ECE 201, Section 3 Lecture 10

Prof. Peter Bermel September 12, 2012

Linearity Theorem

 For linear resistive circuits, output voltages and currents are a linear combination of independent sources, i.e.:

$$V_A = \sum_{k=1}^{N} [\alpha_k V_k + \beta_k I_k]$$

$$I_A = \sum_{k=1}^{N} [\alpha_k V_k + \beta_k I_k]$$

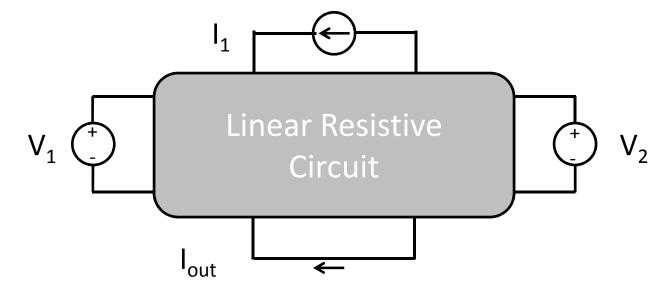
Superposition Property

- Superposition property: total output of linear circuit is sum of contributions from each independent source
- Special case of linearity property
- Applies to current and voltage but not power (in DC circuits)

Proportionality Property

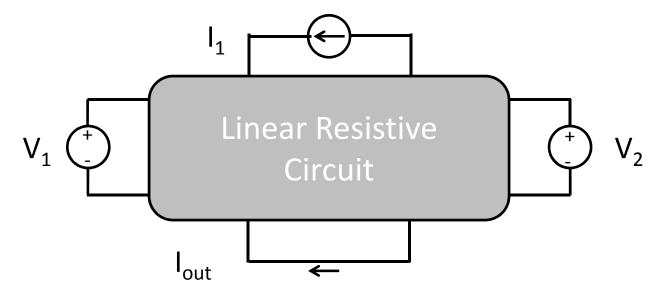
- Proportionality property: multiplying independent source amplitude by α changes corresponding output term by factor of α
- Again, applies to current and voltage but not power (in DC circuits)
- Will lead to some interesting tricks next time!

Example 1: Predicting Outputs



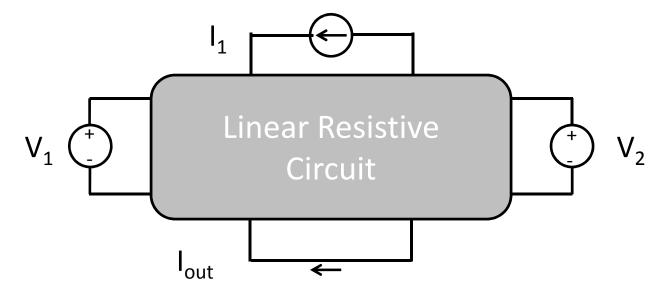
V ₁ (V)	V ₂ (V)	I ₁ (A)	I _{out} (A)
8	0	0	4
0	6	0	12
0	0	3	21
4	2	6	??

Example 1: Solution



V ₁ (V)	V ₂ (V)	I ₁ (A)	I _{out} (A)
8	0	0	4
0	6	0	12
0	0	3	21
4	2	6	4/2+12/3+2*21=48

Example 2: Predicting Outputs



V ₁ (V)	V ₂ (V)	I ₁ (A)	I _{out} (A)
6	12	9	12
3	6	4	9
2	8	4	8
6 9/12/2012	2 ECE 201-3,	4 Prof. Bermel	??

Hand Calculation Technique

 Can write down the following equations from the results above

$$3\alpha_1 + 6\alpha_2 + 4\beta_1 = 9$$
$$6\alpha_1 + 12\alpha_2 + 9\beta_1 = 12$$

If we multiply the first equation by -2 and add, we readily obtain β_1 =-6. This yields:

$$\alpha_1 + 2\alpha_2 = 11$$

$$\alpha_1 + 4\alpha_2 = 16$$

This readily gives us α_2 =2.5, α_1 =6

MATLAB Technique

```
>> M=[6 12 9; 3 6 4; 2 8 4]
M =
     6 12
>> A=[12 9 8]'
A =
    12
     9
>> alpha=M\A
alpha =
    6.0000
    2.5000
   -6.0000
```

