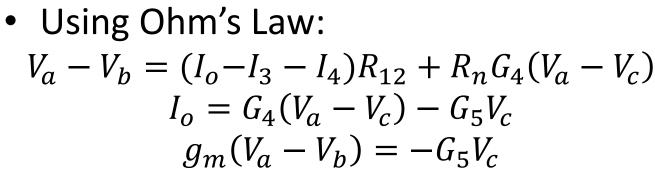
ECE 201, Section 3 Lecture 8

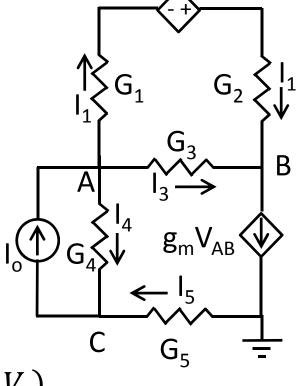
Prof. Peter Bermel September 7, 2012

Nodal Analysis Recap

- For solving non-series-parallel circuits for networks of resistors and current sources (R-I_s-g_m networks)
- Uses KCL, V=IR, to formulate matrix for unknown voltages, written MV = B
- For 2 unknowns, use matrix inversion formula:

$$V = M^{-1}B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(M)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$


- For more than 2 unknowns:
 - Substitution/elimination methods
 - Adjoint method (calculate cofactor matrix, take transpose, divide by determinant)
 - Software techniques


Controlled Sources

• Using KCL:

$$I_{o} = I_{1} + I_{3} + I_{4}$$
$$I_{o} = I_{4} + I_{5}$$
$$I_{1} + I_{3} = I_{5} = g_{m}(V_{a} - V_{b})$$

• Using KVL: $V_a - V_b = I_1(R_1 + R_2) + R_n I_4$

 $R_n I_4$

Controlled Sources

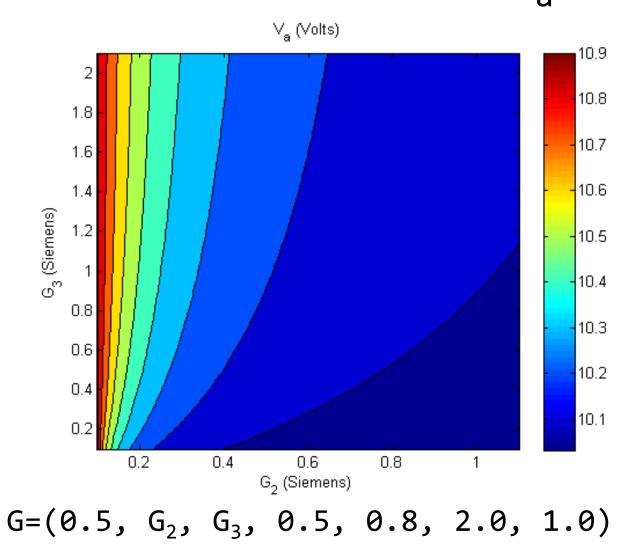
- Rearranging:
- $(G_{34}R_{12} + R_nG_4 + 1)V_a (G_3R_{12} + 1)V_b + (R_n R_{12})G_4V_c$ = I_oR_{12} $G_4V_a - (G_4 + G_5)V_c = I_o$ $g_mV_a - g_mV_b + G_5V_c = 0$
- Which can be written as:

 $\begin{bmatrix} G_{34}R_{12} + R_nG_4 + 1 & -(G_3R_{12} + 1) & (R_n - R_{12})G_4 \\ G_4 & 0 & -(G_4 + G_5) \\ g_m & -g_m & G_5 \end{bmatrix} \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} I_oR_{12} \\ I_o \\ 0 \end{bmatrix}$

• Software easiest way to solve

Free Software

- SPICE on nanoHUB: <u>https://nanohub.org/tools/spice3f4</u>
- Falstad circuit simulator: <u>http://www.falstad.com/circuit/index.html</u>
- MATLAB, via: whirlpool.ecn.purdue.edu
- Octave (MATLAB substitute): <u>http://octave.sourceforge.net</u>


