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ABSTRACT

This paper considers sample average approximation (SAA) of a general class of stochastic optimization
problems over a function space constraint set and driven by “regulated” Gaussian processes. We estab-
lish statistical consistency by proving equiconvergence of the SAA estimator via a sophisticated sample
complexity result. Next, recognizing that implementation over such infinite-dimensional spaces is possible
only if numerical optimization is performed over a finite-dimensional subspace of the constraint set, and if
sample paths of the driving process can be generated over a finite grid, we identify the decay rate of the
SAA estimator’s expected optimality gap as a function of the optimization error, Monte Carlo sampling
error, path generation approximation error, and subspace projection error.

1 INTRODUCTION

We consider infinite-dimensional stochastic optimization problems of the form

min  J(F) = /C J(x)dnt (x) = /C (JoT) (F +2)dm ()
F

s.t. Fe {%6%%
where J: C — R is some “cost” functional, C is the space of R-valued continuous functions with domain
[0,T] and equipped with the supremum norm, .%# C C is a subspace of C, and F € .% is the “decision
variable”. The functional J takes as argument “paths” X’ := I'(F + Z), where I' : C — C is a continuous
“regulator” map that confines Z+ F to a subdomain of C, Z is a C-valued Gaussian random variable that
induces a measure 7y on the Borel space (C,%) and X induces the ‘push-forward’ measure 7. (see
Definition 8 below).
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1.1 Motivating Examples

Roughly speaking, the problem formulation in (OPT) asks for the extent to which Gaussian paths Z should
be (additively) shifted so that the resulting cost JoI'(F + Z) is minimized in expectation. And, as the
following examples suggest, (OPT) subsumes a multitude of problems in operations research, optimal
control and machine learning, when formulated as stochastic optimization problems driven by Gaussian
processes.

Example 1 Let ¥ = W0172 the Sobolev space consisting of R-valued absolutely continuous functions
with L?-integrable derivatives and initial value 0. If Z = 6B, where B is a Wiener process with measure 7
and o > 0, then (C,.#,m) is the classic Cameron-Martin-Wiener space. Let I" be the so-called Skorokhod
regulator map, which satisfies I'(x)(-) = x() + supy,. max{—(x(s)),0} for any function x € C. Then, the
random variable X is a so-called reflected Brownian motion (RBM) with drift F. Consider a cost functional
overx € C, x— J(x) :=a fOTg(x(s))ds+a2G(x(T)), where (a1,a2) €R?,andg: R —Rand G: R — R are
well-defined functions. The corresponding optimization problem represents a class of ‘open-loop’ optimal
control problems over WO1 2 driven by an RBM. This class of problems arises in nonstationary queueing
network control, scheduling and inventory control.

Example 2 Suppose that X/ =F+Z, Z=0B and Z :={F € C: Zrp =0, p(0) = &, }, where £ =
0+ F'(t)d— %2 is the Fokker-Planck partial differential operator corresponding to X', F'(t) = dF (t)/dt
and p(0) = §,, is the initial condition. The solution of this equation is the marginal density pr(t,-) of X (¢).

Consider the cost functional J(x) := log (pr (T, x(T))/po(x(T))) where po(-) is a reference density function,

and the optimization problem mingc # E[J (X¥)] = [palog (%(TZ)Z)) pr(T,z)dx. Roughly speaking, this

problem computes arbitrary Gaussian approximations pg (7, -) to po(-) by minimizing the Kullback-Leibler
divergence between these densities. This formulation underlies the use of so-called stochastic normalizing
flows for variational inference (VI) in probabilistic machine learning.

1.2 Method and Overview of Results

Analytical solutions to (OPT) are accessible only in a few special cases, and simulation optimization is
natural and almost imperative. This paper explores the use of sample average approximation (SAA) toward
solving (OPT). Specifically, recall that the SAA approximation of (OPT) is defined as

. 1y iid
st. FeZF, {Saaform&%t'b%%

where the random variables Z := (Z;,--- ,Zy) are independent and identically distributed (iid). The main
idea in SAA is the recognition that since (MC-OPT) is a deterministic optimization problem that in a sense
approximates (OPT), a solution to (MC-OPT) might reasonably be expected to approximate a solution
to (OPT). While this idea is sound in principle, the context raises a number of statistical questions that
need resolution. Accordingly, this paper establishes the following two “first order” results.

