Var(�̃�2

OB-I (𝑚𝑛, 𝑑𝑛 ; 𝑟 )) = 1

𝑏𝑛
Var(𝑅1,𝑚𝑛

(𝑟 )) + 2

𝑏2

𝑛

𝑏𝑛∑
𝑗=1

(𝑏𝑛 − 𝑗)Cov(𝑅1,𝑚𝑛
(𝑟 ), 𝑅1+𝑗,𝑚𝑛

(𝑟 ))

≤ 1

𝑏𝑛
Var(𝑅1,𝑚𝑛

(𝑟 )) + 16𝑟 2

(
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

(1 − 𝑗

𝑏𝑛
)𝛼 𝑗

)
≤ 𝑟 2

4𝑏𝑛
+ 16𝑟 2

(
1

𝑏𝑛

𝑏𝑛−1∑
𝑗=1

𝛼 𝑗

)
→ 0, (69)

where𝛼 𝑗 := 𝛼 (F1,𝑚𝑛
, F1+𝑗,𝑚𝑛

) is the strongmixing constant associated the sigma algebras𝜎 (𝑋1, 𝑋2, . . . , 𝑋𝑚𝑛
),

𝜎 (𝑋 𝑗𝑑𝑛+1, 𝑋 𝑗𝑑𝑛+2, . . . , 𝑋 𝑗𝑑𝑛+𝑚𝑛
) formed by random variables in batch 1 and batch 1 + 𝑗 , the first in-

equality in (69) follows upon application of Corollary 2.5 in [37, pp. 347] with 𝑢 = 1, 𝑣 = ∞,𝑤 = ∞,

the second inequality in (69) follows since 𝑅1,𝑚𝑛
(𝑟 ) ∈ [0, 𝑟 ], and the last inequality in (69) follows

since Assumption 2 implies 𝛼 𝑗 → 0 implying in turn that the Césaro sum 𝑏−1

𝑛

∑𝑏𝑛
𝑗=1

𝛼 𝑗 → 0.

Now by applying (66), (67), (68) and (69) in (63), and since 𝜖 is arbitrary, we see that (62) holds,

that is, �̃�2

OB-I (𝑚𝑛, 𝑏𝑛)
p

→𝜎2. To complete the first part of the theorem’s assertion in (86), we write

�̂�2

OB-I (𝑚𝑛, 𝑏𝑛) =
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑚𝑛 ( ˆ\𝑖,𝑚𝑛
− \ (𝑃))2 +𝑚𝑛 ( ˆ\𝑛 − \ (𝑃))2 + 2

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑚𝑛 ( ˆ\𝑖,𝑚𝑛
− \ (𝑃)) ( ˆ\𝑛 − \ (𝑃))

= �̃�2

OB-I (𝑚𝑛, 𝑏𝑛) +
(𝑚𝑛

𝑛

)
𝑛( ˆ\𝑛 − \ (𝑃))2

+ 2

(√
𝑚𝑛

𝑛

) √
𝑛( ˆ\𝑛 − \ (𝑃)) 1

𝑏𝑛

𝑏𝑛∑
𝑗=1

√
𝑚𝑛 ( ˆ\𝑖,𝑚𝑛

− \ (𝑃)) .

(70)

Through prior arguments, we proved that the first term on the right-hand side of (82) tends to

𝜎2
in probability; also, because

√
𝑛( ˆ\𝑛 − \ (𝑃)) d→𝜎𝑁 (0, 1), and 𝛽 := lim𝑛→∞𝑚𝑛/𝑛 = 0, Slutsky’s

theorem (A.2) ensures that the second term on the right-hand side of (82) is 𝑜𝑃 (1). To see that

the third term on the right-hand side of (82) also tends to zero in probability, notice again that

√
𝑛( ˆ\𝑛 − \ (𝑃)) d→𝜎𝑁 (0, 1) and that√

𝑚𝑛

𝑛
E

[
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

√
𝑚𝑛 ( ˆ\𝑖,𝑚𝑛

− \ (𝑃)
]
≤

√
𝑚𝑛

𝑛

1

𝑏𝑛

𝑏𝑛∑
𝑗=1

E
[√

𝑚𝑛

��� ˆ\𝑖,𝑚𝑛
− \ (𝑃)

���] → 0, (71)

and make use of Slutsky’s theorem (A.2). This proves the first assertion of the theorem in (86).

To prove the second assertion in (86), we again apply Slutsky’s theorem (A.2) to

𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ˆ\𝑛 − \ (𝑃))
�̂�
OB-I

(𝑚𝑛, 𝑏𝑛)
(72)

after noticing that the numerator in the expression for 𝑇
OB-II

(𝑚𝑛, 𝑏𝑛) converges weakly to 𝜎𝑁 (0, 1)
due to Assumption 3 and the denominator converges in probability to 𝜎 from the first assertion.

□

We now make a few observations regarding Theorem 5.3.
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(a) Unlike in the large batch setting (𝛽 > 0) of Theorem 5.1, the first assertion of Theorem 5.3

guarantees that �̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) is a consistent estimator of 𝜎2

.

(b) Unlike Theorem 5.1, Theorem 5.3 does not need Assumption 5 simply due to the fact that 𝜎2

is being estimated consistently, implying that the dependence between the numerator and

the denominator of 𝑇
OB-I

(𝑚𝑛, 𝑏𝑛) does not have to be explicitly modeled. This is what allows

using Slutsky’s theorem in Theorem 5.3.

(c) Theorem 5.3 assumes very little about the overlapping requirement of the batches apart from

requiring the number of batches to diverge.

(d) As is evident from (82), characterizing the next order term for the mean and variance of

�̂�2

OB-I
(𝑚𝑛, 𝑏𝑛) (akin to Theorem 5.2) will involve assuming the nature of higher order terms in

the uniform convergence assumption appearing as Assumption 4.

6 THE OB-II LIMIT
In this section, we characterize the weak limit of

𝑇
OB-II

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ¯\𝑛 − \ (𝑃))
�̂�
OB-II

(𝑚𝑛, 𝑏𝑛)
. (73)

As described in Section 3.4, recall that the OB-II limit 𝑇
OB-II

(𝑚𝑛, 𝑏𝑛) differs from the OB-I limit in

that it replaces the section estimator
ˆ\𝑛 with the batching estimator

¯\𝑛 as the centering variable. As

in the OB-I context, the ensuing sections treat the large batch and small batch regimes separately.

6.1 Large Batch (𝛽 > 0) Regime for OB-II
Theorem 6.1 that follows treats the large batch setting (𝛽 := lim𝑛→∞𝑚𝑛/𝑛 > 0) and asserts that

�̂�2

OB-II
(𝑚𝑛, 𝑏𝑛)/𝜎2

and 𝑇
OB-II

(𝑚𝑛, 𝑏𝑛) converge weakly to certain functionals of the Wiener process

that we denote 𝜒2

OB-II
(𝛽, 𝑏) and 𝑇

OB-II
(𝛽, 𝑏), respectively. The proof of Theorem 6.1 follows closely

along the lines of Theorem 5.1, and we include it in Appendix B.

Theorem 6.1 (OB-II Large Batch Regime). Suppose that Assumptions 1 – 5 hold, and that
𝛽 := lim𝑛→∞𝑚𝑛/𝑛 > 0. Assume also that 𝑏𝑛 → 𝑏 ∈ {2, 3, . . . ,∞} as 𝑛 → ∞. Define

𝜒2

OB-II
(𝛽, 𝑏) :=



1

^2 (𝛽,∞)
𝛽−1

1 − 𝛽

∫
1−𝛽

0

(
�̃�𝑢 (𝛽) −

1

1 − 𝛽

∫
1−𝛽

0

�̃�𝑠 (𝛽) 𝑑𝑠
)2

𝑑𝑢 𝑏 = ∞;

1

^2 (𝛽, 𝑏)
1

𝛽

1

𝑏

𝑏∑
𝑗=1

(
�̃�𝑐 𝑗 (𝛽) −

1

𝑏

𝑏∑
𝑖=1

�̃�𝑐𝑖 (𝛽)
)2

𝑏 ∈ N \ 1,

(74)

where �̃�𝑥 (𝛽) := 𝑊 (𝑥 + 𝛽) −𝑊 (𝑥), 𝑥 ∈ [0, 1 − 𝛽], {𝑊 (𝑡), 𝑡 ∈ [0, 1]} is the standard Brownian
motion [5], 𝑐𝑖 := (𝑖 − 1) 1−𝛽

𝑏−1
, 𝑖 = 1, 2, . . . , 𝑏, and ^2 (𝛽, 𝑏) is the “bias-correction" factor given by

^2 (𝛽, 𝑏) :=



1 𝛽 = 0;

1 − 2

(
𝛽

1 − 𝛽
∧ 1

)
+ 1

𝛽

(
𝛽

1 − 𝛽
∧ 1

)
2

− 2

3

1 − 𝛽

𝛽

(
𝛽

1 − 𝛽
∧ 1

)
3

𝛽 > 0, 𝑏 = ∞;

1 − 1

𝑏
− 2

𝑏

𝑏∑
ℎ=1

(
1 − ℎ

𝑏 − 1

1 − 𝛽

𝛽

)+
(1 − ℎ/𝑏) 𝛽 > 0, 𝑏 ∈ N \ 1.

