ECE 201, Section 3 Lecture 21

Prof. Peter Bermel October 12, 2012

Exam #2: Monday, October 15

- Runs from 6:30-7:30 pm in EE 129, unless specifically told otherwise
- Will cover Lectures 12-21:
 - Source transformation
 - Thèvenin and Norton equivalent circuits
 - Maximum power transfer
 - Inductors, parallel & series; LR circuits
 - Capacitors, parallel & series; RC circuits
 - Linear response; waveform generation
 - Undriven LC and RLC resonators

Exam #2: Monday, October 15

- Posted 4 sample exams on Blackboard also includes equation "sheet" at bottom
- The one marked "Exam 2 Review Session" from '98 will be reviewed tonight starting at 6:30 pm, here in EE 170

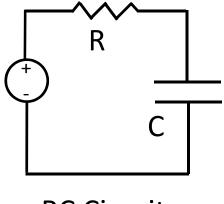
General Solutions: RC & RL Circuits

$$X = X_{\infty} + (X_o - X_{\infty})e^{-(t - t_o)/\tau}$$

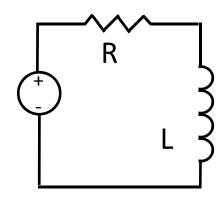
- Solution steps:
 - Choose X: RC circuits: X=Q or X=V;LR circuits: X=I
 - Find X_o (simplifying diagram)
 - Find X_{∞} (simplifying diagram)
 - Find R_{th} (for inductor/capacitor)
 - Find τ: RC circuits: $\tau = R_{th}C$;

LR circuits: $\tau = L/R_{th}$

— If circuit changes at t_1 , use $X(t_1)$ from prior solution for initial values



RC Circuit



RL Circuit

General Solutions: LC Circuits

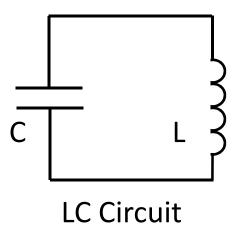
For an undamped, free (undriven) LC circuit:

$$Q(t) = A\cos\omega t + B\sin\omega t$$

- Q(t) is capacitor charge at time t
- A and B determined by initial conditions
- $-\omega$ is the resonant frequency; $\omega = 1/\sqrt{LC}$
- Alternatively, can write:

$$Q(t) = A'\cos(\omega t + \phi)$$

 $-\phi$ is the phase angle



Complex Exponentials

Some key equations:

$$e^{i\omega t} = \cos \omega t + i \sin \omega t$$

$$e^{(i\omega - \Gamma)t} = e^{-\Gamma t} (\cos \omega t + i \sin \omega t)$$

$$\cos \omega t = \frac{e^{i\omega t} + e^{-i\omega t}}{2}$$

$$\sin \omega t = \frac{e^{i\omega t} - e^{-i\omega t}}{2i}$$

Trigonometric Identities

Can use Euler's equation to write:

$$e^{i(\alpha+\beta)} = e^{i\alpha}e^{i\beta}$$

$$= (\cos\alpha + i\sin\alpha)(\cos\beta + i\sin\beta)$$

$$= \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$+ i(\sin\alpha\cos\beta + \cos\alpha\sin\beta)$$

Which yields:

$$cos(\alpha + \beta) = cos \alpha cos \beta - sin \alpha sin \beta$$

$$sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$$

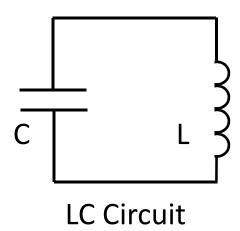
General Solutions: LC Circuits

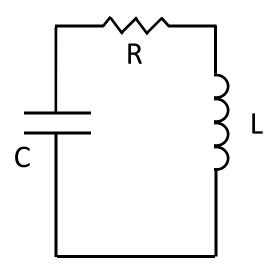
Can rewrite our previous solution:

$$Q(t) = A\cos\omega t + B\sin\omega t = A\left(\frac{e^{i\omega t} + e^{-i\omega t}}{2}\right) + B\left(\frac{e^{i\omega t} - e^{-i\omega t}}{2i}\right)$$
$$= \left(\frac{A}{2} + \frac{B}{2i}\right)e^{i\omega t} + \left(\frac{A}{2} - \frac{B}{2i}\right)e^{-i\omega t}$$

