ECE 201, Section 3 Lecture 18

Prof. Peter Bermel October 1, 2012

Ordinary Differential Equation Recap

• RL circuits obey:

$$V = IR + L\frac{dI}{dt}$$

RC circuits can be written as:

$$V = \frac{1}{C}Q + R\frac{dQ}{dt}$$

Overall solution is given by:

$$Y = Y_h + Y_i$$

For RC and RL circuits, we obtain:

$$Y = Y_{\infty} + (Y_0 - Y_{\infty})e^{-(t - t_0)/\tau}$$

• Where the time constant τ is given by:

– RL circuits: τ =L/R

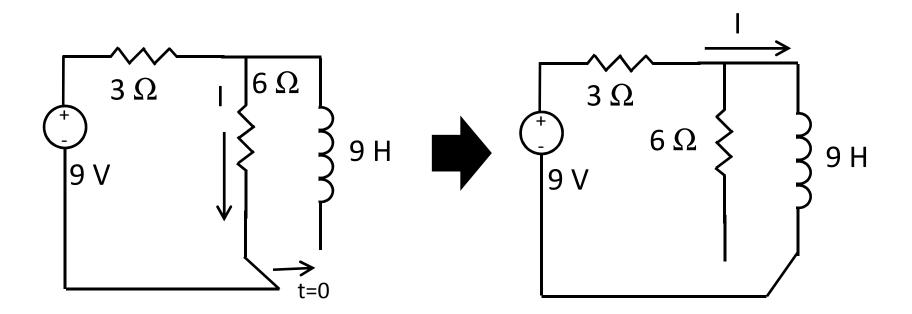
– RC circuits: τ =RC

Solving ODEs

- In presence of stepped voltages, apply conservation laws
- Use values at end of previous interval as initial conditions for next interval
- Best illustrated through examples

Example

What is the current flow in this circuit before and after the switch is flipped at time t=0?

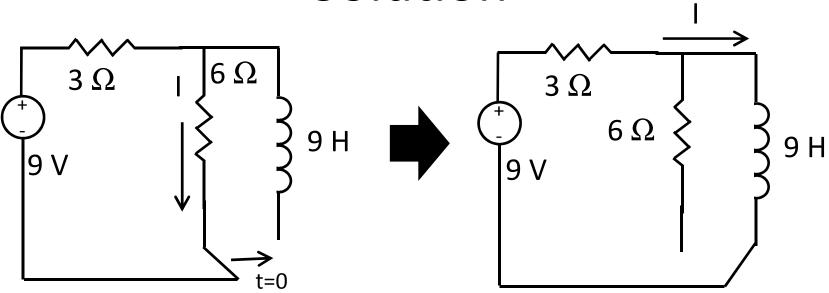


For t<0: $I = (9 V) / (9 \Omega) = 1 A$

For t>0: KVL yields $9 = (3 \Omega)I + (9 H) dI/dt$

Since L/R=3, assume solution takes the form:

$$I = 3 - Be^{-t/3}$$



For t>0:
$$9 = 3[3 - Be^{-\frac{t}{3}}] + 9\frac{B}{3}e^{-\frac{t}{3}}$$

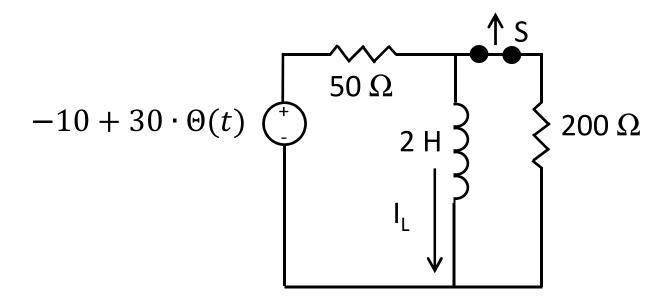
B is set by continuity condition for current:

