ECE 201, Section 4 Lecture 3

Prof. Peter Bermel August 24, 2012

Homework Changes

HW solution #1 posted

Ohm's Law

- Ohm's Law: V=IR ——
- Power P(t)=I(t)V(t), thus:

$$P(t)=[I(t)]^{2}R$$

 $P(t)=[V(t)]^{2}/R$

Dissipated power given off as heat

Resistance

- Physical property of material: resistivity ρ ($\Omega \cdot m$)
- Resistance for cylinder: $R=\rho L/A$ (Ω)

Conductance

- Physical property of material: conductivity σ (S/m)
- Conductance for cylinder $G=\sigma A/L$ (S or \mho)

Example 1

 Find the resistance of a carbon rod with L=1 cm and A=0.1 cm²

Example 1: Solution

 Find the resistance of a carbon rod with L=1 cm and r=0.02 cm:

$$\rho$$
=2400*(17 n Ω ·m)=40.8 μ Ω · m R= ρ L/A=(40.8 μ Ω ·m)(1 cm)/ π (0.02 cm)²=3.25 Ω

 Find the current flow through the carbon rod when connected to a 1.5 V battery:

$$I=V/R=(1.5 V)/(3.25 \Omega)=0.46 A$$

• Find the power dissipated:

Example 2: Series Circuits

• Calculate the effective resistance of 3 resistors in series with resistances 2 Ω , 3 Ω , and 5 Ω :

$$2\Omega$$
 3Ω 5Ω

 Calculate the current generated when powered by a 9 V battery:

Example 2: Solution

• Calculate the effective resistance of 3 resistors in series with resistances 2 Ω , 3 Ω , and 5 Ω :

$$2\Omega$$
 3Ω 5Ω

$$R_{\text{eff}} = \sum_{i=1}^{3} R_i = 2 \Omega + 3 \Omega + 5 \Omega = 10 \Omega$$

Example 2: Solution Cont'd

 Calculate the current generated when powered by a 9 V battery:

$$I=V/R_{eff}=(9 \text{ V}) / (10 \Omega) = 0.9 \text{ A}$$

Example 3: Parallel Circuits

• Calculate effective resistance of 3 resistors of resistances 4, 6, and 12 Ω :

Calculate current when connected to two
 1.5 V batteries in series:

Example 3: Solution

• Calculate effective resistance of 3 resistors of resistances 4, 6, and 12 Ω :

Example 3: Parallel Circuits

Calculate current when connected to two

$$I = V_{eff}/R_{eff} = (1.5 + 1.5 V)/2 \Omega = 1.5 A$$

Current-Voltage Relations

Resistor

Ideal voltage source

• Ideal current source

Controlled Ideal Sources

 Can use current or voltage to control output current or voltage

Control type

		Voltage		Current	
Output type	Voltage	VCVS V=μv _x	+	CCVS V=IR	
	Current	VCCS I=gV		CCCS I=βI _x	

Homework #3 for Monday

- DeCarlo & Lin, 3rd Edition, Chapter 1
 - Problem 23
 - Problem 28
 - Problem 38
- All homework posted on Blackboard