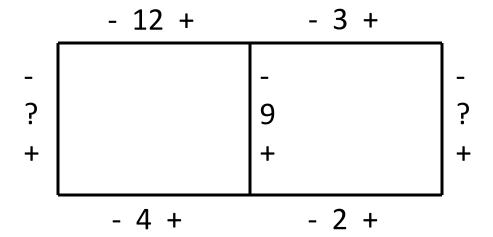

ECE 201, Section 3 Lecture 2

Prof. Peter Bermel August 22, 2012

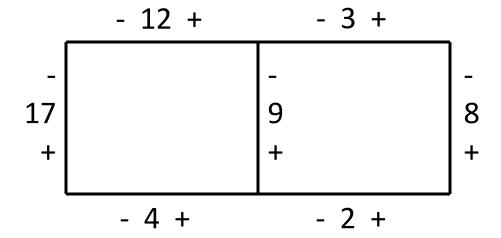
Homework Announcements

- Due at 4:30 pm on the listed date at EE 325B (Wanda Dallinger's office)
- Please write "ECE201-3" and your name at the top legibly when you submit the homework

Office Hours in EE 026



Voltage


- Defined as a difference in electric potential
- Given in units of volts, or joules per coloumb
- Energy E = qV
- Voltage drop V_{AB} between two points is:
 - Path-independent $(V_{AB} = V_A V_B)$
 - Unique
 - Directionally dependent (e.g., $V_{AB} = -V_{BA}$

$$V_A - V_B = -(V_B - V_A)$$

Example 1

Example 1: Solution

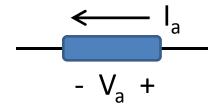
Circuit Elements

Two terminal devices:

$$|$$
 $|$ $-$

$$\dashv\vdash$$

- Three terminal device: op-amp
- Four terminal device: transformer


Power in Circuits

$$P(t) = I(t)V(t)$$

$$U = \int I(t)V(t) dt$$

 $\sum_{i=1}^{N} P_i(t) = 0$, for a closed circuit of N elements, at all times

Passive Sign Convention

- Defined as when current flows from positive to negative voltage
- Allows one to read P=IV (with correct sign)
- Positive values associated with resistors
- Negative values associated with voltage sources
- Active sign convention is the opposite

Example 2

Ideal Sources

- An abstraction of real devices, insensitive to operating environment
- Ideal voltage source
 - Fixed voltage V(t)
 - Example: battery
- Ideal current source
 - Fixed current I(t)
 - Example: lightning

Controlled Ideal Sources

 Can use current or voltage to control output current or voltage

Control type

Output type

	Voltage	Current
Voltage	VCVS (V= μv_x)	CCVS (V=IR)
Current	VCCS (I=gV)	CCCS ($I=\beta I_x$)

Key Definitions

- **Short Circuit** connection with zero resistance
- Open Circuit

 connection with infinite resistance
- Power— rate at which work is performed

Homework #2 for Friday

- DeCarlo & Lin, 3rd Edition, Chapter 1
 - Problem 10
 - Problem 12 [Note 'F' above I_D should be 'D']
 - Problem 17
- All homework posted on Blackboard