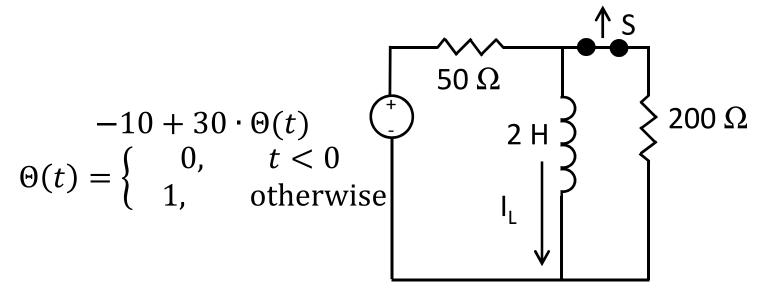
$$I(0) = 0 = 3 - Be^{-t/3}$$

Thus, B=3, and
$$I(t) = 3[1 - e^{-t/3}], t > 0$$

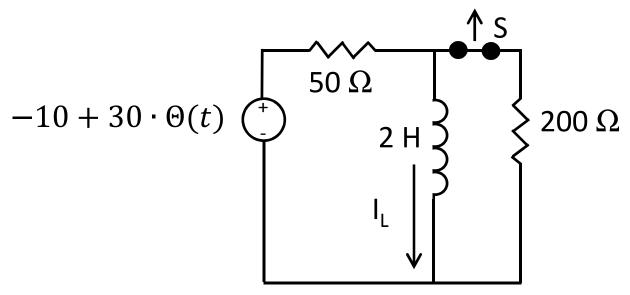
Example

 What current flows through the inductor for t>0? How does that change if the switch S opens after 50 ms?





- Steady state response for t<0: I=-10/50=-0.2 A
- After t=0: R_{th} =40 Ω ; τ =L/ R_{th} =2/40=0.05 s; I_{∞} =20/50=0.4 A I_L = 0.4 + (-0.2 0.4) e^{-20t}

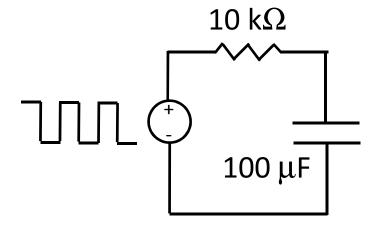


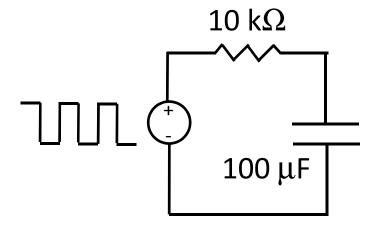
• If switch activates after 50 ms:

$$I_L = \begin{cases} 0.4 - 0.6e^{-20t}, & 0 \le t < 0.05 \\ 0.4 - 0.222e^{-25t}, & 0.05 \le t \end{cases}$$

Example

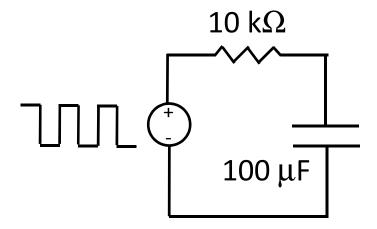
 What is the voltage as a function of time in this RC circuit with an AC square wave source at 1 Hz, and voltage varying from 0 to 1 V?





• In the presence of a periodic waveform, we must also have a periodic solution $V_c(t+mT) = V_c(t)$, for all integer m. The latter function is:

$$V_c(t) = \begin{cases} 1 + (v_o - 1)e^{-t}, & 0 \le t < 0.5 \\ v_{1/2}e^{-(t-1/2)}, & 0.5 \le t < 1 \end{cases}$$



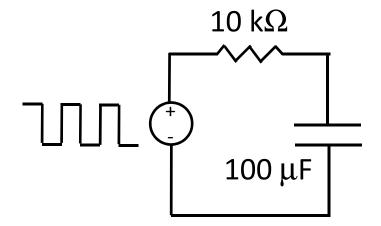
Our continuity conditions yield:

$$v_{1/2} = 1 + (v_o - 1)e^{-1/2}$$

 $v_o = v_{1/2} e^{-1/2}$

Combining terms:

$$v_0 e^{1/2} = 1 + (v_0 - 1)e^{-1/2}$$



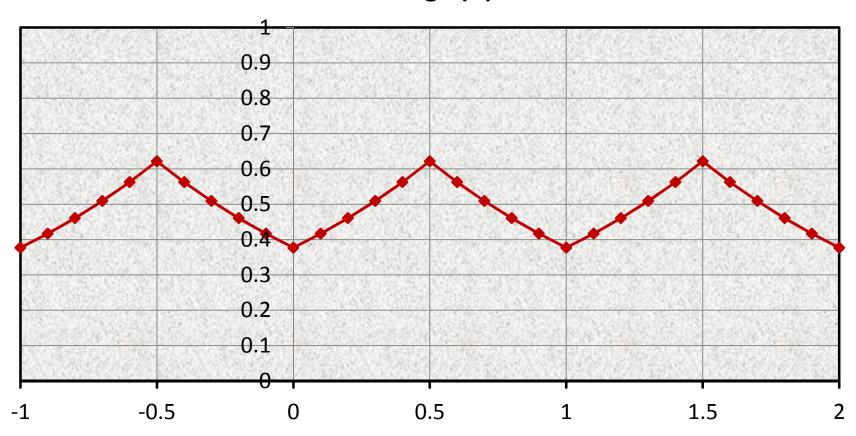
Rearranging:

$$v_o(e^{1/2} - e^{-1/2}) = 1 - e^{-1/2}$$

Numerically evaluating:

$$v_o = 0.377$$
 $v_{1/2} = 0.622$

Voltage (V)

