ECE 201, Section 4 Lecture 6

Prof. Peter Bermel August 31, 2012

Recap from Friday

Series resistors:

$$R_{eq} = \sum R_l$$

 $V_k = VR_k/R_{eq}$; currents equal

Parallel resistors

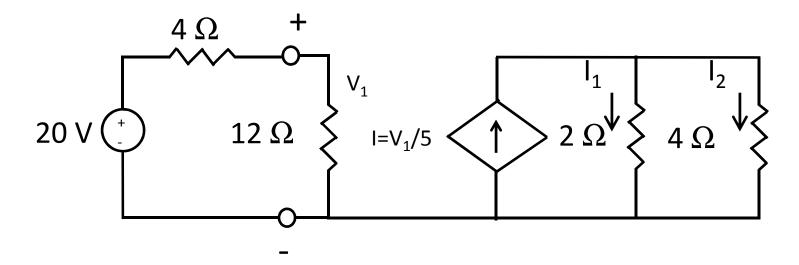
$$G_{eq} = \sum G_l$$

 $I_k = IR_{eq}/R_k$; voltages equal

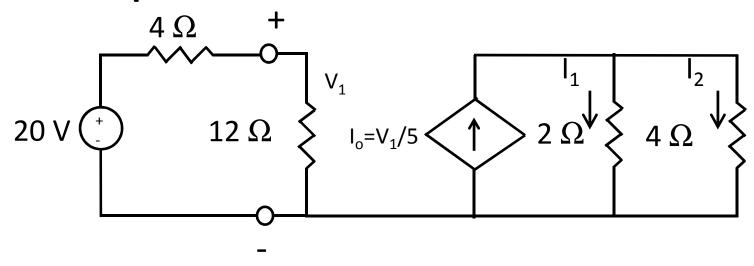
- Series-parallel circuits
 - Analyzed iteratively

Dependent Sources

 Can use current or voltage to control output current or voltage


Control type

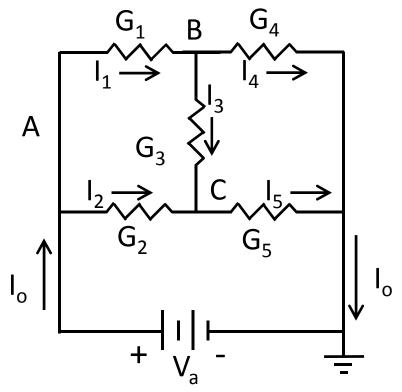
		Voltage		Current	
Output type	Voltage	VCVS V=μν _x	₹	CCVS V=IR	-
	Current	VCCS I=gV		CCCS I=βI _x	


8/31/2012

Dependent Sources Example

 What is the output voltage and current, gain, and total power dissipated?

Dependent Sources Solution



- Voltage division $\rightarrow V_1 = 15V$, $I_0 = 3A$, $I_1 = 2A$, $I_2 = 1A$
- Gain $g=I_2R_2/(20V)=0.2$ (a 7 dB attenuator)
- Power dissipated=400/16+4*3=37 W

Nodal Analysis

- General linear circuits aren't simple combination of series and parallel circuits
- Instead, must apply KCL and Ohm's law to solve for voltage at all unknown nodes

• For these 5 resistors with a voltage source, solve for the voltages and currents everywhere:

Using KCL:

$$I_o = I_1 + I_2$$
 $I_o = I_4 + I_5$
 $I_1 = I_3 + I_4$
 $I_5 = I_2 + I_3$

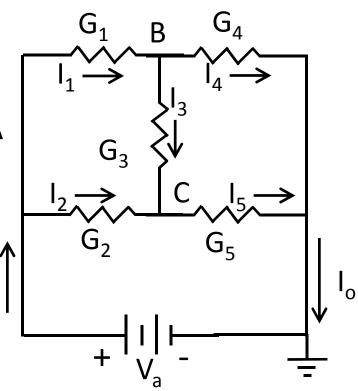
 $A \qquad G_{1} \qquad B \qquad G_{4}$ $A \qquad G_{3} \qquad G_{4}$ $A \qquad G_{3} \qquad G_{5}$ $G_{2} \qquad G_{5}$ $G_{5} \qquad G_{6}$ $G_{1} \qquad G_{4}$ $G_{3} \qquad G_{4}$ $G_{3} \qquad G_{5}$ $G_{2} \qquad G_{5}$ $G_{5} \qquad G_{6}$

Using Ohm's Law:

$$G_1(V_a - V_b) = G_3(V_b - V_c) + G_4V_b$$

$$G_5V_c = G_2(V_a - V_c) + G_3(V_b - V_c)$$

$$G_1(V_a - V_b) + G_2(V_a - V_c) = G_4V_b + G_5V_c$$


Grouping by voltages:

$$(G_1 + G_3 + G_4)V_b - G_3V_c = G_1V_a$$

$$-G_3V_b + (G_2 + G_3 + G_5)V_c = G_2V_a$$

$$(G_1 + G_4)V_b + (G_2 + G_5)V_c = (G_1 + G_2)V_a$$

- Third equation is sum of first two and can be eliminated; good cross-check
- Leaves 2 equations for 2 unknowns, V_b and V_c

Rewriting as matrix:

$$\begin{bmatrix} G_1+G_3+G_4 & -G_3 \\ -G_3 & G_2+G_3+G_5 \end{bmatrix} \begin{bmatrix} V_b \\ V_c \end{bmatrix} = \begin{bmatrix} G_1V_a \\ G_2V_a \end{bmatrix}$$

Use matrix inversion formula:

$$M^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(M)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

• Note det(M) = ad - bc. Now check:

$$MM^{-1} = \frac{1}{\det(M)} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Using matrix inversion formula, we obtain:

$$\begin{bmatrix} V_b \\ V_c \end{bmatrix} = \frac{1}{(G_1 + G_3 + G_4)(G_2 + G_3 + G_5) - {G_3}^2} \begin{bmatrix} G_2 + G_3 + G_5 & G_3 \\ G_3 & G_1 + G_3 + G_4 \end{bmatrix} \begin{bmatrix} G_1 V_a \\ G_2 V_a \end{bmatrix}$$

• If $\vec{G} = (0.2, 0.4, 0.5, 0.1, 0.7)$, $V_a = 5 V$, then:

$$\begin{bmatrix} V_b \\ V_c \end{bmatrix} = \frac{1}{1.03} \begin{bmatrix} 1.6 & 0.5 \\ 0.5 & 0.8 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} (5 V) = \begin{bmatrix} 2.524 V \\ 2.039 V \end{bmatrix}$$

And $\vec{I} = (0.495, 1.185, 0.243, 0.252, 1.428)$

Finally, check KCL is obeyed

Nodal Analysis

- Should always be able to solve problems with 2 unknowns using matrix inversion formula
- What about more than 2 unknowns?
 - Adjoint method (calculate cofactor matrix, take transpose, divide by determinant)
 - Software techniques

Free, Web-Enabled Software

- SPICE on nanoHUB: https://nanohub.org/tools/spice3f4
- Falstad circuit simulator: http://www.falstad.com/circuit/index.html

Homework

- HW #4 solution now posted
- HW #5 due today by 4:30 pm in EE 325B
- HW #6 due Wednesday: DeCarlo & Lin, Chapter 2:
 - Problem 46
 - Problem 62 [In place of $P_{load} = 100 P_{in}$, let $P_{load} = 10 P_{in}$.]
 - Problem 63