MATLAB code

<pre> A</pre>	Editor - C:\Users\peter\Documents\classes\ece201-spring 2012\resistornetwork3.m	
<pre> ** C = - 1.0 + ÷ 11 × % % 0 function [V,I] = resistornetwork3(G, Io) SRESISTORNETWORK3 : calculates unknown voltages +</pre>	File Edit Text Go Cell Tools Debug Desktop Window Help	5 K
<pre>1</pre>	: 🎦 😂 📓 🔏 ங 🛍 🤊 🥙 🌺 🖅 - 🏘 🆛 🗰 🖗 🚬 - 🔁 ᢞ 🖷 🛍 🕼 🕼 🕌 Stack: Base	- fx, 🖽 🗆 🗗 🗗 🚺
<pre>2</pre>	$\div = \Box = 1.0 + \div 1.1 \times \% \% \% 0$	
<pre>3 % currents as a function of known resistor 4 -% conductances + ideal current supplied 5 - R12=1/G(1)+1/G(2); 6 - Rn=1/G(6); 7 - gm=G(7); 8 - M = [(G(3)+G(4))*R12+Rn*G(4)+1 - (G(3)*R12+1) (Rn-R12)*G(4); G(4) 0 - (G(4)+G(5)); gm -gm G(5)]; 9 - A = [I0*R12; I0; 0]; 10 - V = inv(M)*A; 11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	<pre>1 - function [V,I] = resistornetwork3(G, Io)</pre>	
<pre>4 -% conductances + ideal current supplied 5 - R12=1/G(1)+1/G(2); 6 - Rn=1/G(6); 7 - gm=G(7); 8 - M = [(G(3)+G(4))*R12+Rn*G(4)+1 - (G(3)*R12+1) (Rn-R12)*G(4); G(4) 0 - (G(4)+G(5)); gm -gm G(5)]; 9 - A = [I0*R12; I0; 0]; 10 - V = inv(M)*A; 11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	2 RESISTORNETWORK3 : calculates unknown voltages +	
<pre>5 - R12=1/G(1)+1/G(2); 6 - Rn=1/G(6); 7 - gm=G(7); 8 - M = [(G(3)+G(4))*R12+Rn*G(4)+1 - (G(3)*R12+1) (Rn-R12)*G(4); G(4) 0 - (G(4)+G(5)); gm -gm G(5)]; 9 - A = [I0*R12; I0; 0]; 10 - V = inv(M)*A; 11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	3 % currents as a function of known resistor	
<pre>6 - Rn=1/G(6); 7 - gm=G(7); 8 - M = [(G(3)+G(4))*R12+Rn*G(4)+1 - (G(3)*R12+1) (Rn-R12)*G(4); G(4) 0 - (G(4)+G(5)); gm -gm G(5)]; 9 - A = [Io*R12; Io; 0]; 10 - V = inv(M)*A; 11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	4 -% conductances + ideal current supplied	
<pre>7 - gm=G(7); 8 - M = [(G(3)+G(4))*R12+Rn*G(4)+1 - (G(3)*R12+1) (Rn-R12)*G(4); G(4) 0 - (G(4)+G(5)); gm -gm G(5)]; 9 - A = [Io*R12; Io; 0]; 10 - V = inv(M)*A; 11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	5 - R12=1/G(1)+1/G(2);	
<pre>8 - M = [(G(3)+G(4))*R12+Rn*G(4)+1 - (G(3)*R12+1) (Rn-R12)*G(4); G(4) 0 - (G(4)+G(5)); gm -gm G(5)]; 9 - A = [I0*R12; I0; 0]; 10 - V = inv(M)*A; 11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	6 - Rn=1/G(6);	
<pre>9 - A = [Io*R12; Io; 0]; 10 - V = inv(M)*A; 11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	7 - gm=G(7);	
<pre>10 - V = inv(M)*A; 11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	8 - M = [(G(3)+G(4))*R12+Rn*G(4)+1 - (G(3)*R12+1) (Rn-R12)*G(4); G(4) 0 - (G(4)+G(4))]	G(5)); gm -gm G(5)];
<pre>11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3)); 12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;</pre>	9 - A = [Io*R12; Io; 0];	
12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V(3) 0 0]; 13 - I = G.*deltaV;	10 - V = inv(M) *A;	
13 - I = G.*deltaV;	11 - upperdV=V(1)-V(2)-Rn*G(4)*(V(1)-V(3));	
	12 - deltaV = [upperdV/(G(1)*R12) upperdV/(G(2)*R12) V(1)-V(2) V(1)-V(3) V(2)-V	(3) 0 0];
	13 - I = G.*deltaV;	
14 ena	14 - end	

Calling the code

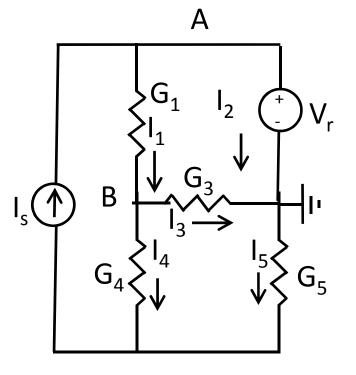
```
>> G=[0.7 0.2 0.3 0.5 0.8 2.0 0.1];
>> [V,I]=resistornetwork3(G,5)
V =
    10.3739
    11.5242
    0.1438
I =
    Columns 1 through 6
    -0.5768 -0.5768 -0.3451 5.1150 9.1044
```

Contour Plot of V_a

ECE 201-3, Prof. Bermel

Circuit Analysis Techniques for Floating Voltage Sources

- Nodal Analysis
 - Shift ground to base of floating voltage
- Modified nodal analysis (MNA)
 - Associate an effective current with each floating voltage source
- Loop analysis
 - Also known as 'mesh analysis'
 - Alternative to MNA
 - Use KVL to calculate total voltage drop around each closed loop in a circuit
 - Reduces number of currents


Floating Voltages: Nodal Analysis

• How to solve with KCL exclusively?