1. Asymptotic Consistency. We first demonstrate that the optimal value and optimizers of (MC-OPT) are
asymptotically consistent (in the number of samples N from 7y) by proving convergence in probability. Our
approach to this first establishes a novel uniform equiconvergence result over function spaces by showing
that the Gaussian complexity of the SAA estimator of the objective is inversely proportional to v/N (for
every N), assuming the diameter of the constraint set .# is bounded.

2. Rate of Convergence. The Gaussian paths {Z;, j > 1} from my in (MC-OPT) cannot in general be
sampled directly. For instance, if Z; is a Brownian motion, then sample paths may (only) be approximated
using Euler-Maruyama or Euler-Milstein schemes (Asmussen and Glynn 2007). In other words, the
problem in (MC-OPT) is “fictitious” from the standpoint of computation and a further approximation
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to (MC-OPT) is necessary for implementation. Furthermore, since .% might be infinite dimensional, the
solving of (MC-OPT) must be performed (only) over a finite-dimensional subspace of the constraint set .%
to allow computation using a method such as gradient descent. Our second main result is a convergence
rate result that accounts for the above two sources of error, and quantifies the expected decay rate of the true
optimality gap of a solution obtained by executing mirror descent on a finite-dimensional approximation
of (MC-OPT) generated using approximations to {Z;,j > 1}. The convergence rate result clarifies the
relationship between four sources of error: (i) numerical optimization error due to the use of an iterative
scheme such as mirror descent; (ii) Monte Carlo sampling error; (iii) path approximation error due to
“time” discretization; and (iv) projection error due to the use of a finite-dimensional subspace in lieu of .%.

1.3 Literature

The use of SAA methodology toward stochastic optimization in R has an extensive literature, as comprehen-
sively surveyed in (Shapiro, Dentcheva, and Ruszczynski 2009). Corresponding results in the non-Euclidean
setting appear in (Dupacovd and Wets 1988; Robinson 1996)) where the feasible .# is assumed to be finite
dimensional. Especially relevant to what we present here is the extensive treatment of consistency and
uniform rate properties of M-estimators (van de Geer 2009) in normed spaces. (A solution to (OPT) is
indeed an M-estimator.) However, we are not aware of infinite-dimensional SAA rate results in the typical
context where the SAA estimator is not available in “closed form” but is computed using an iterative
optimization technique. Nonetheless, as pointed out in the introduction, there are a number of problems
that require optimization over function spaces, wherein SAA is a natural approximation to such problems.

2 PRELIMINARIES

In this section, we discuss mathematical preliminaries including key definitions, assumptions, and notation.

2.1 Key Defintions

In the definitions that follow the space .# is a subspace of a normed space X over R. Recall that a Banach
space is a complete normed space.

Definition 1 (Linear Functionals) x:.% — R is called a linear functional on the (real) normed space .7 if

x(aF)=oax(F),a €eR; x(F+F)=x(F)+x(F),,F,c.Z.
A linear functional x : # — R is said to be a bounded linear functional if
x|l := sup{|x(F)| : |[F|| = 1,F € F} <ee.

It can be shown that x : . # — R is a bounded linear functional if and only if x is continuous on .%, and that
continuity of x at any point Fy € .# implies boundedness of x. (It is important that x : .%# — R being bounded
does not mean supy # [x(F)| < eo; indeed, it is routinely the case that ||x|| < eo but supgpc & [x(F)| = e°.)

Definition 2 (Dual Space, Adjoint Space, Conjugate Space) The space .#* of linear functionals on .%#
is called the algebraic dual space of .%. .#* should be distinguished from the dual space .%’, which is
the space of of bounded linear functionals on .%. .%* is sometimes also called the adjoint space or the
conjugate space of % .