We can define new coefficients in front to obtain:

$$Q(t) = A_{+}e^{i\omega t} + A_{-}e^{-i\omega t}$$



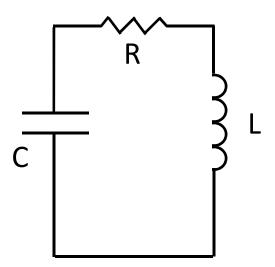


• Using KVL yields:

$$\frac{d^2Q}{dt^2} + \frac{R}{L}\frac{dQ}{dt} + \frac{1}{LC}Q = 0$$

• Solutions should oscillate and decay:

$$Q(t) = \sum_{k} A_k e^{s_k t}$$

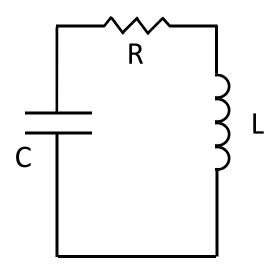


Characteristic equation becomes:

$${s_k}^2 + \frac{R}{L}s_k + \frac{1}{LC} = 0$$

• Using the quadratic equation:

$$s_k = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$



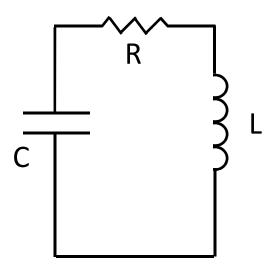
• General solution:

$$Q(t) = Ae^{s_+t} + Be^{s_-t}$$

• If $V(0)=V_0$, I(0)=0, then:

$$Q(0) = CV_o = A + B$$

 $I(0) = 0 = As_+ + Bs_-$
 $0 = As_+ + (CV_o - A)s_-$



Particular solution:

$$A = CV_{o}s_{-}/(s_{-} - s_{+})$$

$$B = -CV_{o}s_{+}/(s_{-} - s_{+})$$

$$Q(t) = CV_{o}\left(\frac{s_{-}e^{s_{+}t} - s_{+}e^{s_{-}t}}{s_{-} - s_{+}}\right)$$

General Solutions: RLC Circuits

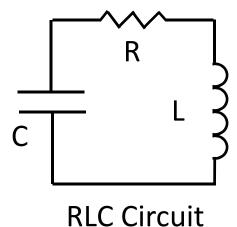
General solution:

$$Q(t) = A_{+}e^{s_{+}t} + A_{-}e^{s_{-}t}$$

$$s_{\pm} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^{2} - \frac{1}{LC}}$$

• If $V(0)=V_0$, I(0)=0, then:

$$Q(t) = CV_o \left(\frac{s_- e^{s_+ t} - s_+ e^{s_- t}}{s_- - s_+} \right)$$



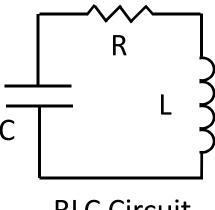
Special Cases: RLC Circuits

• When R=0:

$$s_{\pm} = -\frac{0}{2L} \pm \sqrt{\left(\frac{0}{2L}\right)^2 - \frac{1}{LC}} = \pm \sqrt{-\frac{1}{LC}} = \frac{\pm i}{\sqrt{LC}}$$
$$= \pm i\omega$$

Solution becomes:

$$Q(t) = A_{+}e^{i\omega t} + A_{-}e^{-i\omega t}$$



RLC Circuit

Special Cases: RLC Circuits

• To capture other regimes, define damping $\Gamma=R/2L$, and write solutions:

$$s_{\pm} = -\Gamma \pm \sqrt{\Gamma^2 - \omega_o^2}$$

Regime	Value Range	Root type	Behavior
Undamped	$\Gamma = 0$	Pure imaginary	Oscillates forever
Underdamped	$0 < \Gamma < \omega_o$	Complex	Oscillate & decay
Critically damped	$\Gamma = \omega_o$	Pure real	Decay
Overdamped	$\Gamma > \omega_o$	Pure real	Decay

Special Cases: RLC Circuits

In general, one can define a quality factor:

$$Q = \frac{\omega_o}{2\Gamma}$$

Measures the lifetime of an excitation

• Here, Γ =R/2L, and $\omega_o=1/\sqrt{LC}$, so

$$Q = \frac{1/\sqrt{LC}}{2 \cdot (R/2L)} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

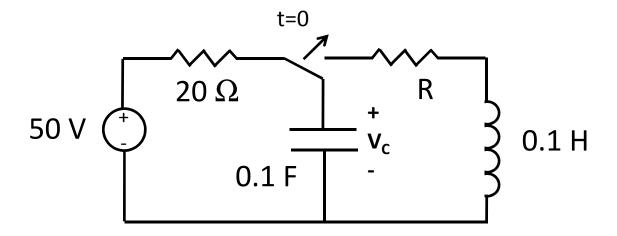
As $R \to 0$, $Q \to \infty$, and vice versa

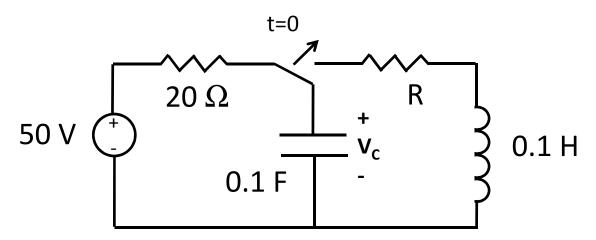
Mathematica Demonstration

Click to begin

Example 1

 Consider a circuit which charges a capacitor for t<0 then switches to an RLC circuit at t=0.
 What is V_C(t) for R=0, and 180?



