ECE 201, Section 3 Lecture 13

Prof. Peter Bermel September 19, 2012

Exam #1 Key Concepts

- Basic concepts: current, voltage, charge,
 Ohm's law, KCL, KVL, current & voltage division
- Combining resistors in series and parallel
- Resistor networks: node, supernode, loop analysis
- Source transformation

Formula Sheet for Exam 1

I=dQ/dt

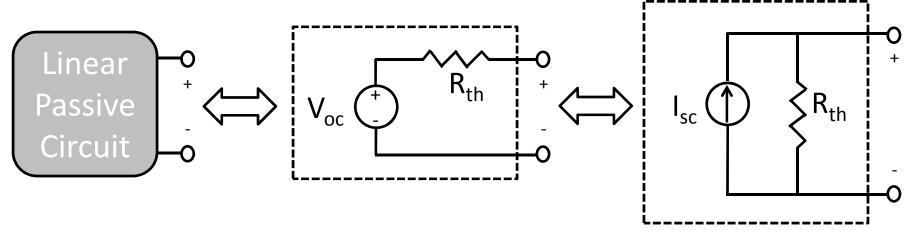
In series:

In parallel:

V=IR or I=GV

 $R_{eq} = \sum_{k} R_{k}$

 $G_{eq} = \sum_{k} G_{k}$


R=1/G

 $V_k = VR_k / R_{eq}$

 $I_k = V/R_k = IR_{eq}/R_k$

P=IV

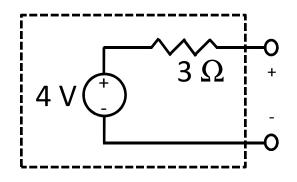
Thevenin and Norton Circuits

Thévenin equivalent circuit

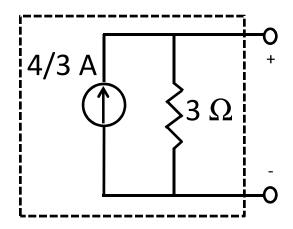
Norton equivalent circuit

Equivalent circuits related by:

$$V_{oc} = I_{sc}R_{th}$$

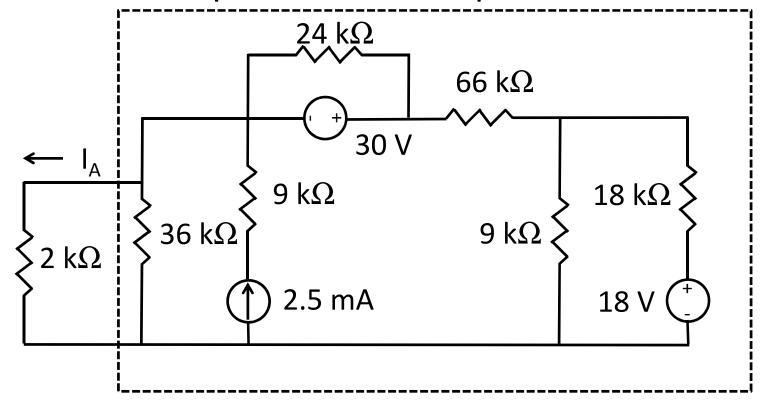

Example 1: Experimental Data

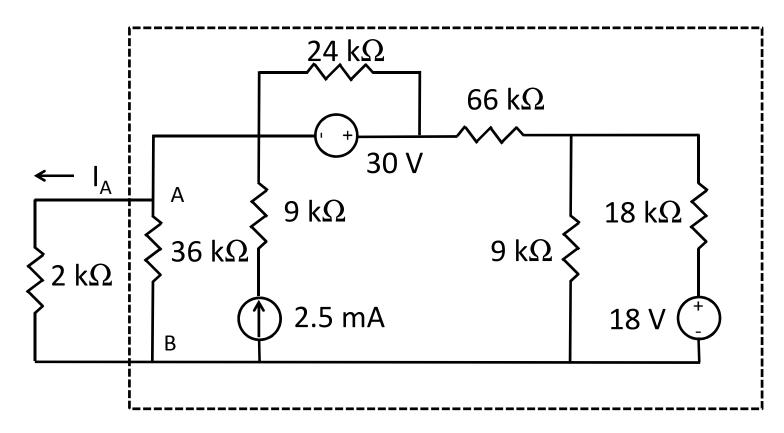
Given these currents and voltages observed at the outputs of a 2-terminal circuit, construct the Thévenin and Norton equivalent circuits.