(75)

Then, as 𝑛 → ∞,
�̂�2

OB-II
(𝑚𝑛, 𝑏𝑛)

d→𝜎2𝜒2

OB-II
(𝛽, 𝑏); (76)
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and

𝑇
OB-II

(𝑚𝑛, 𝑏𝑛)
d→



1√
𝜒2

OB-II
(𝛽, 𝑏)

1

𝛽

1

(1 − 𝛽)

∫
1−𝛽

0

(𝑊 (𝑠 + 𝛽) −𝑊 (𝑠)) 𝑑𝑠 𝑏 = ∞;

1√
𝜒2

OB-II
(𝛽, 𝑏)

1

𝛽

1

𝑏

𝑏∑
𝑖=1

𝑊 (𝑐𝑖 + 𝛽) −𝑊 (𝑐𝑖 ) 𝑏 ∈ N \ 1,

(77)

where 𝑐𝑖 := (𝑖 − 1) 1−𝛽
𝑏−1

, 𝑖 = 1, 2, . . . , 𝑏.

Proof. Proof See Appendix B.

□

We make a number of observations in light of Theorem 6.1.

(a) As in Theorem 5.1, we see that the variance parameter 𝜎2
is not estimated consistently in

Theorem 6.1. Instead the estimator �̂�2

OB-II
(𝑚𝑛, 𝑏𝑛) converges weakly to the product of 𝜎2

and

𝜒2

OB-II
(𝛽, 𝑏). Again, we slightly abuse notation and define the weak limit appearing in (77) as

the 𝑇
OB-II

(𝛽, 𝑏) random variable.

(b) Unlike the the OB-I interval estimator, the OB-II interval estimator uses
¯\𝑛 as the centering

variable and when estimating the variance constant. For this reason, and as we shall briefly

discuss later, this makes the OB-II estimator attractive from a computational standpoint.

(c) Recall that Theorem 5.1 required only Assumptions 1–4 to hold, whereas Theorem 6.1 requires

Assumption 5 as well. Theorem 5.1 did not need Assumption 5 because
ˆ\𝑛 is the centering

variable for the confidence intervals considered in Theorem 5.1 and we have assumed the

existence of a CLT on
ˆ\𝑛 through Assumption 3. No such (direct) assumption has been made

about the centering variable
¯\𝑛 forcing us to analyze the effect of dependence due to averaging

adjacent batches.

(d) As can be seen, the “bias correction” factor ^2 (𝛽, 𝑏) in (75) for the OB-II context is much

more complicated. The OB-II analogue of the OB-I asymptotic variance appearing in (38) of

Theorem 5.2 has been elusive.

(e) The table in Figure 4 displays the critical values 𝑡
OB-II,1−𝛼 (𝛽, 𝑏) := min𝑥 𝑃 (𝑇OB-II

(𝛽, 𝑏) ≤ 𝑥) ≥
1 − 𝛼 associated with the 𝑇

OB-II
distribution as a function of 1 − 𝛼 and for different values of

the parameters 𝛽, 𝑏. R and MATLAB code for calculating the critical values can be obtained

through https://web.ics.purdue.edu/∼pasupath.

6.2 Small Batch (𝛽 = 0) Regime for OB-II
We now treat the small batch regime (𝛽 := lim𝑛→∞𝑚𝑛/𝑛 = 0) for OB-II. Like Theorem 5.1,

Theorem 6.1 needs the strong invariance Assumption 5 to hold so that the dependence across

batches can be characterized.

Theorem 6.2 (OB-II Small BatchRegime). Suppose Assumptions 1–5 hold, and that 𝛽 = lim𝑛→∞𝑚𝑛/𝑛 =

0. Assume that the number of batches 𝑏𝑛 → ∞. Then, as 𝑛 → ∞,

�̂�2

OB-II
(𝑚𝑛, 𝑏𝑛)

p
→𝜎2

; and 𝑇
OB-II

(𝑚𝑛, 𝑏𝑛)
d→𝑁 (0, 1). (78)

Proof. Since 𝛽 = 0, ^2 (𝛽) = 1 and recall that

�̂�2

OB-II
(𝑚𝑛, 𝑏𝑛) :=

𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑖=1

( ˆ\𝑖,𝑚𝑛
− ¯\𝑛)2

;
¯\𝑛 :=

1

𝑏𝑛

𝑏𝑛∑
𝑖=1

ˆ\𝑖,𝑚𝑛
. (79)
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                                               OB-II CRITICAL VALUES 

 

                                                        b 

                 1-α          2      3      5     11     16     26     51    101    Inf 

 

                0.550      0.158  0.142  0.134  0.129  0.128  0.127  0.126  0.126  0.126 

                0.600      0.325  0.289  0.271  0.260  0.258  0.256  0.255  0.254  0.254 

                0.650      0.510  0.445  0.414  0.397  0.393  0.390  0.388  0.386  0.386 

β= 0.010        0.700      0.727  0.617  0.569  0.542  0.536  0.531  0.528  0.526  0.526 

                0.750      1.000  0.816  0.741  0.700  0.691  0.684  0.679  0.677  0.676 

                0.800      1.376  1.061  0.941  0.879  0.866  0.856  0.849  0.845  0.844 

                0.850      1.963  1.386  1.190  1.093  1.074  1.058  1.047  1.042  1.040 

                0.900      3.078  1.886  1.533  1.372  1.341  1.316  1.299  1.290  1.287 

                0.950      6.314  2.920  2.132  1.812  1.753  1.708  1.676  1.660  1.655 

 

                0.550      0.158  0.142  0.134  0.129  0.128  0.127  0.127  0.127  0.127 

                0.600      0.325  0.289  0.271  0.260  0.258  0.256  0.256  0.256  0.256 

                0.650      0.510  0.445  0.414  0.397  0.393  0.390  0.389  0.389  0.389 

β= 0.050        0.700      0.727  0.617  0.569  0.542  0.536  0.532  0.531  0.530  0.530 

                0.750      1.000  0.816  0.741  0.700  0.691  0.685  0.684  0.683  0.683 

                0.800      1.376  1.061  0.941  0.879  0.866  0.858  0.855  0.854  0.854 

                0.850      1.963  1.386  1.190  1.093  1.074  1.061  1.057  1.056  1.056 

                0.900      3.078  1.886  1.533  1.372  1.341  1.320  1.314  1.312  1.312 

                0.950      6.314  2.920  2.132  1.812  1.753  1.715  1.703  1.700  1.699 

 

                0.550      0.158  0.142  0.134  0.129  0.128  0.128  0.128  0.128  0.128 

                0.600      0.325  0.289  0.271  0.260  0.259  0.259  0.258  0.258  0.258 

                0.650      0.510  0.445  0.414  0.397  0.395  0.394  0.394  0.393  0.393 

β= 0.100        0.700      0.727  0.617  0.569  0.542  0.539  0.537  0.537  0.537  0.537 

                0.750      1.000  0.816  0.741  0.700  0.696  0.694  0.693  0.693  0.693 

                0.800      1.376  1.061  0.941  0.880  0.873  0.870  0.869  0.868  0.869 

                0.850      1.963  1.386  1.190  1.094  1.084  1.079  1.077  1.077  1.077 

                0.900      3.078  1.886  1.533  1.373  1.358  1.349  1.346  1.346  1.346 

                0.950      6.314  2.920  2.132  1.815  1.784  1.768  1.762  1.761  1.761 

 

                0.550      0.158  0.142  0.134  0.131  0.131  0.131  0.131  0.131  0.131 

                0.600      0.325  0.289  0.271  0.265  0.264  0.264  0.264  0.264  0.264 

                0.650      0.510  0.445  0.414  0.404  0.403  0.403  0.403  0.403  0.403 

β= 0.200        0.700      0.727  0.617  0.569  0.553  0.552  0.551  0.551  0.551  0.551 

                0.750      1.000  0.816  0.741  0.717  0.715  0.714  0.714  0.714  0.715 

                0.800      1.376  1.061  0.941  0.905  0.902  0.901  0.901  0.901  0.901 

                0.850      1.963  1.386  1.190  1.132  1.128  1.126  1.126  1.126  1.127 

                0.900      3.078  1.886  1.533  1.435  1.428  1.424  1.423  1.424  1.425 

                0.950      6.314  2.920  2.132  1.928  1.912  1.904  1.902  1.903  1.905 

 

                0.550      0.158  0.142  0.135  0.134  0.133  0.133  0.133  0.133  0.133 

                0.600      0.325  0.289  0.274  0.270  0.270  0.270  0.270  0.270  0.270 

                0.650      0.510  0.445  0.420  0.413  0.413  0.413  0.413  0.413  0.413 

β= 0.300        0.700      0.727  0.617  0.578  0.567  0.566  0.566  0.566  0.567  0.567 

                0.750      1.000  0.816  0.755  0.739  0.737  0.737  0.737  0.738  0.738 

                0.800      1.376  1.061  0.963  0.938  0.935  0.935  0.935  0.935  0.936 

                0.850      1.963  1.386  1.224  1.182  1.179  1.178  1.178  1.179  1.180 

                0.900      3.078  1.886  1.589  1.515  1.508  1.507  1.507  1.508  1.509 

                0.950      6.314  2.920  2.234  2.072  2.056  2.051  2.051  2.052  2.054 

 

                0.550      0.158  0.145  0.139  0.136  0.136  0.136  0.136  0.136  0.136 

                0.600      0.325  0.294  0.282  0.276  0.276  0.275  0.275  0.275  0.275 

                0.650      0.510  0.454  0.433  0.424  0.423  0.422  0.422  0.422  0.422 

β= 0.900        0.700      0.727  0.633  0.598  0.584  0.582  0.581  0.581  0.581  0.581 