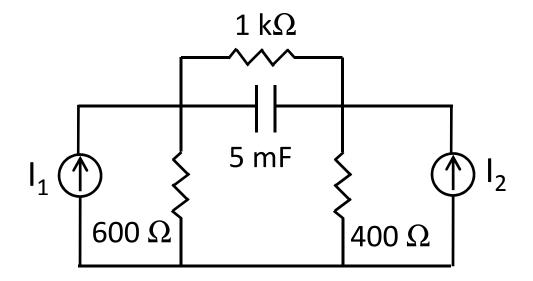


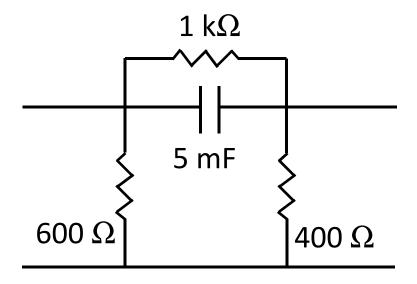
Linearity

- Much like with networks of resistors and sources, networks with capacitors and resistors obey these principles:
 - Linearity
 - Superposition
 - Proportionality
- Initial conditions can be viewed as another superimposed source that shuts off at the beginning

Example

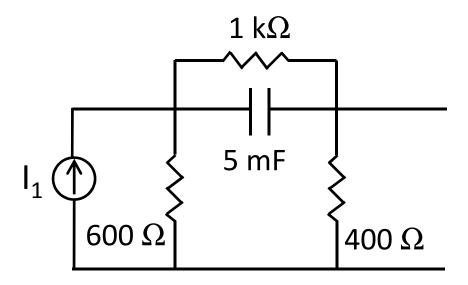
• Using superposition, calculate V_c for zero input $(V_o=25 \text{ V})$, I_1 only (50 mA), I_2 only (25 mA), all combined, and when the sources are cut in half.





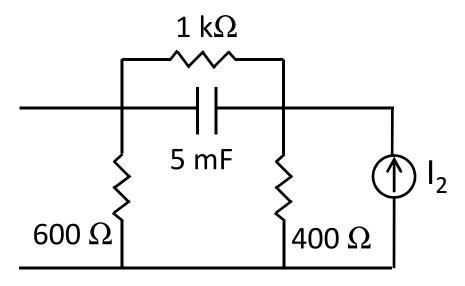
• V_C for zero input: capacitor sees two resistors of 1 k Ω ; R_{th} =500 Ω :

$$V_C = 25 e^{-0.4t}$$



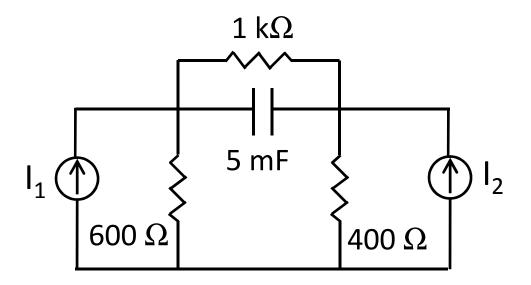
 $V_{\rm C}$ from $I_{\rm 1}$ only: source transformation yields $V_{\rm oc}$ =30 V; combine series resistors; transform for $I_{\rm sc}$ =30 mA; $R_{\rm th}$ =500 Ω ; transform again for $V_{\rm oc}$ =15 V. With τ =(5 mF)(500 Ω)=2.5 s, we obtain:

$$V = 15(1 - e^{-0.4t})$$



 V_{c} from I_{2} only: source transformation yields V_{oc} =-10 V; combine series resistors; transform for I_{sc} =-10 mA; R_{th} =500 Ω ; transform again for V_{oc} =-5 V. With τ =(5 mF)(500 Ω)=2.5 s, we obtain:

$$V = -5(1 - e^{-0.4t})$$



Putting everything together, we obtain:

$$V = 10 + 15e^{-0.4t}$$

If the input sources are both cut in half, we get:

$$V = 5 + 20e^{-0.4t}$$

Homework

- HW #16 due today by 4:30 pm in EE 326B
- HW #17 due Wed.: DeCarlo & Lin, Chapter 7:
 - Problem 35
 - Problem 37
 - Problem 43
 - Problem 45
- HW #18 due Fri.: DeCarlo & Lin, Chapter 8:
 - Problem 1
 - Problem 5
 - Problem 6