I _A (A)	V _{AB} (V)
2	10
4	16
8	28

I _A (A)	V _{AB} (V)
2	10
4	16
8	28

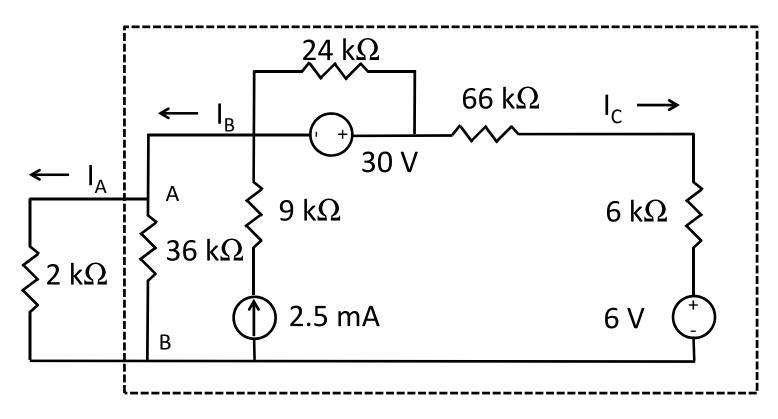
Fitting to $V_{AB} = \rho I_A + \nu$ yields ρ =3, ν =4


Fitting to $I_A = \gamma V_{AB} - \sigma$ yields $\gamma=1/3$, $\sigma=4/3$

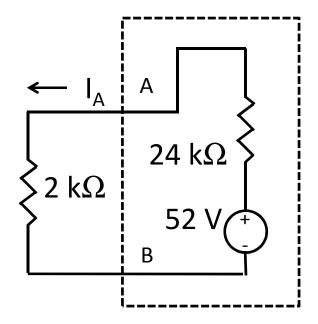

Example 2

(a) Find the Thévenin equivalent of the circuit below

(b) Find the output current and power at the load



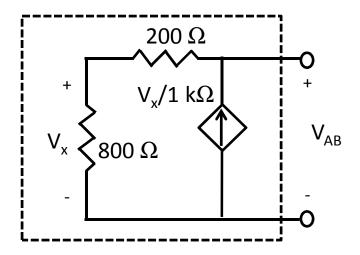
Solution

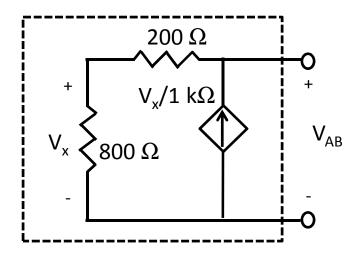

$$R_R = \left(\frac{1}{9} + \frac{1}{18}\right)^{-1} = 6 \text{ k}\Omega; I = 1 \text{ mA; V=6 V}$$

Solution

$$R_{th} = \left(\frac{1}{72} + \frac{1}{36}\right)^{-1} = 24 \text{ k}\Omega$$

$$I_B + I_C = 2.5 \text{ mA}; \ 36I_B = V'; \ (66 + 6)I_C = 30 - 6 + V'$$


Solution

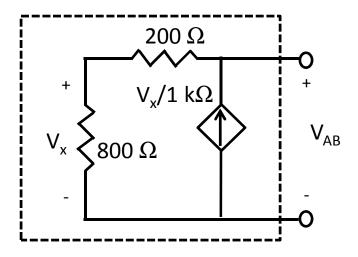


$$R_{th} = \left(\frac{1}{72} + \frac{1}{36}\right)^{-1} = 24 \text{ k}\Omega$$

 $I_B = 13/9 \text{ mA}; \ V_{oc} = 52 \ V; I_A = 2 \text{ mA}; P_A = 8 \text{ mW}$