                0.750      1.000  0.841  0.786  0.764  0.762  0.760  0.759  0.759  0.759 

                0.800      1.376  1.099  1.009  0.976  0.972  0.969  0.968  0.968  0.968 

                0.850      1.963  1.447  1.295  1.240  1.233  1.230  1.228  1.227  1.227 

                0.900      3.078  1.985  1.701  1.605  1.592  1.586  1.583  1.582  1.582 

                0.950      6.314  3.104  2.430  2.221  2.195  2.181  2.175  2.174  2.173 

 

                0.550      0.158  0.145  0.139  0.136  0.136  0.136  0.136  0.136  0.136 

                0.600      0.325  0.294  0.282  0.276  0.276  0.275  0.275  0.275  0.275 

                0.650      0.510  0.454  0.433  0.424  0.423  0.422  0.422  0.422  0.422 

β= 0.950        0.700      0.727  0.633  0.598  0.584  0.582  0.581  0.581  0.581  0.581 

                0.750      1.000  0.841  0.786  0.764  0.762  0.760  0.759  0.759  0.759 

                0.800      1.376  1.099  1.009  0.976  0.972  0.969  0.968  0.968  0.968 

                0.850      1.963  1.447  1.295  1.240  1.233  1.230  1.228  1.227  1.227 

                0.900      3.078  1.985  1.701  1.605  1.593  1.586  1.583  1.582  1.582 

                0.950      6.314  3.104  2.429  2.221  2.195  2.181  2.175  2.174  2.173 

 

 

Fig. 4. 𝑇OB-II Critical Values. The table displays critical values 𝑡OB-II,1−𝛼 := inf{𝑟 : 𝑃 (𝑇OB-II (𝛽, 𝑏) ≤ 𝑟 ) = 1 − 𝛼}
associated with the OB-II distribution as a function of 1 − 𝛼 , the asymptotic batch size 𝛽 and the asymptotic
number of batches 𝑏.

Also, define

�̃�2

OB-II
(𝑚𝑛, 𝑏𝑛) :=

1

𝑏𝑛

𝑏𝑛∑
𝑖=1

𝑚𝑛 ( ˆ\𝑖,𝑚𝑛
− \ (𝑃))2︸                 ︷︷                 ︸

𝑅𝑖,𝑚𝑛

; �̃�2

OB-II
(𝑚𝑛, 𝑑𝑛 ; 𝑟 ) :=

1

𝑏𝑛

𝑏𝑛∑
𝑖=1

𝑅𝑖,𝑚𝑛
I[0,𝑟 ] (𝑅𝑖,𝑚𝑛

)︸               ︷︷               ︸
𝑅𝑖,𝑚𝑛 (𝑟 )

, (80)
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From arguments identical to that in the proof of Theorem 5.3 (specifically, (63)–(69)), we see that

�̃�2

OB-II
(𝑚𝑛, 𝑏𝑛) consistently estimates 𝜎2

, that is,

�̃�2

OB-II
(𝑚𝑛, 𝑏𝑛)

p

→𝜎2. (81)

To complete the first part of the theorem’s assertion in (78), we write

�̂�2

OB-II
(𝑚𝑛, 𝑏𝑛) =

1

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑚𝑛 ( ˆ\𝑖,𝑚𝑛
− \ (𝑃))2 +𝑚𝑛 ( ¯\𝑛 − \ (𝑃))2 + 2

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑚𝑛 ( ˆ\𝑖,𝑚𝑛
− \ (𝑃)) ( ¯\𝑛 − \ (𝑃))

= �̃�2

OB-II
(𝑚𝑛, 𝑏𝑛) +

(
𝑚𝑛

𝑚𝑛𝑏𝑛

)
𝑚𝑛𝑏𝑛 ( ¯\𝑛 − \ (𝑃))2

+ 2

(√
𝑚𝑛

𝑚𝑛𝑏𝑛

) √
𝑚𝑛𝑏𝑛 ( ¯\𝑛 − \ (𝑃)) 1

𝑏𝑛

𝑏𝑛∑
𝑗=1

√
𝑚𝑛 ( ˆ\𝑖,𝑚𝑛

− \ (𝑃)) .

(82)

From (81), we see that the first term on the right-hand side of (82) tends to 𝜎2
in probability; also,

because

√
𝑛( ˆ\𝑛 − \ (𝑃)) d→𝜎𝑁 (0, 1), and 𝛽 := lim𝑛→∞𝑚𝑛/𝑛 = 0, Slutsky’s theorem (A.2) ensures

that the second term on the right-hand side of (82) is 𝑜𝑃 (1). To see that the third term on the

right-hand side of (82) also tends to zero in probability, notice again that

√
𝑛( ˆ\𝑛 −\ (𝑃))

d→𝜎𝑁 (0, 1)
and that √

𝑚𝑛

𝑛
E

[
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

√
𝑚𝑛 ( ˆ\𝑖,𝑚𝑛

− \ (𝑃)
]
≤

√
𝑚𝑛

𝑛

1

𝑏𝑛

𝑏𝑛∑
𝑗=1

E
[√

𝑚𝑛

��� ˆ\𝑖,𝑚𝑛
− \ (𝑃)

���] → 0, (83)

and make use of Slutsky’s theorem (A.2). This proves the first assertion of the theorem in (86).

To prove the second assertion in (86), we again apply Slutsky’s theorem (A.2) to

𝑇
OB-II

(𝑚𝑛, 𝑏𝑛) :=

√
𝑛( ˆ\𝑛 − \ (𝑃))
�̂�
OB-II

(𝑚𝑛, 𝑏𝑛)
(84)

after noticing that the numerator in the expression for 𝑇
OB-II

(𝑚𝑛, 𝑏𝑛) converges weakly to 𝜎𝑁 (0, 1)
due to Assumption 3 and the denominator converges in probability to 𝜎 from the first assertion. □

7 THE OB-III LIMIT
Theorem 7.1 that follows treats the large batch setting (𝛽 := lim𝑛→∞𝑚𝑛/𝑛 > 0) and asserts that

�̂�2

OB-III
(𝑚𝑛, 𝑏𝑛)/𝜎2

and 𝑇
OB-III

(𝑚𝑛, 𝑏𝑛) converge weakly to certain functionals of the Wiener process

that we denote 𝜒2

OB-III
(𝛽, 𝑏) and 𝑇

OB-III
(𝛽, 𝑏), respectively. Since the proof of Theorem 7.1 follows

closely along the lines of Theorem 5.1 and Theorem 6.1, we do not provide a proof.

Theorem 7.1 (OB-III Large Batch Regime). Suppose that Assumptions 1–5 hold, and that 𝛽 =

lim𝑛→∞𝑚𝑛/𝑛 ∈ (0, 1). Assume also that 𝑏𝑛 → 𝑏 ∈ {2, 3, . . . ,∞} as 𝑛 → ∞, and that the weighting
function 𝑓 : [0, 1] → R+ satisfies the stipulations in (23). Define

𝜒2

OB-III
(𝛽, 𝑏) :=


1

𝛽−1 − 1

∫ 𝛽−1−1

0

(∫
1

0

𝑓 (𝑣)𝐵𝑢 (𝑣) d𝑣

)2

d𝑢 𝑏 = ∞;

1

𝑏

𝑏∑
𝑗=1

(∫
1

0

𝑓 (𝑣)𝐵𝑐 𝑗 /𝛽 (𝑣) d𝑣

)2

d𝑢 𝑏 ∈ N \ {1},
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where 𝑐 𝑗 := ( 𝑗 − 1) 1−𝛽
𝑏−1

and

𝐵𝑠 (𝑡) :=𝑊 (𝑠 + 𝑡) −𝑊 (𝑠) − 𝑡 (𝑊 (𝑠 + 1) −𝑊 (𝑠)), 𝑠 ∈ [0, 1 − 𝑡], 𝑡 ∈ [0, 1] .
Then, as 𝑛 → ∞,

�̂�2

OB-III
(𝑚𝑛, 𝑏𝑛)

d→𝜎2𝜒2

OB-III
(𝛽, 𝑏); and 𝑇

OB-III
(𝑚𝑛, 𝑏𝑛)

d→ 𝑊 (1)√
𝜒2

OB-III
(𝛽, 𝑏)

. (85)

We conclude with a corresponding result in the small batch regime.

Theorem 7.2 (OB-III Small Batch Regime). Suppose Assumptions 1–4 hold, and that 𝛽 =

lim𝑛→∞𝑚𝑛/𝑛 = 0. Assume that the asymptotic number of batches 𝑏 := lim𝑛 𝑏𝑛 = ∞, and that
the weighting function 𝑓 : [0, 1] → R+ satisfies the stipulations in (23). Then, as 𝑛 → ∞,

�̂�2

OB-III
(𝑚𝑛, 𝑏𝑛)

p
→𝜎2

; and 𝑇
OB-III

(𝑚𝑛, 𝑏𝑛)
d→𝑁 (0, 1). (86)

8 CONSIDERATIONS DURING IMPLEMENTATION
In this section, we discuss “practitioner” questions that seem to arise repeatedly.