Definition 3 (Dual Norm) The (operator) norm of the functional T € .%* is called the dual norm or
conjugate norm of T

T
1T+ := sup{’x :xeﬁ,x#O}

[l
=sup{|Tx|:x € .Z,|x| =1}. (1)
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Definition 4 (Right and Left Directional Derivatives) The right directional derivative J'_ (F,v) and the left
directional derivative J' (F,v) of the functional J : .% — R at the point F € .% are defined as

J\(F,v):= lim l(J(F+tv) —J(F));

t—0t ¢

1
J_(F,v):= lim - (J(F+tv)—J(F));
t—0~ t
Definition 5 (Giteaux and Fréchet Differentiability) The functional J : % — R is Gdteaux differentiable

at F € 7 if the limit

Sy(F)(v) ::}EI&%(J(F+tv)—J(F)) {defl’l:gateaué})

exists for each v € .7, and S;(F) € %/, that is, S;(F)(v) : % — R is a bounded linear functional.
The functional J : % — R is Fréchet differentiable if the limit in (2) is uniform in v, that is,

(F+v) = (F)+S;(F)v) = o(lvl), veF.

From Definition 4 and Defintion 5, we see that Fréchet differentiability = Géateaux differentiability =
Directional Derivative Existence. Also, if .# is finite-dimensional and J is Lipschitz in some neighborhood
of F € .%, then J is Fréchet differentiable at F if and only if it is Gateaux differentiable at F.

Definition 6 (Subgradient and Subdifferentials of a Convex Functional) The functional J : .# — R is convex
if for any & € [O, 1], J((XFl + (] — Ot)Fz) > OCJ(F]) + (] — Ot)J(FQ), VF],FZ € .Z. SJ(F()) € .Z' is called a
subgradient to J at Fy € .% if

J(F) > J(Fo) + S, (Fo) (F — o). (eqsubgradsy

The set dJ(Fy) of subgradients to J at Fj is called the subdifferential to J at Fy. Convex functionals have
a subdifferential structure in the sense that if J:.% — R is convex, then dJ(Fy) # 0 for each Fy € .F°;
conversely, if dJ(F) # 0 for each F € .#°, then J is necessarily a convex functional.

Definition 7 (Mirror Map) Suppose 4 D.% and ZN.7 #0. A map v : 9 — Z is called a mirror map
if it satisfies the following three conditions:

1. v is Fréchet differentiable and strongly convex in &;
2. for each y € .77, there exists F € .% such that Vy/(F) =y; and
3. limpgg [W(F)[« — Foe.

Definition 8 (Push-Forward Measure) This paper focuses on stochastic optimization problems defined with
respect to regulated Gaussian processes, X/ =I'(Z+ F), whose paths are confined to a subdomain of C. To
define the measure corresponding to such a regulated process, define the shift operator T, (x) : (#,C) — C
as Ty(x) = g +x, and the push-forward measure corresponding to the shift operator 7, (A) := (T,)+ () (A) =
no(Tgfl(A)) for any A € €. Then, the push-forward measure corresponding to X is defined as 7%(A) =

nr(T~1(A)), for any A € €.
2.2 Key Assumptions

We now list key assumptions on the cost functional J: C — R to be invoked in the results that follow.
Assumption 1  The cost functional J : C — R is Fréchet differentiable.
Assumption 2 The cost functional J: C — R satisfies

J(x+F)—J(x+F)| <KF — |, 4)

where K, > 0 for every sample path x € C, Fi,F> € . and E[K}] < +oo for some 2 < p < +oo.
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Assumption 3 The cost functional J is L-Lipschitz in z € C, i.e., for any F € .% and z,7 € C, we have
lJ(z+F)—J(Z +F)| < kllz— 7| )

Assumption 4 The cost functional J: C — R is sufficiently regular such that the composite functional
JoI':C — R is integrable, that is, [ |(JoI')(x+F)|dmo(x) < +oo.

A§sumpti0n 5 ~The composition JoT:Cx.F —C is Lr z-Lipschitz in F, that is, for any Z € C,
|Jol(Z+F) —JoT(Z+ B)|| < Lrz|Fi — B ||, where E[L}. ;] < o.

