ECE 201, Section 3 Lecture 11

Prof. Peter Bermel September 14, 2012

Example: Ladder Networks

 Current and voltage everywhere for this 4loop network? What about N loops?

- Assume 1V across resistor at end
- 2V across first loop
- 4V across second loop
- 16 V across fourth loop
- 2^N V with N loops
- Actual voltages: V_s*2^{M-N}

Source Transformations

Combining voltage sources:

Combining current sources:

9/14/2012

ECE 201-3, Prof. Bermel

Source Transformation Theorem

- These 2-terminal networks are equivalent:
 - Voltage source V_a in series with resistor R
 - Current source $I_b=V_a/R$ in parallel with resistor R

$$V = V_a + IR$$
If $V_a = RI_b$, $V = R(I_b + I)$

$$I = V/R - I_b$$
$$V = R(I_b + I)$$

Example 1

• What current flows through the central 3 Ω resistor?

 Rewrite each of the resistor/voltage source pairs as parallel resistor/current source pairs with currents of 36/12=3A; 30/6=5A; 40/40=1A; 48/24=2A

Combine parallel current sources and resistors.

$$I_L=3+5=8$$
 A; $I_R=1+2=3$ A
$$R_L=(1/6+1/12)^{-1}=4$$
 Ω ; $R_R=(1/24+1/40)^{-1}=15$ Ω

Transform back into V-R pairs:

$$V_L=32 \text{ V}; V_R=45 \text{ V}$$

Combine in series:

V=13 V; R=22
$$\Omega$$

I=V/R=0.59 A

Equivalent Networks

 Equivalent networks: distinct 2-terminal circuits which exhibit the same currentvoltage relationship

• Examples:

$$V = 8 + 4I$$

$$I = V/4 - 2$$

Equivalent Network Examples

$$I = V/4 - 2$$

$$V = 8 + 4I$$

Car Battery Problem

 What is the minimum value of Vo required to achieve a 50 A starter voltage?

Car Battery Solution

Source transformation yields

$$I=(12+V_o)/0.02; R_{eq}=0.01 W$$

 $V=6+0.5V_o$
 $I=50=(6+0.5V_o)/0.21 \rightarrow V_o=9 V$

Last Lecture on Exam #1

Monday begins Exam #2 material

Thévenin's Theorem

 An arbitrary 2-terminal network of independent sources and resistors can be represented by its Thévenin equivalent circuit

Norton's Theorem

 An arbitrary 2-terminal network of independent sources and resistors can be represented by its Norton equivalent circuit

Thevenin and Norton Circuits

- A bare voltage source doesn't have a Norton equivalent
- A bare current source doesn't have a Thévenin equivalent
- When both exist, $V_{oc} = R_{th}I_{sc}$
- Can also deduce Thévenin resistance from:

$$R_{th} = \frac{V_{oc}(t)}{I_{sc}(t)}$$

Homework

- HW #10 due today by 4:30 pm in EE 325B (if no one's there, leave it in an envelope on the door)
- HW #11 due Monday: DeCarlo & Lin, Chapter 5:
 - Problem 40
 - Problem 42
 - Problem 45