ECE 595 (Numerical Simulations) - Homework 4

Email to pbermel@purdue.edu
Please write your programs in $\mathrm{C} / \mathrm{C}++$ or MATLAB

Due March 8, 2013 at 4:30 pm

1 Consider the beam propagation method discussed in class. For this problem, you can use the code and image files available from the course website, http://web.ics.purdue.edu/~pbermel/ece595.html.

1a Graph the losses occuring from the Y-splitter waveguide as a function of propagation distance z, as quantified by the Poynting vector $\mathbf{S}=\mathbf{E} \times \mathbf{H}$. Is there any z-dependence of this loss? If so, why?

1b Design an asymmetric Mach-Zender interferometer by increasing the refractive index of one branch by Δn. In this case, find the smallest value of Δn such that the Mach-Zender interferometer completely reflects incoming light, and show the simulation results proving the reflection.

2 Consider solving the electromagnetic bandstructure master equation:

$$
\begin{equation*}
\nabla \times\left[\epsilon^{-1}(\nabla \times H)\right]=\left(\frac{\omega}{c}\right)^{2} H \tag{1}
\end{equation*}
$$

In this problem, you can use MIT Photonic Bands (MPB), available preinstalled on nanoHUB with a GUI: http://nanohub.org/tools/mpb/. Please submit your MEEP CTL (control) files.
If one starts with a 2 D triangular array of air holes in a high-dielectric background ϵ :

2a Which polarization has a bandgap, and how does the relative gap size $g=$ $\Delta \omega / \omega_{\text {mid }}$ change as ϵ ranges from 4 to 20 ?

2b Now create a $7 x 7$ supercell with $\epsilon=16$, and reduce the size rod in the middle to half its previous value. What new feature can be seen in the bandstructure, and what is its significance?