8.1 OB Critical Values versus Gaussian or Student’s 𝑡 Critical Values.
In the absence of the OB-I and OB-II critical value tables on page 17 and page 24 respectively, it has

been customary to use critical values from the 𝑧-table or the Student’s 𝑡 table with an appropriate

number of degrees of freedom. From a practical standpoint, how much difference does it make if

one uses the 𝑧-table or the Student’s 𝑡 table versus the OB critical value table?

When the batch size is large, that is, if 𝛽 := lim𝑛𝑚𝑛/𝑛 > 0, and when the limiting number of

batches 𝑏 = ∞, the OB-I and OB-II critical values correspond to the rightmost columns of the tables

appearing on page 17 and page 24, respectively. Looking at these columns, it should be immediately

clear that the OB-I, OB-II critical values can be quite different from those of the standard normal

distribution. For instance, when 𝛽 = 0.1, the 0.95-quantile of the OB-I and OB-II distributions

are each around 1.76 whereas the corresponding standard normal quantile Φ−1 (0.95) = 1.645, a

difference of more than 7%. This difference increases as 𝛽 increases, and vanishes as 𝛽 → 0.

When 𝛽 := lim𝑛𝑚𝑛/𝑛 > 0 but the limiting number of batches 𝑏 < ∞, the natural temptation, in

absence of the OB-I and OB-II distributions, might be to use the Student’s 𝑡 critical value with 𝑏 − 1

degrees of freedom. (Some algebra reveals that when 𝛽 > 0, 𝑏 < 𝛽−1
results in non-overlapping

batches and 𝑏 ≥ 𝛽−1
results in overlapping batches.) However, notice again the quantiles reported

on pages 17 and 24 can be quite different from the corresponding Student’s 𝑡 critical value with

𝑏 − 1 degrees of freedom. For instance, when 𝛽 = 0.2 and 𝑏 = 51, the 0.95-quantile for the OB-I

and OB-II distributions are 1.893 and 1.902 respectively, whereas the 0.95-quantile of the Student’s

𝑡 distribution with 50 degrees of freedom is 1.6749, a difference of more than 11%. As 𝛽 → 0

and assuming 𝑏 < ∞, the quantiles of the OB-II distribution converge to those of the Student’s

𝑡 distribution with 𝑏 − 1 degrees of freedom; the difference between the quantiles of the 𝑇
OB-I

distribution and those of the Student’s 𝑡 distribution with 𝑏 − 1 degrees of freedom persist even as

𝛽 → 0.

In summary, substituting the normal or Student’s 𝑡 critical value for the OB critical values will

not provide the correct coverage unless 𝛽 = 0. And, the deviation from the nominal coverage with

such substitution can become substantial as the asymptotic batch size 𝛽 becomes large.

8.2 Which OB CIP?
We’ve presented three statistics along with their weak convergence limits OB-x, x=I,II,III, amounting

to three possible CIPs. Numerical evidence to be provided in the ensuing section suggests that
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Table 2. Time complexities of the three OB CIPs. Recall that 𝑛 represents the size of the dataset,𝑚𝑛 represents
the batch size, 𝑏𝑛 represents the number of batches, and 𝜏 (𝑖) is the time complexity of constructing the
estimator of the statistical functional \ (𝑃) using a batch of size 𝑖 .

CIP Time Complexity

OB-I 𝑂 (𝜏 (𝑛) + 𝑏𝑛𝜏 (𝑚𝑛))

OB-II 𝑂 (𝑏𝑛𝜏 (𝑚𝑛))

OB-III 𝑂
(
𝜏 (𝑛) + 𝑏𝑛

∑𝑚𝑛

𝑖=2
𝜏 (𝑖)

)
using these CIPs with large overlapping batches tends to result in confidence intervals having good

behavior across a variety of contexts. How do the OB CIPs compare against each other?

Unfortunately, providing a satisfactory answer appears to be context-dependent and requires

much further investigation, especially around the question of batch size choice. The sectioning

estimator
ˆ\𝑛 used within the OB-I CIP typically has variance𝑂 ( 1

𝑛
) and bias𝑂 ( 1

𝑛_ ) for some _ ≥ 1/2,

whereas the batching estimator
¯\𝑛 used within OB-II has typical variance𝑂 ( 1

𝑏𝑛𝑚𝑛
) and bias𝑂 ( 1

𝑚_
𝑛

).
These expressions reveal that the batching estimator has lower variance (when using overlapping

batches) and higher bias than the sectioning estimator; how these collude to decide the quality of

the resulting confidence intervals is a context-dependent question.

In summary, from the standpoint of interval quality as assessed by coverage probability and

expected half-width, little is known theoretically on the relative behavior of OB-x, x=I,II,III especially

when implemented with their corresponding optimal batch sizes. This should form the agenda for

future investigation.

The difference between the proposed procedures is much clearer from the standpoint of com-

putational complexity. Suppose 𝜏 ( |𝑢 − ℓ |) is the time complexity of calculating the estimator

ˆ\ ({𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢}) described in Section 3.1. Then, as can be seen in Table 2, simple calculations

reveal that OB-II CIP is the most computationally efficient and the OB-III CIP the least computation-

ally efficient. The relative complexities of the three CIPs become stark when using large batches

with significant overlap, that is, when𝑚𝑛/𝑛 → 𝛽 > 0 and 𝑑𝑛 = 𝑂 (1). This leads to 𝑂 (𝑛𝜏 (𝑛)) com-

plexity for OB-I and OB-II, but 𝑂 (𝑛∑𝑚𝑛

𝑖=2
𝜏 (𝑖)) complexity for OB-III. With sparse overlap resulting

in finite number of asymptotic batches, that is, if 𝑏 < ∞, OB-I has complexity 𝑂 (𝜏 (𝑛)), OB-II has
complexity 𝑂 (𝜏 (𝑚𝑛)), and OB-III has complexity 𝑂 (𝜏 (𝑛) + ∑𝑚𝑛

𝑖=2
𝜏 (𝑖)) .

9 NUMERICAL ILLUSTRATION
We now present numerical results from three popular contexts to gain further insight on the

behavior of confidence intervals produced by OB-I, OB-II, and subsampling.

9.1 Example 1 : CVaR Estimation.
Let \𝛾 the CVaR associated with the standard normal random variable. From the definition of

CVaR [69], we have

\𝛾 :=
1

1 − 𝛾

∫ ∞

𝑞𝛾

𝑧 𝜙 (𝑧) 𝑑𝑧; 𝑞𝛾 := Φ−1 (𝛾),

where 𝜙 (·),Φ(·) are the standard normal density and cdf, respectively. With observations from an

iid sequence {𝑍𝑛, 𝑛 ≥ 1} of standard normal random variables, we can construct a point estimator
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Table 3. The table summarizes coverage probabilities obtained using small batch OB-I (𝛽 = 0), large batch
OB-I (𝛽 = 0.1, 0.25), small batch OB-II (𝛽 = 0), large batch OB-II (𝛽 = 0.1, 0.25), and subsampling (SS) for the
CVaR problem with 𝛾 = 0.7. The numbers in parenthesis are estimated expected half-widths of the confidence
intervals.

OB-I (𝛽 = 0, 0.1, 0.25) OB-II (𝛽 = 0, 0.1, 0.25) SS (𝑚𝑛 =
√
𝑛)

𝑛 = 100

0.390 0.402 0.947

(0.184) (0.212) (0.233)

0.382 0.397 0.935

(0.182) (0.213) (0.236)

0.388

(0.205)

𝑛 = 500

0.897 0.954 0.950

(0.085) (0.091) (0.099)

0.887 0.944 0.935

(0.085) (0.091) (0.099)

0.907

(0.097)

𝑛 = 1000

0.946 0.952 0.951

(0.060) (0.063) (0.070)

0.938 0.944 0.938

(0.060) (0.063) (0.071)

0.956

(0.066)

𝑛 = 2000

0.950 0.952 0.951

(0.042) (0.044) (0.049)

0.943 0.945 0.936

(0.042) (0.045) (0.050)

0.961

(0.045)

𝑛 = 3000

0.949 0.950 0.950

(0.034) (0.036) (0.040)

0.945 0.944 0.937

(0.034) (0.036) (0.040)

0.961

(0.037)

𝑛 = 5000

0.950 0.952 0.954

(0.026) (0.028) (0.032)

0.947 0.943 0.936

(0.026) (0.028) (0.031)

0.961

(0.028)

for \𝛾 as follows:

ˆ\ ({𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢}) :=
1

1 − 𝛾

𝑢∑
𝑗=ℓ

𝑍 𝑗 I[𝑞𝛾 ,∞) (𝑍 𝑗 ).

We wish to construct a 0.95-confidence interval on \𝛾 for 𝛾 = 0.7, 0.9, 0.95 with number of observa-

tions 𝑛 = 100, 500, 1000, 2000, 3000 and 5000.

Tables 3–5 display the estimated coverage probability (along with the estimated expected half-

width in parenthesis) of confidence intervals constructed using fully-overlapping OB-I, OB-II CIPs

having asymptotic batch size 𝛽 = 0, 0.1, 0.25, and using subsampling with the recommended [67]

sample size𝑚𝑛 =
√
𝑛. The coverage was estimated with a large (𝑚 = 100000) number of replications.

Tables 3–5 display clear trends that will be repeated, more or less, across the different experiments

we present. All methods seem to tend to the nominal coverage as the available data increases.

However, OB-I and OB-II with 𝛽 > 0 seem to get to the nominal coverage much faster than the rest.