3 EQUICONVERGENCE AND CONSISTENCY

Our approach to proving consistency is to first establish equiconvergence of the SAA functional over the
subspace .#. For simplicity, at the outset let us assume that I" is the identity map. We will subsequently
observe that the forthcoming results extend to the reflected case. We prove equiconvergence by bounding
the Gaussian complexity of the SAA, defined as

B (F) = Eq {eq:gc—de&ﬁ

FeF i=1

sup { ! Zg, (Zi —i—F)}

where the expectation is taken with respect to the Gaussian random vector g ~ .4°(0,Iyxy), which is
independent of the iid samples Z := (Z;,---,Zy). We assume that the subspace .# C C satisfies
Assumption 6 .7 has a finite diameter. That is, diam (.7 ) := supg, pc 7 [|[F1 — F2[[e0 < +o0.
This is a reasonably strong assumption, that is nonetheless satisfied by many problems settings; for instance,
if the function class .% is parameterized by a compact set. We also believe that it should be possible to
relax this condition, at the expense of more complicated computatlons~ 3

Next, define the RV -valued random field ¢.(-) as F +— %y (Z) := (J(Z; +F),---J(Zy + F)) . For each
z € CV define the set B = B(z) :={9r(z) : F € #} CRY, and the pseudometric d : B x B — [0,),
given by

{eq:pmetrigﬁ

d(x,y) = @)pllFx = F |-,

an

where Fy, F, € .7 correspond to x,y (respectively) through the map ¢, for any x € RV ||x||, := (XX, |x;|?) 1/p
and K, are the Lipschitz variables defined in Assumption 2.
Let{Yr(Z) : F € .¥ } be the real-valued random field defined as Yr(Z) := f YN | giJ(Z;+F), where g is

a N-dimensional standard Gaussian random vector, as before. The next lemma shows that {Yz(Z) : F € F }
satisfies a sub-Gaussian concentration inequality, conditioned on Z.

Lemma 1 For any F,G € .# such that [|F — G|l # 0 we have P(|Yr(z) —Y5(z)| >u|Z = z) <
2exp (—m) , where d(-,-) is defined in (7) and L:=  sup ||y|l; =1 for ¢ > 2.

e yeRY: [y2=1
Proof.  FixF,G € % suchthat F # G. By Holder’s inequality we have |Yr(Z) — Y6 (Z)| < ﬁHqung(Z) -
96(Z)| p, where 1 >+ 5 =1 and g > 2. Next, following Assumption 2, we have

N 1/p N 1/p
19 — %6l p = (Z J(Zi+F)—J(Zi+G)) ) < (Z !Kz,-l”IIF—Gllfo> = [|[F — G| [|K(Z)] -

=1 i=1
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It follows that

u\/]v {8g:cond-boun
2) <P (lell > 24! &
) K@) |IF - Gl

It is straightfoward to see that x — ||x||, is a Lipschitz function from R to R. Then, by (Boucheron, Lugosi,
and Massart 2013, Theorem 5.6), ||g||, satisfies the sub-Gaussian concentration inequality PP (||g[|, > €) <

P <\YF(Z) —Yo(2)| > u|Z =

2exp ( 2L2> where L is defined above. Applying this to (8) completes the proof. O

Next, we show that an €-cover under the pseudometric can be “translated” into a corresponding &-cover
under the supremum-norm.

Lemma 2 Fix € >0. Let z= (z1,---,zv) € CV and suppose By,---,B; CR" is an g-cover of & =
{9r(z) : F € Z} under the pseudometric (7). Then, there exist subsets Bj,-- -, B} that form an &'-cover of
Z under the supremum norm || - ||, with &' = =1 Ing)\l
Proof. By definition, B; = {y € # : d(y;,y) < €} for some y; € #. Consider the set {F € ¥ : 9p(z) €
B;} =: B;. For any F € B;, we have d(y;,%r(z)) = ﬁ”K(Z)H[,HF}, — F||o < &. It follows that ||F), — F||e <
eV/N _ ¢
K@, —* - ~
Now, let F' € # \U'_,B;. 1t follows that min,<;<; ||y, — F’|| > €, implying that d(y;, % (z)) > €.
Therefore, ¥ (z) ¢ UleBi. But, this is a contradiction since By,---,Bj is an €-cover of 4, implying that
F\ Ulegi =0. o
The proof of equiconvergence in Theorem 2 below follows as a consequence of Proposition 1 and
Proposition 2 below.

