ECE 595, Section 10 Numerical Simulations Lecture 10: Solving Quantum Wavefunctions

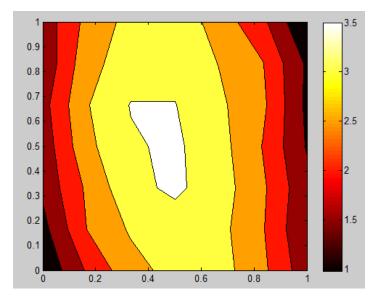
> Prof. Peter Bermel January 30, 2013

Outline

- Recap from Monday
- Schrodinger's equation
- Infinite & Finite Quantum Wells
- Kronig-Penney model
- Numerical solutions:
 - Real space
 - Fourier space

Recap from Monday

- Application Examples
 - Electrostatic potential (Poisson's equation)
 - 1D array of charge
 - 2D grid of charge
 - Arrays of interacting spins
 - 1D interaction along a chain
 - 2D nearest-neighbor coupling



Electrostatic potential in 2D (7x7 grid)

Schrodinger's Equation

- Wavefunction Ψ describes extent of particle
- Also eigenfunction of Schrodinger's equation: $\mathcal{H}\Psi = E\Psi$
- Hamiltonian consists of kinetic and potential terms: $\mathcal{H} = T + V$
- Classically, $T = \frac{p^2}{2m}$; if $p = -i\hbar \nabla$, $T = -\frac{\hbar^2}{2m} \nabla^2$
- Probability of finding at x given by $|\Psi(x)|^2$

Free Particle

- A free particle has zero potential everywhere
- Schrodinger's equation becomes:

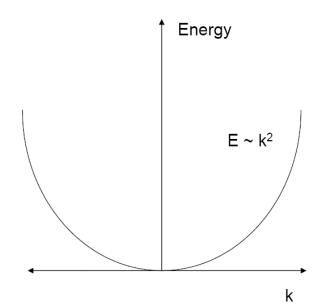
$$-\frac{\hbar^2}{2m}\nabla^2\Psi = E\Psi$$

• Eigenfunction can be obtained analytically:

$$\Psi(x) = Ae^{\pm ikx}$$

• Energy eigenvalue thus given by:

$$E = \frac{\hbar^2 k^2}{2m}$$

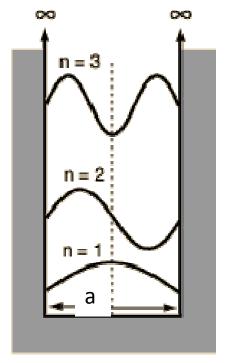


1/30/2013

Infinite Quantum Well

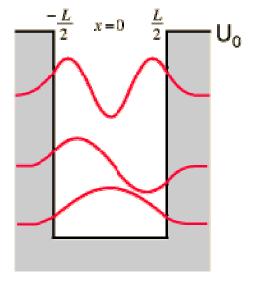
- Example: proton in iron nucleus
- Potential $V(x) = \begin{cases} 0, & |x| < a/2 \\ \infty, & |x| \ge a/2 \end{cases}$
- Boundary condition: $\Psi(\pm a/2) = 0$
- Eigenfunctions are standing waves: $\Psi(x) = A[e^{kx} + e^{-kx}]$

• By BC's,
$$k = \frac{n\pi}{a}$$
; $E = \frac{\hbar^2 n^2 \pi^2}{2ma^2}$



Finite Quantum Well

- Example: proton in helium nucleus
- Potential $V(x) = \begin{cases} 0, & |x| < a/2 \\ U, & |x| \ge a/2 \end{cases}$
- Boundary conditions: $\Psi'(\pm a/2) = 0$
- Eigenfunctions inside box like before; outside region decays exponentially

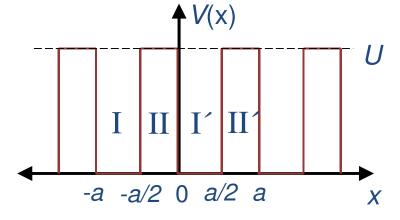


Kronig-Penney Potential

- Example: 1D atomic crystal
- Potential

$$V(x) = \begin{cases} 0, & 0 < x < a/2 \\ U, & a/2 < x < a \end{cases}$$

- And, V(x + a) = V(x)
- Boundary conditions: $\Psi(x + a) = \Psi(x)$
- Will each electron be stuck in its own little well?