For example, in Table 3, OB-I and OB-II with 𝛽 = 0.25 seem to get to the vicinity of the nominal

coverage after only about 𝑛 = 100 observations; and OB-I and OB-II with 𝛽 = 0.1 seem to get to

the vicinity of the nominal coverage after about 𝑛 = 500 observations. Similarly, in Table 5, OB-I

and OB-II with 𝛽 = 0.25 seem to get to the vicinity of the nominal coverage after about 𝑛 = 1000

observations, while for 𝛽 = 0.1, the corresponding number is 𝑛 = 2000. The performance of OB

confidence intervals with small batches seems comparable to that of subsampling; both OB-x with

𝛽 = 0 and subsampling seem to struggle on the CVaR problem with 𝛾 = 0.95.
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Table 4. The table summarizes coverage probabilities obtained using small batch OB-I (𝛽 = 0), large batch
OB-I (𝛽 = 0.1, 0.25), small batch OB-II (𝛽 = 0), large batch OB-II (𝛽 = 0.1, 0.25), and subsampling (SS) for the
CVaR problem with 𝛾 = 0.9. The numbers in parenthesis are estimated expected half-widths of the confidence
intervals.

OB-I (𝛽 = 0, 0.1, 0.25) OB-II (𝛽 = 0, 0.1, 0.25) SS (𝑚𝑛 =
√
𝑛)

𝑛 = 100

0.000 0.000 0.444

(0.196) (0.227) (0.311)

0.000 0.000 0.437

(0.195) (0.228) (0.314)

0.000

(0.233)

𝑛 = 500

0.001 0.755 0.949

(0.110) (0.135) (0.142)

0.001 0.744 0.932

(0.110) (0.134) (0.141)

0.001

(0.142)

𝑛 = 1000

0.014 0.953 0.950

(0.084) (0.091) (0.098)

0.014 0.944 0.937

(0.084) (0.091) (0.100)

0.014

(0.101)

𝑛 = 2000

0.134 0.952 0.950

(0.062) (0.063) (0.069)

0.132 0.945 0.935

(0.062) (0.063) (0.069)

0.136

(0.073)

𝑛 = 3000

0.350 0.951 0.948

(0.050) (0.050) (0.055)

0.345 0.944 0.936

(0.050) (0.051) (0.056)

0.356

(0.058)

𝑛 = 5000

0.705 0.952 0.952

(0.039) (0.039) (0.044)

0.698 0.943 0.935

(0.039) (0.039) (0.043)

0.717

(0.044)

9.2 Example 2: Parameter Estimation for AR(1).
Consider the AR(1) process given by

𝑋𝑡 = 𝑐 + 𝜙𝑋𝑡−1 + 𝜖𝑡 , 𝜖𝑡
iid∼ 𝑁 (0, 𝜎2

𝜖 ), 𝑡 = 1, 2, . . .

With observations from the time series {𝑋𝑛, 𝑛 ≥ 1}, the least-squares point estimator for \ (𝑃) :=

𝜙 (after fixing 𝑐 = 0) is

ˆ\ ({𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢}) := arg min

𝜙 ∈R

𝑢−1∑
𝑗=ℓ

(𝑋 𝑗+1 − 𝜙𝑋 𝑗 )2. (87)

We wish to construct a 0.95-confidence interval on 𝜙 = 0.5, 0.9 for 𝜎𝜖 = 1 and with number of

observations 𝑛 = 100, 500, 1000, 5000 and 10000.

Tables 6–7 are in the same format as Tables 3–5 and display the results for the AR(1) example.

The trends in coverage probabilities appear to be similar to those observed in Example 1, with large

batches playing a seemingly important role in ensuring close to nominal coverage. Interestingly,

Example 2 seems to do a better job in distinguishing between OB-I and OB-II for the same 𝛽 , and in

distinguishing between OB methods and subsampling. For example, due to the increased estimator

bias associated with 𝜙 = 0.9, OB-I with 𝛽 = 0, 0.1, 0.25 appear to dominate OB-II with corresponding

𝛽 = 0, 0.1, 0.25. Subsampling clearly generates intervals with smaller expected half-width but the

coverage is substantially lower than nominal especially when 𝜙 = 0.9. Such differences were not as

evident in Example 1, probably because of the more muted effects of bias.
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Table 5. The table summarizes coverage probabilities obtained using small batch OB-I (𝛽 = 0), large batch
OB-I (𝛽 = 0.1, 0.25), small batch OB-II (𝛽 = 0), large batch OB-II (𝛽 = 0.1, 0.25), and subsampling (SS) for
the CVaR problem with 𝛾 = 0.95. The numbers in parenthesis are estimated expected half-widths of the
confidence intervals.

OB-I (𝛽 = 0, 0.1, 0.25) OB-II (𝛽 = 0, 0.1, 0.25) SS (𝑚𝑛 =
√
𝑛)

𝑛 = 100

NA NA 0.082

(NA) (NA) (0.322)

NA NA 0.080

(NA) (NA) (0.327)

NA

(NA)

𝑛 = 500

NA 0.096 0.915

(NA) (0.161) (0.189)

NA 0.094 0.899

(NA) (0.160) (0.188)

NA

(NA)

𝑛 = 1000

NA 0.725 0.948

(NA) (0.121) (0.129)

NA 0.715 0.936

(NA) (0.121) (0.130)

NA

(NA)

𝑛 = 2000

NA 0.953 0.951

(NA) (0.083) (0.089)

NA 0.943 0.935

(NA) (0.083) (0.089)

NA

(NA)

𝑛 = 3000

0.000 0.952 0.948

(0.061) (0.066) (0.071)

0.000 0.943 0.934

(0.061) (0.066) (0.072)

0.000

(0.069)

𝑛 = 5000

0.000 0.953 0.952

(0.050) (0.051) (0.056)

0.000 0.943 0.934

(0.050) (0.050) (0.056)

0.000

(0.059)

9.3 Example 3: Non-Homogeneous Poisson Process (NHPP) Rate Estimation
In the final example, we consider a nonhomogeneous Poisson process {𝑁 (𝑡), 𝑡 ∈ [0, 1]} [12]

having rate _(𝑡) = 4 + 8𝑡, 𝑡 ∈ [0, 1]. Suppose also that we have iid realizations of the process

{𝑁 (𝑡), 𝑡 ∈ [0, 1]}, using which we wish to construct a 0.95-confidence interval on

\𝑡 (𝑃) := _(𝑡) for 𝑡 = 0.25, 0.5, 0.75.

We emphasize that this problem constructs “marginal confidence intervals” and is different from

that of identifying a confidence region on the vector (_(0.25), _(0.5), _(0.75)) or on the function

_(𝑡), 𝑡 ∈ [0, 1]. The latter two problems, while very useful, lie outside the current paper’s scope of

real-valued \ (𝑃).
Given iid realizations {𝑋 𝑗 (𝑡), 𝑡 ∈ [0, 1]}, 𝑗 = 1, 2, . . . , of {𝑁 (𝑡), 𝑡 ∈ [0, 1]}, a simple point estimator

for _(𝑡) (𝑡 fixed) can be constructed as follows:

ˆ\𝑡 ({𝑋 𝑗 , ℓ ≤ 𝑗 ≤ 𝑢}) :=
1

𝑢 − ℓ + 1

𝑢∑
𝑗=ℓ

1

𝛿

(
𝑋 𝑗 (𝑡 + 𝛿) − 𝑋 𝑗 (𝑡)

)
.

The realizations 𝑋 𝑗 , 𝑗 = 1, 2, . . . were generated using Algorithm 6 in [63, 64], the constant 𝛿 was

fixed at 10
−4
, and the number of observations 𝑛 = 1000, 2000, 5000, 10000, 20000 and 50000.

Table 8 presents results on coverage probability delivered by OB-I (with 𝛽 = 0.1, 0.25) and

subsampling (with 𝑚𝑛 =
√
𝑛) for each of the three “marginal” confidence intervals associated

with 𝑡 = 0.25, 0.5, 0.75. As in previous examples, the numbers in parenthesis refer to the estimated

expected half-width.
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Table 6. The table summarizes coverage probabilities obtained using small batch OB-I (𝛽 = 0), large batch
OB-I (𝛽 = 0.25), small batch OB-II (𝛽 = 0), large batch OB-II (𝛽 = 0.25), and subsampling (SS) for the AR(1)
problem with 𝜙 = 0.5, 𝑐 = 0, 𝜎2

𝜖 = 1. The numbers in parenthesis are estimated expected half-widths of the
confidence intervals.

OB-I (𝛽 = 0, 0.1, 0.25) OB-II (𝛽 = 0, 0.1, 0.25) SS (𝑚𝑛 =
√
𝑛)

𝑛 = 100

0.898 0.931 0.932

(0.191) (0.222) (0.245)

0.321 0.420 0.833

(0.154) (0.180) (0.230)

0.644

(0.110)

𝑛 = 500

0.931 0.947 0.944

(0.089) (0.100) (0.110)

0.366 0.821 0.908

(0.081) (0.095) (0.109)

0.831

(0.071)

𝑛 = 1000

0.940 0.949 0.946

(0.064) (0.070) (0.078)

0.376 0.883 0.924

(0.059) (0.069) (0.079)

0.866

(0.053)

𝑛 = 5000

0.946 0.951 0.948

(0.029) (0.031) (0.035)

0.419 0.933 0.931

(0.028) (0.031) (0.035)

0.912

(0.026)

𝑛 = 10000

0.949 0.947 0.950

(0.021) (0.022) (0.025)

0.425 0.935 0.936

(0.020) (0.022) (0.025)

0.925

(0.019)

Table 7. The table summarizes coverage probabilities obtained using small batch OB-I (𝛽 = 0), large batch
OB-I (𝛽 = 0.25), small batch OB-II (𝛽 = 0), large batch OB-II (𝛽 = 0.25), and subsampling (SS) for the AR(1)
problem with 𝜙 = 0.9, 𝑐 = 0, 𝜎2

𝜖 = 1. The numbers in parenthesis are estimated expected half-widths of the
confidence intervals.