Example 3: Active Circuits

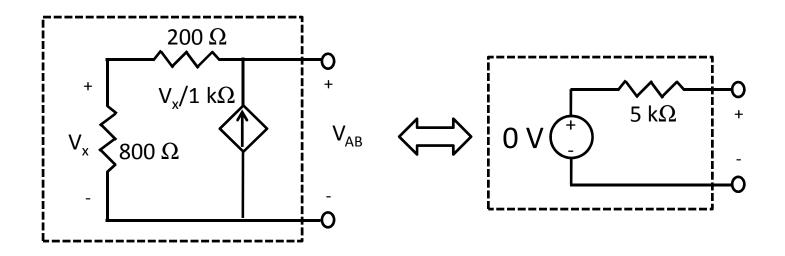
 What are the Thévenin and Norton equivalents of this active circuit?

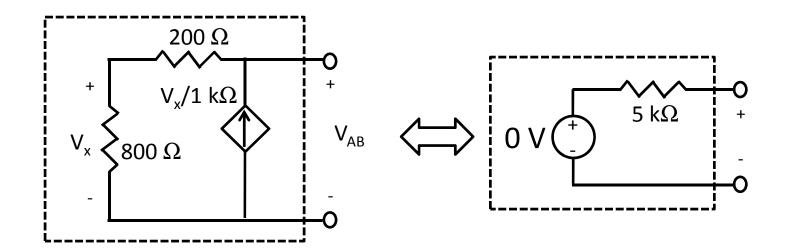


Use KCL and KVL to write:

$$V_{\chi} \cdot (1 \text{ mS}) = I_1 - I_A$$

$$V_{AB} = I_1 \cdot (1 \text{ k}\Omega)$$


$$V_{\chi} = I_1 \cdot (800 \Omega)$$


$$I_{1} \cdot (800 \Omega) \cdot (1 \text{ mS}) = I_{1} - I_{A}$$

$$I_{1} = 5I_{A}$$

$$V_{AB} = I_{A} \cdot (5 \text{ k}\Omega)$$

 With no independent sources, can be reduced to a single resistor

Power dissipated:

$$P = I_1 V_{AB} + \frac{4}{5} I_1 V_{AB}$$

$$P = \frac{9}{5} 5 I_A V_{AB}$$

Power dissipated:

$$P = I_A V_{AB}$$

Power dissipated in original network and equivalent circuits are not equal, in general

Max Power Transfer Theorem

- A 2-terminal linear network connected to a variable load R_L transfers max power when $R_L = R_{th}$, where R_{th} is the Thévenin equivalent resistance
- Max power given by:

$$P_{max} = \frac{{V_{oc}}^2}{4R_{th}}$$

Max Power Transfer

Proof:

• Proof:
$$P_{L} = R_{L} \left(\frac{V_{oc}}{R_{L} + R_{th}} \right)^{2} \begin{cases} R_{L} & R_{th} \\ R_{L} & R_{th} \end{cases}$$

$$\frac{dP_{L}}{dR_{L}} = \left(\frac{V_{oc}}{R_{L} + R_{th}} \right)^{2} - \frac{2R_{L}V_{oc}^{2}}{(R_{L} + R_{th})^{3}}$$

$$0 = R_{L} + R_{th} - 2R_{L}$$

$$R_{L} = R_{th}$$

Max Power Transfer

Max power for a general load network:

$$P_{L} = IV = \left(\frac{V_{oc} - V}{R_{th}}\right)V$$

$$\frac{dP_{L}}{dV} = \frac{V_{oc} - 2V}{R_{th}}$$

$$0 = V_{oc} - 2V$$

$$V = V_{oc}/2$$

Homework

- HW #11 solution posted today (covering all topics on test)
- HW #12 due Friday by 4:30 pm in EE 326B (note room change)