Bloch Theorem

"When I started to think about it, I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal By straight Fourier analysis, I found to my delight that the wave differed from the plane wave of free electron only by a periodic modulation."



--Felix Bloch, Physics Today (1976)

Bloch Theorem

- Asserts that solution in periodic potential is always a product of two terms:
 - a periodic function (with the same period)
 - a plane wave
- Mathematically, we can write: $\Psi(x) = Ae^{ikx}u(x)$ where u(x + a) = u(x)

Bloch Theorem: Numerical Solution

Use Bloch's theorem to solve the eigenproblem numerically

 ^{ħ²}
 ¹
 ¹

$$\left[-\frac{n^2}{2m}\nabla^2 + V(x)\right]\left[e^{ikx}u(x)\right] = E(k)e^{ikx}u(x)$$

• What basis to use for periodic function?

Bloch Theorem: Real-Space Basis

- Real space is most obvious, with uniform grid
- Pull out plane wave from eigenvector to reduce complexity:

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(x)\right]u(x) = \left[E(k) - \frac{\hbar^2 k^2}{2m}\right]u(x)$$

• Immediate problem: not positive definite

Bloch Theorem: Real-Space Basis

>> N=10; A=-2*diag(ones(N,1))+diag(ones(N-1,1),1)+diag(ones(N-1,1),-1)+diag([zeros(N/2,1);ones(N/2,1)])

	A =													
	-2	2 1	. 0	0	0	0	0	0	0	0				
	1	L -2	2 1	0	0	0	0	0	0	0				
	C) 1	-2	1	0	0	0	0	0	0				
	C) () 1	-2	1	0	0	0	0	0				
	C) (0 (1	-2	1	0	0	0	0				
	C) () 0	0	1	-1	1	0	0	0				
	C) () 0	0	0	1 -	-1	1	0	0				
	C) (0 (0	0	0	1	-1	1	0				
	C) () 0	0	0	0	0	1	-1	1				
	C) (0 0	0	0	0	0	0	1	-1				
	>> [V,D]=eig(full(A)); V													
1	V =													
	-0.	2494	-0.4205	-0.	2483	0.4572	0	.3603	ο.	4437	0.2943	0.2753	0.0345	-0.0043
	0.	4440	0.5019	0.	1766	-0.1349	0	.0757	0.	3504	0.3811	0.4711	0.0758	-0.0120
	-0.	5410	-0.1785	0.	1227	-0.4175	-0	.3444	-0.	1669	0.1992	0.5309	0.1317	-0.0291
	0.	5189	-0.2888	-0.	2639	0.2580	-0	.1481	-0.	4822	-0.1231	0.4374	0.2130	-0.0689
	-0.	3828	0.5232	0.	0650	0.3414	0	.3132	-0.	2140	-0.3587	0.2176	0.3356	-0.1625
	0.	1625	-0.3356	; 0.	2176	-0.3587	0	.2140	0.	3132	-0.3414	-0.0650	0.5232	-0.3828
	-0.	0689	0.2130	-0.	4374	0.1231	-0	.4822	Ο.	1481	0.2580	-0.2639	0.2888	-0.5189
	ο.	0291	-0.1317	0.	5309	0.1992	0	.1669	-0.	3444	0.4175	-0.1227	-0.1785	-0.5410
	-0.	0120	0.0758	-0.	4711	-0.3811	0	.3504	-0.	0757	-0.1349	0.1766	-0.5019	-0.4440
	Ο.	0043	-0.0345	0.	2753	0.2943	-0	.4437	ο.	3603	-0.4572	0.2483	-0.4205	-0.2494
	>> dia	ag (D) '												
	ans =													
	-3.	7801	-3.1935	-2.	7113	-2.2950	-1	.7898	-1.	2102	-0.7050	-0.2887	0.1935	0.7801