MATLAB code

```
>> B=[6 2 4]

B =

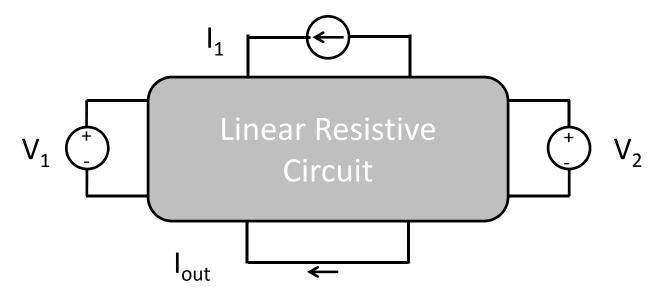
6 2 4

>> B*alpha
...

ans =

17
```

Example 2: Solution

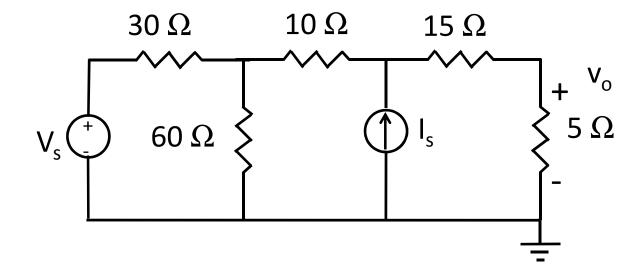


V ₁ (V)	V ₂ (V)	I ₁ (A)	I _{out} (A)
6	12	9	12
3	6	4	9
2	8	4	8
6	2	4	17

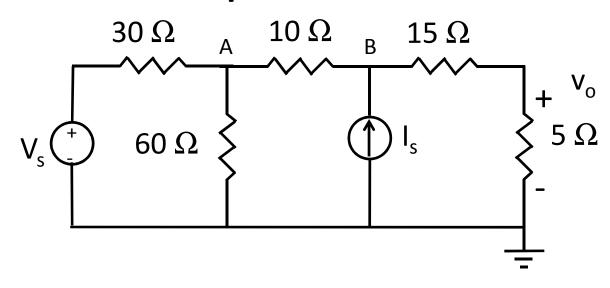
Example 3

• What are the coefficients α and β in:

$$v_o = \alpha V_S + \beta I_S$$



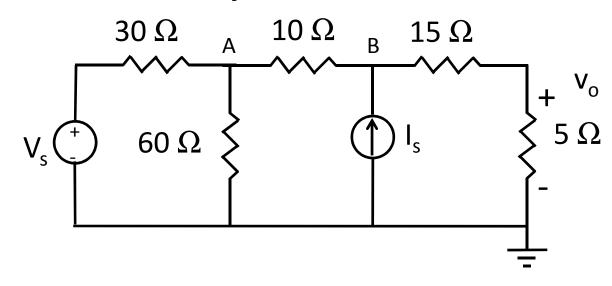
Example 3: Solution



$$\frac{V_s - V_a}{30} = \frac{V_a}{60} + \frac{V_a - V_b}{10}$$

$$I_s + \frac{V_a - V_b}{10} = \frac{V_b}{20}$$

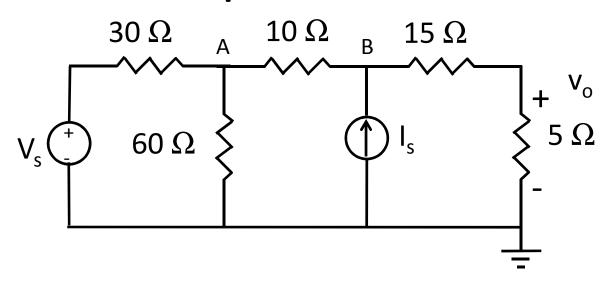
Example 3: Solution



$$\begin{bmatrix} 3/20 & -1/10 \\ -1/10 & 3/20 \end{bmatrix} \begin{bmatrix} V_a \\ V_b \end{bmatrix} = \begin{bmatrix} V_s/30 \\ I_s \end{bmatrix}$$

$$\begin{bmatrix} V_a \\ V_b \end{bmatrix} = \begin{bmatrix} 0.4V_s + 8I_s \\ 4V_s/15 - 12I_s \end{bmatrix}$$