Proposition 1  Suppose Assumption 1 and Assumption 6 hold. Furthermore, suppose that logN (g, Z, || -
|o) < & 1/* for some o > 1 and € > 0. Then, for any Fy € .%, there exists a constant 0 < C < +oo such
that

a—1
ClIK(2z)]l, <1 . ) Y eqg:gauss—complex
Z=1z| < —F | =diam(F i
]_ o pdiam() )

Proof.  ltis straightforward to see that {Y#(Z) : F € .# } is a separable random field. Further, by Lemma 1
{Yr(Z): F € 7} is sub-Gaussian. By Assumption 6, and the definition of the pseudometric d, we have
D:=sup, ., cpd (z1,22) < +eo. By Dudley’s Theorem for separable random fields it follows that there exists

7= z} < CfD/2 \/10gN(e,4,d)de. By Lemma 2
it follows that N(e,%8,d) =N(&',.Z,|| - ||«), where € = € HK\(F)H Then, changing variables in the integral
above to €', we have D' = Dv/N/||K(z)||, = diam(.%) and

E, [sup |Yr — Y|
FeZF

a constant 0 < C < 4-oo such that [, [supFey \Yr —Yr|

D)2

D/2 K
/ logN (e, #,d)de = H?}’p/ V1ogN (g, 7, || -|l«)de
0 0

a—1

K@y o (1 )€
=N —=r po (Zdzam(d)> .

Note that by Assumption 6 it follows that the right hand side above is finite. O
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Recall that the sub-Gaussian diameter for a metric probability space (2", d, ) with metric d and measure
7 is defined as A2;(2") := 0*(Y) where 6*(Y) is the smallest & that satisfies E [e*'] < e4"/2 1 € R,
Y :=ed(X,X') is the symmetrized distance on the metric space 2, € = 1 with probability 1/2 and X, X’
are 2 -valued random variables with measure 7. Consider the following generalization of McDiarmid’s
inequality.
Theorem 1 (Theorem 1 (Kontorovich and Ramanan 2008)) Let (£",d, ) be a metric space that satisfies
AsG(Z) < +oo, and @ : 27V — R is 1-Lipschitz, then Ez[@(Z)] < +oo, and 7 (|Q(Z) — Ez[@(Z)]| > 1) <

2exp (—Wz(%)) , where Z = (Z,---,Zy) is an independent sample drawn from 7.

Observe that this result significantly loosens the requirements in McDiarmid’s inequality from bound-
edness to Lipschitz continuity.

Proposition2 LetZ = (Z;,---,Zy)be Ni.i.d. random variables with measure 7my. Suppose the cost function
satisfies Assumption 3. Suppose that the metric probability space (C, || ||«, 7o) satisfies Agg(C) < +oo.
Then for any F € % and 0 > 0, with probability at least 1 — 3, we have

N 2K2A2 (@Hogkhfd )R\ damp1e
g 01 Lm0 |« (A lesy By

Remark: We note that the assumption that Agg(C) < +oo is reasonable — for instance, it is satisfied in the
case where 7 is the Wiener measure.

1
N !

J(F) < J(z,- +F)+E

HFﬂz

Proof.  We start by considering the functional ¢ : C¥ — R defined as ¢(z) =
suppez {J(F)— 5 XN, J(zi+F)}, foranyze CV. Let 2= (z1,+- ,zn) €CV, 2/ = (2},-++ ,zy) € CV; the
metric distance between these vectors of functions is given by ||z—2'|| = Y, ||z; — Z!||-. Also, define the
sequence of vectors z!' = (2,22, ,zn), 22 = (2},25, 23, 2N)s ---s 2% = (2),2h,---,2y) = 2. Using the
triangle inequality, it is straightforward to see that

9(2) —9(2)| = |p(z) — p(z') + 9(2') — () +--- + 9(z" ") —<{p(z’)l et
_1.{eg;varphi-metric

