ECE 201, Section 3 Lecture 19

Prof. Peter Bermel October 5, 2012

Solving Ordinary Differential Equations

For RC and RL circuits, we obtain:

$$X = X_{\infty} + (X_0 - X_{\infty})e^{-(t - t_0)/\tau}$$

- Solution steps:
 - Choose X
 - RC circuits: X=Q or X=V
 - LR circuits: X=I
 - Find X_o (simplifying diagram)
 - Find X_{∞} (simplifying diagram)
 - Find R_{th} (for inductor/capacitor)
 - Find time constant τ :
 - RL circuits: $\tau = L/R_{th}$
 - RC circuits: $\tau = R_{th}C$
 - If circuit changes at t_1 , use $X(t_1)$ from prior solution for initial values

Example 1

 For this RC circuit, find the current flow I(t) at all times, including the discontinuity at t=0.

- For t<0: no capacitor current, $I=(-36 \text{ V})/(30+6 \text{ k}\Omega)=-1 \text{ mA}$ $V_c=(30/36)*(-36 \text{ V})=-30 \text{ V}$
- At $t=0^+$, V_c is continuous, so I=(72+30)/6=17 mA
- As t→∞, I=2 mA
- Time constant $\tau=R_{th}C=(5 \text{ k}\Omega)*(100 \text{ }\mu\text{F})=0.5 \text{ s}$

 Matching our solution with the boundary conditions yields:

$$I = \begin{cases} -1 \text{ mA,} & t < 0\\ 2 + 15e^{-2t}, & t > 0 \end{cases}$$

Current (mA)

Linearity

- Much like with networks of resistors and sources, networks with capacitors and resistors obey these principles:
 - Linearity
 - Superposition
 - Proportionality
- Initial conditions can be viewed as another superimposed source that shuts off at the beginning

Example 2

• Using superposition, calculate V_c for zero input $(V_o=25 \text{ V})$, I_1 only (50 mA), I_2 only (25 mA), all combined, and when the sources are cut in half.

• V_C for zero input: capacitor sees two resistors of 1 k Ω ; R_{th} =500 Ω :

$$V_C = 25 e^{-0.4t}$$

 $V_{\rm C}$ from $I_{\rm 1}$ only: source transformation yields $V_{\rm oc}$ =30 V; combine series resistors; transform for $I_{\rm sc}$ =30 mA; $R_{\rm th}$ =500 Ω ; transform again for $V_{\rm oc}$ =15 V. With τ =(5 mF)(500 Ω)=2.5 s, we obtain:

$$V = 15(1 - e^{-0.4t})$$

 V_{c} from I_{2} only: source transformation yields V_{oc} =-10 V; combine series resistors; transform for I_{sc} =-10 mA; R_{th} =500 Ω ; transform again for V_{oc} =-5 V. With τ =(5 mF)(500 Ω)=2.5 s, we obtain:

$$V = -5(1 - e^{-0.4t})$$

Putting everything together, we obtain:

$$V = 10 + 15e^{-0.4t}$$

If the input sources are both cut in half, we get:

$$V = 5 + 20e^{-0.4t}$$

Example 3

 What waveform is produced by this circuit with a mechanical switch S that flips on for 1 s, then off for 1 s, and so on?

- Consider 2 cases separately:
 - Switch open: RC=(20 k Ω)(100 μ F)=2 s, $V_{\infty}=10$ V
 - Switch closed: RC=(1 k Ω)(100 μ F)=0.1 s, $V_{\infty}=0.5$ V
- After closing switch, will quickly reach final value

• Thus, to an excellent approximation:

$$V_C(t) = \begin{cases} 10 - 9.5e^{-t/2}, & 0 \le t < 1\\ 0.5 + 3.74e^{-10(t-1)}, & 1 \le t < 2 \end{cases}$$

Voltage (V)

Homework

- HW #18 due today by 4:30 pm in EE 326B
- HW #19 due Wed.: DeCarlo & Lin, Chapter 8:
 - Problem 18(a),(b)
 - Problem 21(a),(b)
 - Problem 22