Floating Voltages: Nodal Analysis

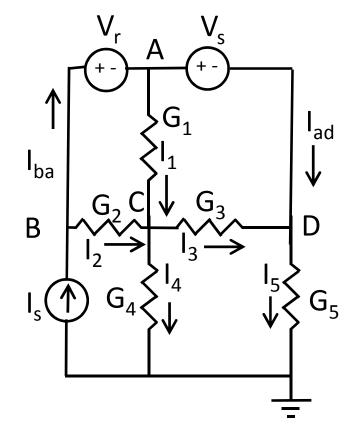
- How to solve with KCL exclusively?
- For one floating voltage move the ground
- Can use on next homework

MNA Example

• Using KCL:

$$I_{s} = I_{4} + I_{5}$$

$$I_{s} = I_{2} + I_{ba}$$

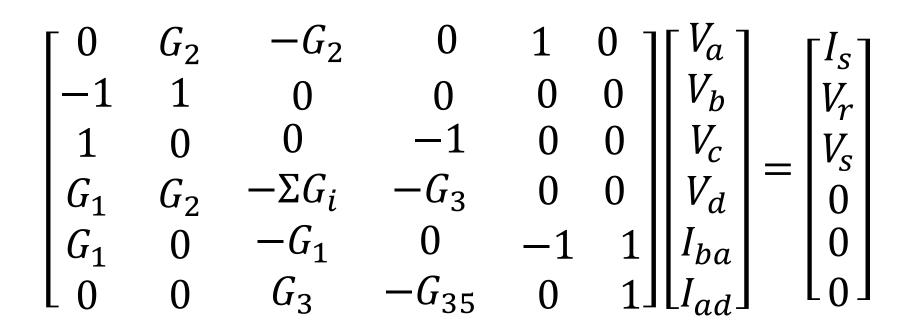

$$I_{1} + I_{2} = I_{3} + I_{4}$$

$$I_{ba} = I_{1} + I_{ad}$$

$$I_{ad} + I_{3} = I_{5}$$

• Using Ohm's Law:

$$\begin{split} I_{s} &= G_{4}V_{c} + G_{5}V_{d} \\ I_{s} &= G_{2}V_{bc} + I_{ba} \\ G_{1}V_{ac} + G_{2}V_{bc} &= G_{3}V_{cd} + G_{4}V_{c} \\ I_{ba} &= G_{1}V_{ac} + I_{ad} \\ I_{ad} + G_{3}V_{cd} &= G_{5}V_{d} \end{split}$$


MNA Example

 Grouping by each unknown (V_a, V_b, V_c, V_d, I_{ba}, I_{ad}), with sources on right:

$$\begin{aligned} G_4 V_c + G_5 V_d &= I_s \\ G_2 V_b - G_2 V_c + I_{ba} &= I_s \\ G_1 V_a + G_2 V_b - (G_1 + G_2 + G_3 + G_4) V_c - G_3 V_d &= 0 \\ G_1 V_a - G_1 V_c + I_{ad} - I_{ba} &= 0 \\ G_3 V_c - (G_3 + G_5) V_d + I_{ad} &= 0 \\ V_b - V_a &= V_r \\ V_a - V_d &= V_s \end{aligned}$$

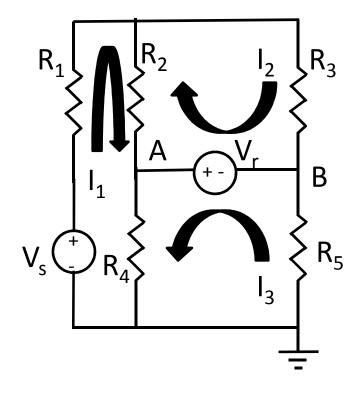
ECE 201-3, Prof. Bermel

MNA Example

Known as a "sparse matrix"