<[p(@)—o@E)|+lo@E) — @)+ +|p@"") =l (1)

where each pair of z€~! and z* differs only by the kth element. Let z*(i) represent the i element of the

k™ vector and F* € .% be the function that achieves the supremum in ¢(z). For any such pair of vectors,
we have

oz —p(z")| =

an

L« 7 ok—1y:
I?lelg{.](F) N J(zk 1(1)+F)}

1
-5‘;2-{(“” v

1, - I B K
< | Ut F) = J(g+ F) | < Sl 2

J(zkl(i)+F)> +;, (J(zx+F)— f(ZHF))} ’

an

where the last inequality follows from Assumption 3. Consequently, substituting this into (11) we have

() — (@) <|p(2) - 0(@)| + o) — @)+ +]oz"") — 92|
%(HZI 2 lloo+ 1122 = Zhlloo + -+ + lan — Ziylles) = 7” Jegirarphi-lip)

In other words, the functional ¢ is %—Lipschitz continuous.
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Now, by hypothesis we have A%G (C) < 400, and therefore applying Theorem 1 we have
_m(N N Ni? Ni?

(2K2A§G(c)1og(1/5)) 1/2
e e I

implies that ¢ > Hence, with probability at least 1 — 3§, we have ¢ < E(¢) +

1/2
<w> , which yields the final expression in (10). O

Now, our main sample complexity result follows by combining Proposition 1 and Proposition 2. By

taking an expectation with respect to 7 over (9) it follows that the Gaussian complexity of the function
space .Z is

a—1

Fu(F) = “EW\KF](V)”] <2dlam(y)> N fearapy

provided Ez [|[K(Z)]| ] < 4oo; this is a consequence of Assumption 2.

Theorem 2 Let .7 C C satisfy Assumption 6 and suppose that logN(€,.7 .|| - [|) < e /% for a > 1
and £ > 0. Suppose the cost function J satisfies Assumption 1, Assumptlon 2 (for some 1 < p < 4o0) and
Assumption 3. Let Z = (Z;,---,Zy) be an i.i.d. sample drawn from my. Then, for any § > 0 and some
1 < p < +eo, with probability at least 1 — , for any F € .% we have

N
; (Zi+F) +2,%>N(ﬂ)+0< l(’g(]\l/‘s))

Proof. We sketch the proof. By standard considerations (see (Bartlett and Mendelson 2002) for instance),
it can be shown that E [suppe 5 {J(F) — x XV J(Z;+ F)}] < 2%y (F). The theorem follows by using
this to bound the right hand side in (10). [

Recall from Assumption ?? that the regulator map I' is assumed to be Lipschitz continuous and
therefore the composed functional JoI" is LLr-Lipschitz continuous. Consequently, the consistency
result proved in Theorem 2 holds for the composed functional as well. Theorem 2 yields a uniform
convergence (or ‘equiconvergence’) result for J and, in particular as an immediate consequence we have |J* —
Tyl L0 as N — oo, where J* := infrezJ(F) and Jy, := infre 7 & L J(Z; + F). Furthermore, let IT; :=
arginfre s ~ YN J(Z;+ F) and n* := arginfpc 7 J(F). Consider two scenarios, J* > Jj, and J* < J§. In
—J%| < [J(IT}) — J%|. In the latter case, N J(Z;+m*) —J*|. Therefore,

* T * T 1 Al T * * * T 1 Al T * *
=y <max{|J(Hn)—JN|,|NZJ(Z,~—|—7r )—J |} <L)~y + 15 Yzt 7t =07 50
i=1

i=1
as N — oo by Theorem 2.

4 RATE OF CONVERGENCE

Let’s introduce further notation to keep our exposition clear. Recall that .% is a compact subspace of
the space of continuous functions on [0,7]. Suppose F € .# and that we can generate N independent
realizations of the process {(Z,(),r € [0,T]} with measure ﬂ(l; , and having continuous paths and having
possible non-differentiabilities over the partition points

O=fn<h<bh< <t 1=T,
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where
h= h(n) = max{t1 —to, 00 —1t1,...,ly —tnfl}.