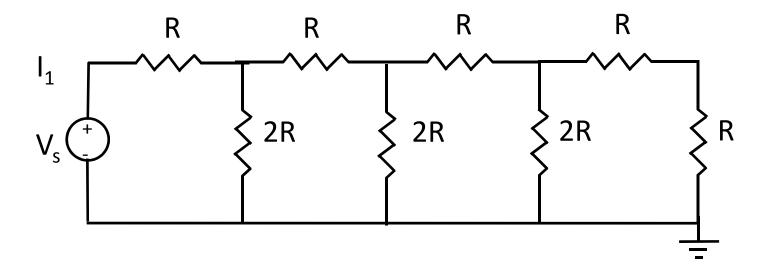
Example 3: Solution



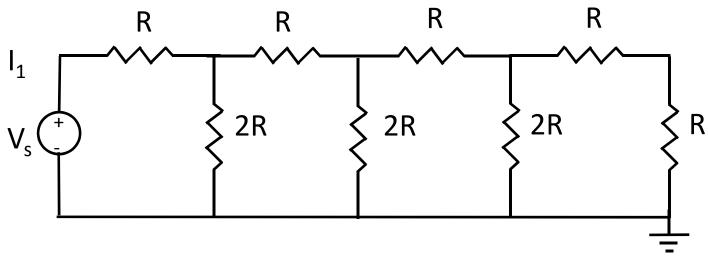
$$v_o = V_s/15 - 3I_s$$

Example 4: Ladder Networks

 Current and voltage everywhere for this 4loop network? What about N loops?



Example 4: Solution



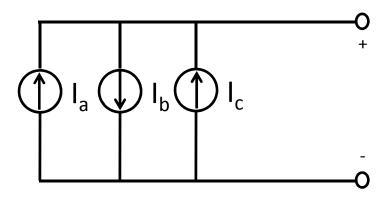
- Assume 1V across resistor at end
- 2V across first loop
- 4V across second loop
- 16 V across fourth loop
- 2^N V with N loops
- Actual voltages: V_s*2^{M-N}

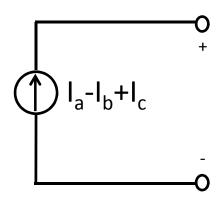
Source Transformations

Combining voltage sources:



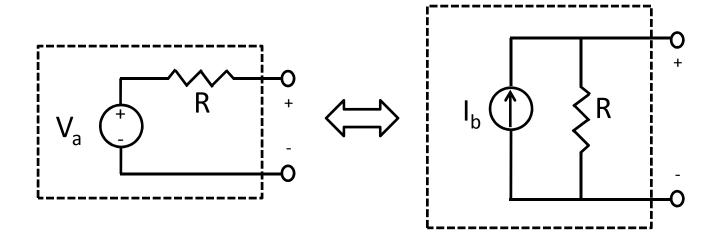
Combining current sources:



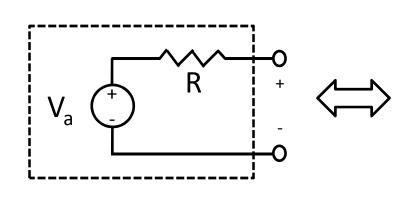


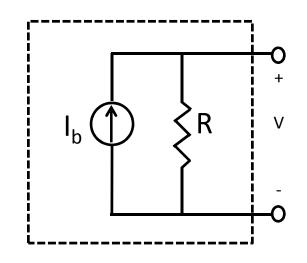
Source Transformation Theorem

- The following 2-terminal networks are equivalent:
 - Voltage source V_a in series with resistor R
 - Current source $I_b = V_a/R$ in parallel with resistor R



Source Transformation





$$V = V_a + IR$$
If $V_a = RI_b$, $V = R(I_b + I)$

$$I = V/R - I_b$$
$$V = R(I_b + I)$$

Homework

- HW #9 due today by 4:30 pm at EE 325B
- HW #10 due Friday: DeCarlo & Lin, Chapter 5:
 - Problem 3
 - Problem 8(a)
 - Problem 22(a)