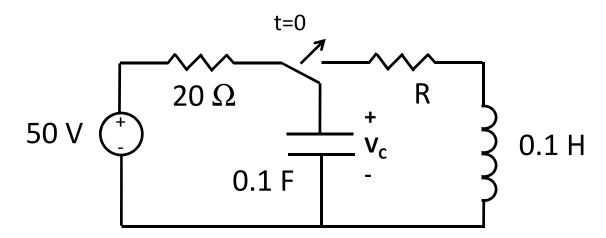


- For t<0: $V_c = 50 \text{ V}$
- For t>0: I(0)=0, and:

$$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.1 \cdot 0.1}} = 10 \text{ rad/s}$$

$$\Gamma = \frac{R}{2L} = \frac{R}{2 \cdot (0.1 \text{ H})} = 5R$$

$$Q = \frac{\omega}{2\Gamma} = \frac{10}{2 \cdot (5R)} = \frac{1}{R}$$



From before:

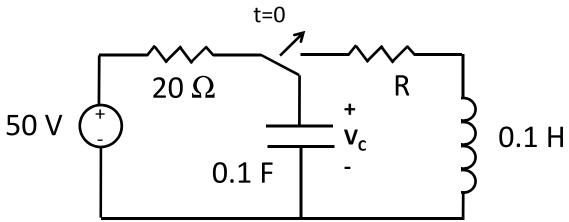
$$V_{C}(t) = Q(t)/C = A_{+}e^{s_{+}t} + A_{-}e^{s_{-}t}$$

$$V_{C}(t) = e^{-\Gamma t} \left(A_{+}e^{i\sqrt{\omega^{2} - \Gamma^{2}}t} + A_{-}e^{-i\sqrt{\omega^{2} - \Gamma^{2}}t} \right)$$

$$V_{C}(t) = e^{-\Gamma t} \left(A_{+}e^{i\omega't} + A_{-}e^{-i\omega't} \right)$$

Matching boundary conditions:

$$A_{+} + A_{-} = V_{o}$$
$$(-\Gamma + i\omega')A_{+} + (-\Gamma - i\omega')A_{-} = 0$$



Substituting:

$$A_{+} + A_{-} = V_{o}$$

$$(-\Gamma + i\omega')A_{+} + (-\Gamma - i\omega')(V_{o} - A_{+}) = 0$$

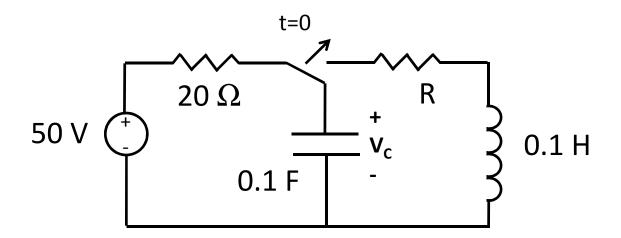
$$2i\omega'A_{+} = (\Gamma + i\omega')V_{o}$$

$$A_{+} = \frac{V_{o}}{2} \left(1 - i\frac{\Gamma}{\omega'}\right)$$

$$(-\Gamma + i\omega')(V_{o} - A_{-}) + (-\Gamma - i\omega')A_{-} = 0$$

$$-2i\omega'A_{-} = (\Gamma - i\omega')V_{o}$$

$$A_{-} = \frac{V_{o}}{2} \left(1 + i\frac{\Gamma}{\omega'}\right)$$



From before:

$$V_C(t) = \frac{V_o e^{-\Gamma t}}{2} \left[\left(1 - i \frac{\Gamma}{\omega'} \right) e^{i\omega' t} + \left(1 + i \frac{\Gamma}{\omega'} \right) e^{-i\omega' t} \right]$$

$$V_C(t) = V_o e^{-\Gamma t} \left[\cos \omega' t + \left(\frac{\Gamma}{\omega'} \right) \sin \omega' t \right]$$

Homework

- HW #19 solution posted
- HW #20 due today by 4:30 pm in EE 326B
- HW #21 due Wed.: DeCarlo & Lin, Chapter 8:
 - Problem 30
 - Problem 34