MATLAB Code

📝 Editor	- C:\Users\peter\Documents\classes\ece201-spring 2012\resistormna.m
File Ed	it Text Go Cell Tools Debug Desktop Window Help 🏻 🛪 🗙
: 🎦 🖨	📓 😹 ங 🛍 🤊 🛯 😓 🖅 - 🛤 🖛 🔿 🎋 🖻 - 🗟 🛠 🗐 🛍 🗈 🗐 🛍 Stack: Base 🕞 fx 🖽 🖽 🖽 🗗 🗖 🔲
: += c=	$ -1.0$ $+$ \div $ 1.1$ \times $ \%^{*}_{+} \%^{*}_{-}$ $ $
1 -	function [V,I] = resistormna(G, Is, Vr, Vs)
2	%RESISTORMNA : calculates unknown voltages +
3	% currents as a function of known resistor
4	<pre>% conductances + ideal currents + voltages supplied</pre>
5	-% using modified nodal analysis on a sparse matrix
6 -	G1234=G(1)+G(2)+G(3)+G(4);
7	<pre>% first line was: 0 0 G(4) G(5) 0 0</pre>
8 -	M = [0 G(2) -G(2) 0 1 0;-1 1 0 0 0 0;1 0 0 -1 0 0;G(1) G(2) -G1234 -G(3) 0 0;G(1) 0 -G(1) 0 -1 -
9 -	A = [Is Vr Vs 0 0 0]'
10 -	V = inv(M) *A;
11 -	deltaV = [V(1) - V(3) V(2) - V(3) V(3) - V(4) V(3) V(4)];
12 -	<pre>I = G.*deltaV;</pre>
13	%Check vector
14 -	check = [Is-G(2)*(V(2)-V(3))-V(5) Vr+V(1)-V(2) Vs+V(4)-V(1) G(1)*V(1)+G(2)*V(2)-G1234*V(3)-G(3)-
15 -	end


Calling MATLAB Code

>> G=rand(1,5)					
G =	:				
	0.1419	0.4218	0.9157	0.7922	0.9595
<pre>>> [V,I] = resistormna(G,2,4,6) Current check OK</pre>					
V =					
	6.0870				
	10.0870				
	2.2180				
	0.0870				
	-1.3189				
	-1.8678				
I =					

0.5490 3.3189 1.9514 1.7571 0.0835

Loop Analysis

• Applying KVL around each loop: $R_4(I_1 + I_3) + R_2(I_1 - I_2)$ $+ R_1I_1 = V_s$ $R_2(I_2 - I_1) + R_3I_2 = V_r$ $R_4(I_3 + I_1) + R_5I_3 = V_r$

Loop Analysis

• Rearranging as a matrix equation:

$$\begin{bmatrix} R_4 & 0 & R_4 + R_5 \\ -R_2 & R_2 + R_3 & 0 \\ R_{124} & -R_2 & R_4 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} V_r \\ V_r \\ V_s \end{bmatrix}$$

MATLAB Code

Editor - C:\Users\peter\Documents\classes\ece201-spring 2012\resistorloop.m					
File Edit Text Go Cell Tools Debug Desktop Window Help					
: 🞦 😂 🔙 🔏 ங 🛍 🤊 (° 🍓 🖅 - 👫 🖛 🗰 🎋 🔛 - 🛃 📌 🖷 🛍 🕼 🗐 🏭 Stac					
$\dot{z} \stackrel{*}{=} \Box \stackrel{=}{=} 1.0 + \dot{z} \stackrel{*}{=} 1.1 \times \left \overset{*}{}_{+} \overset{*}{}_{+} \overset{*}{}_{+} \right $					
1 [function [V,I] = resistorloop(R, Vr, Vs)					
2 SRESISTORLOOP : calculates unknown voltages +					
3 % currents as a function of known resistances + voltages supplied					
4 -% using loop analysis on a sparse matrix					
5 - R124 = R(1) + R(2) + R(4);					
$6 - M = [R(4) \ 0 \ R(4) + R(5); -R(2) \ R(2) + R(3) \ 0; R124 \ -R(2) \ R(4)];$					
7 - A = [Vr Vr Vs]';					
8 - I = inv(M) *A;					
9 - deltaI = [I(1) I(1)-I(2) I(2) I(1)-I(3) -I(3)];					
10 - V = deltaI.*R;					

Calling MATLAB Code

>> R=rand(1,5)					
R =					
0.7577	0.7431	0.3922	0.6555	0.1712	
>> [V,I]=resistorloop(R,4,6)					
V =					
3.5881	-1.4025	2.5975	2.3932	-0.1856	
I =					
4.7352					
6.6225					
1.0841					

Homework

- HW #7 due today by 4:30 pm in EE 325B
- HW #8 due Monday: DeCarlo & Lin, Chapter 3:
 - − Problem 14 [Correction: Relabel "(c)" → "(b)", "(d)" → "(c)", and "(e)" → "(d)".]
 - Problem 26 (requires Octave/MATLAB)
 - Problem 34