OB-I (𝛽 = 0, 0.1, 0.25) OB-II (𝛽 = 0, 0.1, 0.25) SS (𝑚𝑛 =
√
𝑛)

𝑛 = 100

0.698 0.745 0.799

(0.630) (0.726) (0.925)

NA NA 0.332

(0.246) (0.288) (0.593)

0.045

(0.005)

𝑛 = 500

0.859 0.901 0.912

(0.365) (0.437) (0.505)

NA 0.260 0.780

(0.195) (0.323) (0.452)

0.282

(0.086)

𝑛 = 1000

0.900 0.929 0.934

(0.272) (0.320) (0.365)

NA 0.546 0.859

(0.169) (0.276) (0.350)

0.438

(0.096)

𝑛 = 5000

0.924 0.942 0.945

(0.131) (0.148) (0.165)

NA 0.861 0.919

(0.105) (0.144) (0.164)

0.743

(0.083)

𝑛 = 10000

0.935 0.945 0.946

(0.094) (0.104) (0.116)

0.000 0.900 0.923

(0.081) (0.103) (0.117)

0.816

(0.068)
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Table 8. The table summarizes coverage probabilities obtained using large batch OB-I (𝛽 = 0.1, 0.25) and
subsampling for the NHPP rate estimation problem with _(𝑡) = 4 + 8𝑡 . The three numbers in each column
indicate the coverage probability estimates corresponding to a confidence interval on _(𝑡) for 𝑡 = 0.25, 0.5, 0.75.
The numbers in parenthesis are estimated expected half-widths of the confidence intervals.

OB-I (𝛽 = 0.1, 0.25) Subsampling (𝑚𝑛 =
√
𝑛)

𝑛 = 1000

0.447, 0.446; 0.542, 0.542; 0.629, 0.628

(19.913, 78.657); (28.100, 106.502); (35.863, 135.759)

0.312; 0.337; 0.349

(NA); (NA); (NA)

𝑛 = 2000

0.694, 0.692; 0.793, 0.790; 0.863, 0.859

(15.505, 42.562); (21.772, 57.227); (28.120, 70.158)

NA; 0.249; 0.440

(NA); (NA); (NA)

𝑛 = 5000

0.937, 0.939; 0.912, 0.969; 0.962, 0.976

(11.582, 20.017); (15.546, 24.972); (19.767, 27.624)

0.606; 0.548; 0.500

(NA); (NA); (NA)

𝑛 = 10000

0.940, 0.966; 0.985, 0.974; 0.987, 0.974

(8.686, 11.062); (11.210, 12.073); (13.189, 12.922)

0.461; 0.629; 0.576

(NA); (NA); (NA)

𝑛 = 20000

0.989, 0.967; 0.989, 0.963; 0.988, 0.962

(5.917, 5.634); (6.910, 6.053); (7.730, 6.520)

0.534; 0.620; 0.574

(1.358); (1.563); (1.744)

𝑛 = 50000

0.978, 0.957; 0.973, 0.959; 0.970, 0.955

(2.963, 2.845); (3.319, 3.266); (3.547, 3.537)

0.595; 0.537; 0.611

(0.877); (1.007); (1.220)

The trends in Table 8 are consistent with those from the previous examples with OB-I delivering

confidence intervals that are clearly better in terms of coverage, although nominal coverage seems

to need a higher value of𝑛 than in previous examples. Subsampling does not reach nominal coverage

even with 𝑛 = 50000 although the generated intervals have much smaller half-widths.
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269–280.

[58] P. J McCarthy. 1969. Pseudo-Replication: Half Samples. Revue de l’Institut international de statistique 37, 3 (1969), 239.
[59] H. Mechanic and W. McKay. [n.d.]. Confidence intervals for averages of dependent data in simulations II. Technical

Report.

[60] David Fernando Munoz. 1991. Cancellation methods in the analysis of simulation output.

[61] M. K. Nakayama. 2011. Asymptotically valid confidence intervals for quantiles and values-at-risk when applying Latin

hypercube sampling. International Journal on Advances in Systems and Measurements 4 (2011).
[62] Marvin K Nakayama. 2014. Confidence intervals for quantiles using sectioning when applying variance-reduction

techniques. ACM Transactions on Modeling and Computer Simulation (TOMACS) 24, 4 (2014), 1–21.
[63] Raghu Pasupathy. 2011. Generating homogeneous Poisson processes. Wiley encyclopedia of operations research and

management science (2011).
[64] Raghu Pasupathy. 2011. Generating nonhomogeneous Poisson processes. Wiley encyclopedia of operations research

and management science (2011).
[65] W. Philipp and W. Stout. 1975. Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random

Variables. Mem. Amer. Math. Soc 161 (1975).
[66] D. N. Politis and J. P. Romano. 1994. Large Sample Confidence Regions Based on Subsamples under Minimal Assump-

tions. The Annals of statistics 22, 4 (1994), 2031–2050.
[67] D. N. Politis, J. P. Romano, and M. Wolf. 1999. Subsampling (1st ed. 1999. ed.).

[68] M. H. Quenouille. 1949. Approximate Tests of Correlation in Time-Series. Journal of the Royal Statistical Society. Series
B, Methodological 11, 1 (1949), 68–84.

[69] S. Sarykalin, G. Serraino, and S. Uryasev. 2008. Value-at-risk vs. conditional value-at-risk in risk management and

optimization. In State-of-the-art decision-making tools in the information-intensive age. Informs, 270–294.

[70] L. W. Schruben. 1983. Confidence Interval Estimation Using Standardized Time Series. Operations Research 31, 6 (1983),

1090–1108.

[71] R. J. Serfling. 1980. Approximation Theorems of Mathematical Statistics. John Wiley & Sons, Inc., New York, New York.

[72] S. A. van de Geer. 2006. Empirical Processes in M-Estimation (1-st ed.). Cambridge University Press, Cambridge.

[73] P.D. Welch. 1967. The use of the Fast Fourier Transform for the estimation of spectra; a method based on time averaging

over short modified periodograms. IEEE Transactions on Audio and Electroacoustics 2 (1967), 70–73.

, Vol. 1, No. 1, Article . Publication date: May 2018.

https://doi.org/10.1007/978-1-4612-4384-7_2
https://doi.org/10.1007/978-1-4612-4384-7_2
https://doi.org/10.48550/ARXIV.2202.00090


1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Su et al.

[74] Jon Wellner. 2022. Jon Wellner’s Lecture Notes in Mathematical Statistics. https://sites.stat.washington.edu/peter/581/

jaw/jaw.html. [Online; accessed 02-March-2022].

A SOME USEFUL RESULTS
We will invoke the following useful result from [28] that provides a weak law for triangular arrays

of real-valued random variables that are not necessarily identically distributed.

Theorem A.1 (Weak law for triangular arrays, Theorem 2.2.6, [28]). For each 𝑛, let𝑋𝑛,𝑘 , 1 ≤
𝑘 ≤ 𝑛 be independent. Let 𝑡𝑛 > 0 with 𝑡𝑛 → ∞ and let 𝑋𝑛,𝑘 = 𝑋𝑛,𝑘1( |𝑋𝑛,𝑘 | ≤ 𝑡𝑛). Suppose that as
𝑛 → ∞,

(1)
∑𝑛

𝑘=1
𝑃 ( |𝑋𝑛,𝑘 | > 𝑡𝑛) → 0; and

(2) 𝑡−2

𝑛

∑𝑛
𝑘=1
E[𝑋 2

𝑛,𝑘
] → 0.

If we let 𝑆𝑛 = 𝑋𝑛,1 + 𝑋𝑛,2 + · · · + 𝑋𝑛,𝑛 and put `𝑛 =
∑𝑛

𝑘=1
E[𝑋𝑛,𝑘 ], then 𝑡−1

𝑛 (𝑆𝑛 − `𝑛)
p
→ 0.

Theorem A.2 (Slutsky’s Theorem, see page 19 in [71]). Suppose {𝐴𝑛, 𝑛 ≥ 1}, {𝐵𝑛, 𝑛 ≥ 1} and
{𝑋𝑛, 𝑛 ≥ 1} are real-valued random sequences so that

𝑋𝑛

d→𝑋 ; 𝐴𝑛

p
→𝐴; 𝐵𝑛

p
→𝐵.

Then

𝐴𝑛𝑋𝑛 + 𝐵𝑛
d→𝐴𝑋 + 𝐵.

If 𝐴 ≠ 0, then

𝑋𝑛

𝐴𝑛

d→ 𝑋

𝐴
.

Theorem A.3 (Covariance Bound, see Corollary 2.5, Ethier and Kurtz [37]). Let 1 ≤
𝑢, 𝑣,𝑤 ≤ ∞, 𝑢−1 + 𝑣−1 +𝑤−1 = 1. Then for real-valued 𝑌, 𝑍 with 𝑌 ∈ 𝐿𝑤 (Ω,G, 𝑃), 𝑍 ∈ 𝐿𝑣 (Ω,H , 𝑃),

|E [𝑌𝑍 ] − E[𝑌 ]E[𝑍 ]] | ≤ 2
𝑣∧𝑤∧2+1𝛼1/𝑢 (G,H)∥𝑌 ∥𝑣 ∥𝑍 ∥𝑤 .