Let .%, denote an n-dimensional (n < o) closed subspace of .# such that elements in .% can be approached
by a sequence of elements in .%#,, that is, for every F € %, there exists {F,,n > 1},F, € %, such that
||F, — F|| — 0. An example of .%, is the span of the first n Legendre polynomials (Kreyszig 1989, pp. 176)
on the interval [0, T]. More generally, .%, can be chosen as the span of the first n elements of any Schauder
basis of .%. (Recall that a sequence {P], J > 1} of vectors in a normed space .% is called a Schauder basis
of .7 if for every F € .% there is a unique sequence {a;, j > 1} of scalars such that [|F —Y"_,a;P;|| — 0
as n — o0.) Consequently, we assume that

Assumption 7 The closed finite-dimensional function subspace .%, C .% is such that

y(n) := sup ||F —TI1z,(F)|| = O(g(n)),

FeZ

{ass:findimcon

ory

where g(n) — 0 as n — co.
With the above notation in place, the SAA problem (MC-n-OPT) approximating (OPT) is:

N ..
{JNh . Z Zh]+F } Zh,jg\c/lnﬁ,h
st F e 7, RIS

where the measure 7 ;, approximates the measure 7. For brevity, we will write Z;, ; as Z; in the remainder
of this section. To facilitate a basic result that quantifies the quality of the solution to (MC-n-OPT) as an
estimator to the solution to (OPT) we assume that

Assumption 8 The random functional F + JoI['(Z+F) is convex in F.

Observe that the problem in (MC-n-OPT) is obtained by replacing the expectation appearing in (OPT) by
a Monte Carlo sum obtained by generating N samples of a process {X/ (¢), € [0,T]} that approximates the
process {X% (¢),t € [0,T]}. We define the following optimal values and optimal solution (sets) corresponding
to (OPT) and (MC-n-OPT), the existence of which will become evident.

J = inf {J(F)}; F*:=arginf{J(F)} {moren&tS})
FeZF FeZ
Ing = inf {Iva(F)}s Py =arginf{Jy ,(F)}.
Fez, FEJ,,

It is important that the optimization in (MC-n-OPT) be performed over a finite-dimensional subspace
F, of Z so as to allow computation using a method such as gradient descent (Nesterov 2004). Also, in (15),
notice that we have suppressed the dependence of Jy, , and .%; , on the partition width / used to generate
Monte Carlo samples from the measure 7 ;. A result we présent shortly will imply that the sub-space
dimension n and the partition width A bear a certain relationship that can be exploited to maximize the
decay rate of the expected optimality gap E [J5, , —J*].

4.1 Consistency and Rate of the SAA Estimator

We call any solution Fy , € %y, to (MC-n-OPT) an SAA estimator of the solution to (OPT). An SAA
estimator cannot be obtained in “closed form” in general. However, given that (MC-n-OPT) is a deterministic
convex optimization problem over a closed finite-dimensional subspace, one of various existing iterative
techniques, e.g., mirror descent (Bubeck 2015), can be used to generate a sequence {Fy , ,.k > 1} C Fy,
that converges to a point in .#y , that is, Fy , , — Fy , as k — o for fixed N,n,h. Before we present the
main result that characterizes the accuracy of Fl\j,n,k’ we state a lemma that will be invoked.
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Lemma 3 Let Assumption 2 and Assumption 6 hold, and suppose there exists Fy € .# such that
- i fi
O3 (h) := Var(J(X[)) <oo; X[ N AL HEInvags)

Then,
sup Var(J/(X[) < (oo(h) +diam(F), /E[L2.,)) g {varbiy

FeZ

Proof.  We can write

- ~ - - initsplit
TG ) = TG0 + 7)) = ), R
and due to Assumption 5,
~ ~ ijtil
) = T05)| < Ly 7 diam () )
where E[Lf. ;] < eo. From (19) we see that
- - di
Var(J(X[) —J(X[")) <E [L} ] diam?(.7). (vardithy,
Use (18) and (20) along with (16) to conclude that the assertion of the lemma holds.
]

We now present the main rate result governing the solution estimator Fy , , of (MC-n-OPT).