1/30/2013

ECE 595, Prof. Bermel

Bloch Theorem: Fourier Space Basis

• If we write periodic function as Fourier series:

$$u(r) = \sum_{G} c_{G} e^{iGr}$$

• We obtain the nice recursion relation:

$$V_{G'}c_{G-G'} = \left[E(k) - \frac{\hbar^2}{2m}(k+G)^2\right]c_G$$

Bloch Theorem: Fourier Space Basis

```
>> N=11; k=0; G=2*pi*[-(N-1)/2:(N-1)/2]; T=diag((k+G).^2); ftV=fft([zeros((N-1)/2,1); 0.5; ones((N-1)/2,1)]);
```

```
>> V=diag(ones(N,1))*ftV(1)+diag(ones(N-1,1),1)*ftV(2)+diag(ones(N-1,1),-1)*ftV(N);
```

```
>> [V,D]=eig(full(T+V)); V=abs(V)
```

V =

0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0098	0.0000	1.0000
0.0000	0.0000	0.0000	0.0001	0.0001	0.0089	0.0089	0.0152	0.9998	0.0000	0.0098
0.0000	0.0002	0.0002	0.0125	0.0125	0.7070	0.7069	0.0002	0.0126	0.0000	0.0001
0.0019	0.0207	0.0207	0.7067	0.7067	0.0125	0.0125	0.0000	0.0001	0.0000	0.0000
0.0863	0.7068	0.7015	0.0207	0.0208	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000
0.9925	0.0000	0.1220	0.0000	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0863	0.7068	0.7015	0.0207	0.0208	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000
0.0019	0.0207	0.0207	0.7067	0.7067	0.0125	0.0125	0.0001	0.0000	0.0000	0.0000
0.0000	0.0002	0.0002	0.0125	0.0125	0.7069	0.7070	0.0126	0.0002	0.0001	0.0000
0.0000	0.0000	0.0000	0.0001	0.0001	0.0089	0.0089	0.9998	0.0152	0.0098	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0098	0.0001	1.0000	0.0000

>> abs(diag(D))'

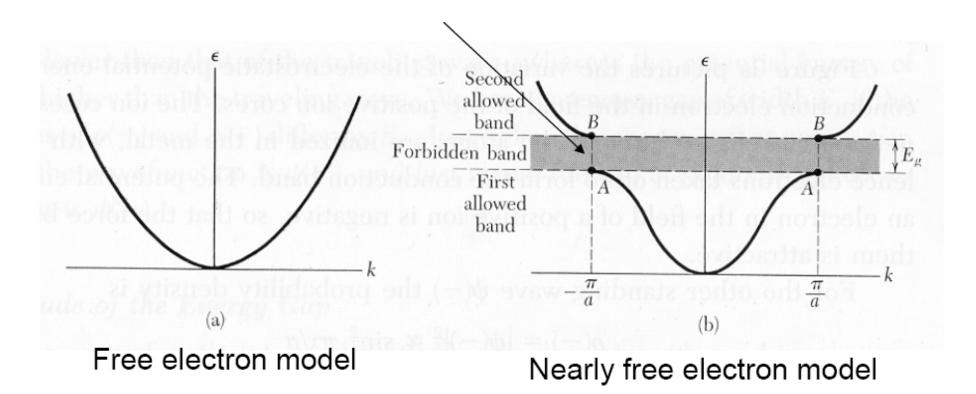
ans =

4.8954 44.8764 45.4808 163.4545 163.4546 360.8233 360.8233 637.1644 637.1644 992.4945 992.4945

1/30/2013

ECE 595, Prof. Bermel

Physical Observation



From C. Kittel, Introduction to Solid State Physics

Next Class

- Is on Friday, Feb. 1
- Will discuss numerical tools for Fast Fourier Transforms
- Recommended reading: Numerical Recipes, Chapter 12