Theorem A.4 (see Theorem 1.2.1, [17]). Let {𝑊 (𝑡), 0 ≤ 𝑡 < ∞} denote the Wiener process. If
{𝑎𝑛, 𝑛 ≥ 1} is a monotonically non-decreasing sequence of 𝑛 such that 0 < 𝑎𝑛 ≤ 𝑛 and the sequence
{𝑛/𝑎𝑛, 𝑛 ≥ 1} is monotonically non-decreasing, then,

lim sup

𝑛→∞
sup

0≤𝑡 ≤𝑛−𝑎𝑛
sup

0≤𝑠≤𝑎𝑛
𝛽𝑛 |𝐵(𝑡 + 𝑠) − 𝐵(𝑡) | = 1 a.s.

where

𝛽𝑛 =

(
2𝑎𝑛

(
log

𝑛

𝑎𝑛
+ log

2 𝑛

))− 1

2

.

Theorem A.5 (see Mapping Theorem 2.7, [6]). Suppose ℎ is an S/S′-measurable mapping from
𝑆 to 𝑆 ′ with discontinuity set 𝐷ℎ ⊂ 𝑆 , where (𝑆,S) and (𝑆 ′,S′) are metric spaces. If {𝑄𝑛, 𝑛 ≥ 1} is a
sequence of probability measures on (𝑆,S) with weak limit 𝑄 , that is, 𝑄𝑛

d→𝑄 , and 𝑄𝐷ℎ = 0, then

𝑄𝑛ℎ
−1

d→𝑄ℎ−1.
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B PROOF OF THEOREM 6.1
Proof. Proof. Similar to the proof of Theorem 5.1, observe that

�̂�2

OB-II
(𝑚𝑛, 𝑏𝑛) =

1

^2 (𝛽, 𝑏)
𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1


(
¯\ 𝑗,𝑚𝑛

− ¯\𝑚𝑛

)
2 − 𝜎2

(
�̃� 𝑗,𝑚𝑛

− 1

𝑏𝑛

𝑏𝑛∑
𝑖=1

�̃�𝑖,𝑚𝑛

)2︸                                                                  ︷︷                                                                  ︸
𝐸𝑛 (𝑚𝑛,𝑏𝑛)

+ 1

^2 (𝛽, 𝑏)
𝜎2

𝑏𝑛

𝑏𝑛∑
𝑗=1

(
√
𝑚𝑛�̃� 𝑗,𝑚𝑛

−
√
𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑖=1

�̃�𝑖,𝑚𝑛

)2

︸                                            ︷︷                                            ︸
𝐼𝑛

=
1

^2 (𝛽, 𝑏)
(
𝐸𝑛 (𝑚𝑛, 𝑏𝑛) + 𝐼𝑛

)
. (88)

We will now individually characterize the behavior of 𝐸𝑛 (𝑚𝑛, 𝑏𝑛) and 𝐼𝑛 above.

Noticing that

¯\ 𝑗,𝑚𝑛
− ¯\𝑚𝑛

=

(
¯\ 𝑗,𝑚𝑛

− 𝜎�̃� 𝑗,𝑚𝑛

)
︸               ︷︷               ︸

𝑈 𝑗,𝑚𝑛

+𝜎
(
�̃� 𝑗,𝑚𝑛

− 1

𝑏𝑛

𝑏𝑛∑
𝑖=1

�̃�𝑖,𝑚𝑛

)
︸                       ︷︷                       ︸

�̄� 𝑗,𝑚𝑛

+
(

1

𝑏𝑛

𝑏𝑛∑
𝑖=1

�̃�𝑖,𝑚𝑛
− ¯\𝑚𝑛,𝑑𝑛

)
︸                        ︷︷                        ︸

𝐶𝑚𝑛

, (89)

we can write

𝐸𝑛 (𝑚𝑛, 𝑏𝑛) =𝑚𝑛

(
1

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑈 2

𝑗,𝑚𝑛
+ 2

𝜎

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑈 𝑗,𝑚𝑛
𝐻 𝑗,𝑚𝑛

+ 2

𝜎𝐶𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑈 𝑗,𝑚𝑛
+ 2

𝜎𝐶𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝐻 𝑗,𝑚𝑛
+𝐶2

𝑚𝑛

)
.

(90)

We already know that except for a set of measure zero in the probability space implied by Assump-

tion 5, there exists Γ(𝜔) such that, uniformly in 𝑗 ,

|𝑈 𝑗,𝑚𝑛
| ≤ Γ(𝜔)𝑚−1/2−𝛿

𝑛

(
log

2𝑚𝑛

)
1/2

, (91)

and similarly,

|𝐶𝑚𝑛
| = 𝜎

𝑏𝑛

����� 𝑏𝑛∑
𝑖=1

𝜎−1 ¯\𝑖,𝑚𝑛
− �̃�𝑖,𝑚𝑛

�����
≤ Γ(𝜔)𝑚−1/2−𝛿

𝑛

(
log

2𝑚𝑛

)
1/2

(92)

Furthermore, similar to (47), we use Theorem A.4 carefully again to see that there exists 𝑛0 (𝜔, 𝜖)
such that for all 𝑛 ≥ 𝑛0 (𝜔, 𝜖), and uniformly in 𝑗 ,

|𝐻 𝑗,𝑚𝑛
| ≤ 2(1 + 𝜖)𝑚−1/2

𝑛

√
2

(
log

2 𝑛 − log

𝑚𝑛

𝑛

)
(93)

Plugging (91), (92), and (93) in (90), we get for all 𝑛 ≥ 𝑛0 (𝜔, 𝜖) that
𝐸𝑛 (𝑚𝑛, 𝑏𝑛) ≤ Γ2 (𝜔)𝑚−2𝛿

𝑛 log
2𝑚𝑛

+ 8𝜎 (1 + 𝜖)Γ(𝜔)𝑚−𝛿
𝑛

(
log

2𝑚𝑛

)
1/2 (2(log

2 𝑛 − log

𝑚𝑛

𝑛
))1/2

+ 2𝜎Γ2 (𝜔)𝑚−2𝛿
𝑛 log

2𝑚𝑛 + Γ2 (𝜔)𝑚−2𝛿
𝑛 log

2𝑚𝑛, (94)
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implying that 𝐸𝑛 goes to zero almost surely. Now let’s calculate the weak limit of

𝐼𝑛 :=
𝜎2

𝑏𝑛

𝑏𝑛∑
𝑗=1

(
√
𝑚𝑛�̃� 𝑗,𝑚𝑛

− 1

𝑏𝑛

𝑏𝑛∑
𝑖=1

√
𝑚𝑛�̃�𝑖,𝑚𝑛

)2

appearing in (88). Similar to the proof of Theorem 5.1, define a lattice {0, 𝛿𝑛, 2𝛿𝑛, . . . , ⌊ 1

𝛿𝑛
⌋𝛿𝑛} having

resolution

𝛿𝑛 :=
1 − (𝑚𝑛/𝑛)
𝑏𝑛 − 1

and a corresponding projection operation on the lattice

⌊𝑢⌋𝛿𝑛 := max{𝑘𝛿𝑛 : 𝑢 ≥ 𝑘𝛿𝑛, 𝑘 ∈ Z}, 𝑢 ∈ [0, 1 − 𝑚𝑛

𝑛
+ 𝛿𝑛] .

Recalling that 𝑏𝑛 = 1 + 𝑑−1

𝑛 (𝑛 −𝑚𝑛), we can write

𝐼𝑛 = 𝜎2
1

𝑏𝑛

𝑏𝑛 − 1

1 − (𝑚𝑛/𝑛)

∫
1−𝑚𝑛

𝑛
+𝛿𝑛

0

(
1

√
𝑚𝑛

(
𝑊 (𝑛⌊𝑢⌋𝛿𝑛 +𝑚𝑛) −𝑊 (𝑛⌊𝑢⌋𝛿𝑛 + 1)

)
− 1

𝑏𝑛

𝑏𝑛 − 1

1 − (𝑚𝑛/𝑛)

∫
1−𝑚𝑛

𝑛
+𝛿𝑛

0

1

√
𝑚𝑛

(
𝑊 (𝑛⌊𝑠⌋𝛿𝑛 +𝑚𝑛) −𝑊 (𝑛⌊𝑠⌋𝛿𝑛 + 1)

)
𝑑𝑠

)
2

𝑑𝑢 (95)

𝑑
= 𝜎2

𝑏𝑛 − 1

𝑏𝑛

𝑛

𝑛 −𝑚𝑛

𝑛

𝑚𝑛

∫
1−𝑚𝑛

𝑛
+𝛿𝑛

0

(
𝑊 (⌊𝑢⌋𝛿𝑛 + 𝑚𝑛

𝑛
) −𝑊 (⌊𝑢⌋𝛿𝑛 + 1

𝑛
)

−𝑏𝑛 − 1

𝑏𝑛

𝑛

𝑛 −𝑚𝑛

∫
1−𝑚𝑛

𝑛
+𝛿𝑛

0

1

√
𝑚𝑛

(
𝑊 (𝑛⌊𝑠⌋𝛿𝑛 +𝑚𝑛) −𝑊 (𝑛⌊𝑠⌋𝛿𝑛 + 1)

)
𝑑𝑠

)
2

𝑑𝑢 (96)

d→𝜎2
𝛽−1

1 − 𝛽

∫
1−𝛽

0

(
𝑊 (𝑢 + 𝛽) −𝑊 (𝑢) − 1

1 − 𝛽

∫
1−𝛽

0

(𝑊 (𝑠 + 𝛽) −𝑊 (𝑠)) 𝑑𝑠
)2

𝑑𝑢 (97)

if 𝛿𝑛 → 0 as 𝑛 → ∞ which happens when 𝑏𝑛 → 𝑏 = ∞. This proves the assertion in (76) for 𝑏 = ∞.