Theorem 3 Let Assumptions 2, 6, 7, 8 hold, and suppose that the method used to generate paths X{ iiﬁl 7r£ n

exhibits weak convergence order 3, implying that there exists £; < e such that

sup [E [J(X])] = J(F)| < t,hP. {discpst)
FeZ

Furthermore, suppose mirror descent (Bubeck 2015, pp. 80) is executed for k steps on (MC-n-OPT):

Fynjr1= sup Dy(x,Gnnjt1);
xeF,NGD
VY(Gynji1) = VY (Fnnj) = NSn, (Fyng); J=0,1,....k—1
* - {segest
Fyni =7 Y Fvaj 2
=1

where ¥ : 2 C % — R is a chosen p-strongly convex, mirror-map (see Definition 7) with %, N2 # 0,
the Bregman divergence

Dy (x,y) == y(x) — (y(y) +(Vy(y),x—y), Vxy€ P,

R /2
n =no;\/7p, no € (0,1)

where R? 1= sup,c 7 o, W(x) — l//(Ij”N7n7(.)), and K = N‘lxylezj is the iid sample mean of Lipschitz
constants Kz,,j =1,2,...,N appearing in Assumption 2 satisfying

and the step size

sup [|Sy, (F) |« < K5 Sy, (F) € dIwa(F);  E[KZ] <o, (23)

FeZ



Zhou, Honnappa and Pasupathy

where S;, , r) is a subgradient and dJy »(F) the subdifferential of the convex functional Jy  at the point
F. Then, for all k > 1,

. . ¢l e 5 {saafinbd
0<E[J(Fyi)—J(F)] < —=4—+c3h ) o
<E[J(F ) —J(F*)] < \/];Jr \/N+C3 +cag(n) }(j })|
where
5 . 1/2
cvim 2 (1) (vt + 7)) )
)= i (dlam(ﬂ) E[L% Z] + G()(h)) >
VN ’
c3 = El’ and
ey :=E[K7]. *)

Proof. Observe that

0 <J(Fypp) =I(F") = J(Fy i) = Ina(Ey ) +INa(EN i) = TN (FY )
+Ina(Fy ) = () +J(F) = J(F7)

S INHEN ) = Inn(Fy ) + ) N (F) = J(F)|[+J(F;) = J(F7)
FE{F ooy}

opt. error sampling error
< INn(EN k) —INn(Fy )+ ) [Ina(F) —E Uy n(F)]|
Fe{F[:’.n,k’Fl\j.n‘an*}
* Lfintimebd
Y EUPI-IE)] - SE)IE - P

Fe{F]\j.n,MFl\);,n’Frf}

approx. error proj. error

where the penultimate inequality in (26) follows from rearrangement of terms and noticing that
Jth(FI\*;,n) _J(Fn*) < max(‘JN,h(Fﬁ,tz) _J(FAg;,n)L ‘JN,h(Fn*) _‘I(Fn*)‘)7

and the last inequality follows upon using the sub-gradient inequality (3) for the convex functional J(-).
Now we quantify (in expectation) each of the error terms appearing on the right-hand side of (26). Applying
mirror descent’s complexity bound (Bubeck 2015, pp. 80) when executed on the K-smooth function Jy (-,

we get
1 _ /2 {gradboun
0 < (¥ ) = I (Fin) < RR |2 )

Taking expectations in (27), we obtain:

1/2
0<E [JM;,(F,Q,,J() —JNJ,(F]C;JI)] < \}]E \/E <IE[R2] (llcVar(Kz) +E[K§])>e§<p.gradbou?2dgf)

Next, using Lemma 3 we get the bound on approximation error in (26):

(diam () /EIL2 ] +on(h)) . "0

E Y v n(F) =E[Ina(F)]|| <
FE{Fy , by nFi}

5
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Due to the assumption in (21), we have

{discb
sup [E Uy (F)] —J(F)] < (uhP. )
FeZ
And since J is convex, we see that
* % " * * % % subspacebd
JED) = I(E) < ISsEDIL N7 — 7)) < sup 18,(F) s 15— F*| < E K gl o5
cF

where the last inequality in (31) is from Assumption 2. Use (28), (29), (30), and (31) to conclude that the
assertion in (24) holds.

O
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