For the 𝑏 ∈ {1, 2, . . . , } case, we observe that

𝐼𝑛 :=
𝜎2

𝑏𝑛

𝑏𝑛∑
𝑗=1

(
√
𝑚𝑛�̃� 𝑗,𝑚𝑛

− 1

𝑏𝑛

𝑏𝑛∑
𝑖=1

√
𝑚𝑛�̃�𝑖,𝑚𝑛

)2

𝑑
= 𝜎2

𝑛

𝑚𝑛

1

𝑏𝑛

𝑏𝑛∑
𝑗=1

(
𝑊 (( 𝑗 − 1) 1 − (𝑚𝑛/𝑛)

𝑏𝑛 − 1

+ 𝑚𝑛

𝑛
) −𝑊 (( 𝑗 − 1) 1 − (𝑚𝑛/𝑛)

𝑏𝑛 − 1

+ 1

𝑛
)−

1

𝑏𝑛

𝑏𝑛∑
𝑖=1

(
𝑊 ((𝑖 − 1) 1 − (𝑚𝑛/𝑛)

𝑏𝑛 − 1

+ 𝑚𝑛

𝑛
) −𝑊 ((𝑖 − 1) 1 − (𝑚𝑛/𝑛)

𝑏𝑛 − 1

+ 1

𝑛
)
))2

(98)

→ 𝜎2
1

𝛽

1

𝑏

𝑏∑
𝑗=1

(
𝑊 (( 𝑗 − 1) 1 − 𝛽

𝑏 − 1

+ 𝛽) −𝑊 (( 𝑗 − 1) 1 − 𝛽

𝑏 − 1

)−

1

𝑏

𝑏∑
𝑖=1

(
𝑊 ((𝑖 − 1) 1 − 𝛽

𝑏 − 1

+ 𝛽) −𝑊 ((𝑖 − 1) 1 − 𝛽

𝑏 − 1

)
))2

, (99)

thus proving the assertion for finite 𝑏.
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Next, observe that

E[𝐼𝑛] =
𝜎2

𝑏𝑛

𝑏𝑛∑
𝑗=1

E

[
√
𝑚𝑛�̃� 𝑗,𝑚𝑛

− 1

𝑏𝑛

𝑏𝑛∑
𝑖=1

√
𝑚𝑛�̃�𝑖,𝑚𝑛

]2

= 𝜎2

(
𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1

E[�̃�2

𝑗,𝑚𝑛
] − 𝑚𝑛

𝑏2

𝑛

𝑏𝑛∑
𝑖=1

𝑏𝑛∑
𝑗=1

E[�̃�𝑖,𝑚𝑛
�̃� 𝑗,𝑚𝑛

]
)
. (100)

Some algebra yields

𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1

E
[
�̃�2

𝑗,𝑚𝑛

]
=
𝑚𝑛

𝑏𝑛

𝑏𝑛∑
𝑗=1

𝑚𝑛 − 1

𝑚2

𝑛

= 1, 𝑗 ∈ {1, 2, . . . , 𝑏𝑛} (101)

and

𝑚𝑛 E
[
�̃�𝑖,𝑚𝑛

�̃� 𝑗,𝑚𝑛

]
=

(
1 − |𝑖 − 𝑗 |

𝑏𝑛 − 1

𝑛 −𝑚𝑛

𝑚𝑛

)+
𝑖, 𝑗 ∈ {1, 2, . . . , 𝑏𝑛}. (102)

Plug in (101) and (102) in (100), and we have

E[𝐼𝑛] = 𝜎2

(
1 − 1

𝑏2

𝑛

𝑏𝑛∑
𝑖=1

𝑏𝑛∑
𝑗=1

(
1 − |𝑖 − 𝑗 |

𝑏𝑛 − 1

𝑛 −𝑚𝑛

𝑚𝑛

)+)
= 𝜎2

(
1 − 1

𝑏𝑛
− 2

𝑏𝑛

𝑏𝑛−1∑
ℎ=1

(
1 − ℎ

𝑏𝑛 − 1

𝑛 −𝑚𝑛

𝑚𝑛

)+
(1 − ℎ/𝑏𝑛)

)
(103)

= 𝜎2^2 (𝛽, 𝑏) + 𝑜 (𝑛−𝛿 ), (104)

where the last equality holds by the definition of ^2 (𝛽, 𝑏) in (75) and since we have assumed that

|𝑚𝑛/𝑛 − 𝛽 | = 𝑜 (𝑛−𝛿 ). Also, since Γ has been assumed to have finite second moment, (94) implies

that

E[𝐸𝑛] = 𝑂

(
(𝛽𝑛)−𝛿

√
2 log

2 𝛽𝑛 log
2 𝑛

)
. (105)

Using (104) and (105) in (88), we conclude that for finite 𝑏 ∈ {1, 2, . . .},

lim

𝑛→∞
E[�̂�2

OB-II
(𝑚𝑛, 𝑏𝑛)] = 𝜎2 +𝑂 (𝜖2,𝑛). (106)

Let’s next consider the 𝑏 = ∞ case. We write the summation appearing in (103) as an integral on

a lattice of size 𝛿𝑛 = 1/(𝑏𝑛 − 1) as follows:

2

𝑏𝑛

𝑏𝑛−1∑
ℎ=1

(
1 − ℎ

𝑏𝑛 − 1

( 𝑛

𝑚𝑛

− 1)
)+

(1 − ℎ

𝑏𝑛
)

= 2

∫
1

0

(
1 − ⌊𝑢⌋𝛿𝑛 (

𝑛

𝑚𝑛

− 1)
)+

(1 − ⌊𝑢⌋𝛿𝑛
𝑏𝑛 − 1

𝑏𝑛
) 𝑑𝑢. (107)
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1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960
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Plugging (107) in (103), and since |𝑚𝑛/𝑛 − 𝛽 | = 𝑜 (𝑛−𝛿 ) and 𝑏−1

𝑛 = 𝑜 (𝑛−𝛿 ), we get

E[𝐼𝑛] = 𝜎2

(
1 − 2

∫
1

0

(
1 − 𝑢 ( 1

𝛽
− 1)

)+
(1 − 𝑢) 𝑑𝑢

)
+𝑂 (𝜖2,𝑛)

= 𝜎2

(
1 − 2

∫ 𝛽

1−𝛽 ∧1

0

(
1 − 𝑢

1 − 𝛽

𝛽

)
(1 − 𝑢) 𝑑𝑢

)
+𝑂 (𝜖2,𝑛)

= 𝜎2

(
1 − 2

(
𝛽

1 − 𝛽
∧ 1

)
+ 1

𝛽

(
𝛽

1 − 𝛽
∧ 1

)
2

− 2

3

1 − 𝛽

𝛽

(
𝛽

1 − 𝛽
∧ 1

)
3

)
+𝑂 (𝜖2,𝑛)

=: 𝜎2^2 (𝛽,∞) +𝑂 (𝜖2,𝑛). (108)

Now use (108) and (105) in (88) to see that the assertion corresponding to 𝑏 = ∞ also holds.

Let’s now prove that the statement in (77) holds. Using Assumption 5 and after some algebra, we

have almost surely,�����√𝑛 (
¯\𝑛 − \ (𝑃)

)
𝜎

− 1

𝑏𝑛

𝑏𝑛∑
𝑗=1

√
𝑛

𝑚𝑛

(
𝑊 (𝑛𝑐 𝑗 +𝑚𝑛) −𝑊 (𝑛𝑐 𝑗 )

) ����� ≤ Γ𝑚−𝛿−1/2

𝑛

√
log

2𝑚𝑛, (109)

where Γ is a well-defined random variable with finite mean, 𝛿 > 0, and

𝑐 𝑗 = ( 𝑗 − 1)𝑛 −𝑚𝑛

𝑏𝑛 − 1

.

Also, since𝑚𝑛 → ∞ and𝑚𝑛/𝑛 → 𝛽 > 0, we see that

1

𝑏𝑛

𝑏𝑛∑
𝑗=1

√
𝑛

𝑚𝑛

(
𝑊 (𝑛𝑐 𝑗 +𝑚𝑛) −𝑊 (𝑛𝑐 𝑗 )

) d→


1

1 − 𝛽

∫
1−𝛽

0

𝑊 (𝑠 + 𝛽) −𝑊 (𝑠) 𝑑𝑠 𝑏 = ∞;

1

𝑏𝛽

𝑏∑
𝑗=1

𝑊 (𝑛𝑐 𝑗 +𝑚𝑛) −𝑊 (𝑛𝑐 𝑗 ) 𝑏 ∈ N \ {1},

implying along with (109) and the functional central limit theorem (Theorem A.5) that the assertion

in (77) holds.

□
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