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Outline

• Recap from Monday

• Schrodinger’s equation

• Infinite & Finite Quantum Wells

• Kronig-Penney model

• Numerical solutions:

– Real space

– Fourier space
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Recap from Monday

• Application Examples

– Electrostatic potential 

(Poisson’s equation)

• 1D array of charge

• 2D grid of charge

– Arrays of interacting spins

• 1D interaction along a chain

• 2D nearest-neighbor coupling
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Electrostatic 

potential in 2D 

(7x7 grid)



Schrodinger’s Equation

• Wavefunction Ψ describes extent of particle

• Also eigenfunction of Schrodinger’s equation:

ℋΨ = �Ψ
• Hamiltonian consists of kinetic and potential 

terms: ℋ = � + �
• Classically, � = �	


�; if � = −�ℏ∇, � = − ℏ	

� ∇


• Probability of finding at x given by Ψ(�) 
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Free Particle

• A free particle has zero potential 
everywhere

• Schrodinger’s equation becomes:

− ℏ

2� �
Ψ = �Ψ

• Eigenfunction can be obtained 
analytically:

Ψ � = ��±���
• Energy eigenvalue thus given by:

� = ℏ
�

2�
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Infinite Quantum Well

• Example: proton in iron nucleus

• Potential � � = �0, 	 � < #/2
∞, |�| ≥ #/2

• Boundary condition:
Ψ ±#/2 = 0

• Eigenfunctions are standing waves: 
Ψ � = � ��� + �(��

• By BC’s, � = )*
+ ; � = ℏ	)	*	


�+	
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Finite Quantum Well

• Example: proton in helium 
nucleus

• Potential � � = �0, 	 � < #/2
,, |�| ≥ #/2

• Boundary conditions:
Ψ′ ±#/2 = 0

• Eigenfunctions inside box like 
before; outside region decays 
exponentially
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Kronig-Penney Potential

• Example: 1D atomic crystal

• Potential 

� � = �0, 		0 < � < #/2
,, 	#/2 < � < #

• And, � � + # = �(�)
• Boundary conditions:

Ψ � + # = Ψ �
• Will each electron be stuck 

in its own little well?
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Bloch Theorem

“When I started to think about it, I 
felt that the main problem was to 
explain how the electrons could 
sneak by all the ions in a metal …. 
By straight Fourier analysis, I found 
to my delight that the wave 
differed from the plane wave of 
free electron only by a periodic 
modulation.”

--Felix Bloch, Physics Today (1976)
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Bloch Theorem

• Asserts that solution in periodic potential is 

always a product of two terms:

– a periodic function (with the same period)

– a plane wave

• Mathematically, we can write:

Ψ � = �����.(�)
where . � + # = .(�)
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Bloch Theorem: Numerical Solution

• Use Bloch’s theorem to solve the 

eigenproblem numerically

− ℏ

2� ∇
 + �(�) ����.(�) = �(�)����.(�)

• What basis to use for periodic function?
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Bloch Theorem: Real-Space Basis

• Real space is most obvious, with uniform grid

• Pull out plane wave from eigenvector to 

reduce complexity:

− ℏ

2� �
 + �(�) .(�) = � � − ℏ
�


2� 	.(�)
• Immediate problem: not positive definite
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Bloch Theorem: Real-Space Basis
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Bloch Theorem: Fourier Space Basis

• If we write periodic function as Fourier series:

. / = 0 12��23
2

• We obtain the nice recursion relation:

�2´12(2´ = � � − ℏ

2� � + 5 
 12
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Bloch Theorem: Fourier Space Basis

1/30/2013 ECE 595, Prof. Bermel



Physical Observation

From C. Kittel, Introduction to Solid State Physics
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Next Class

• Is on Friday, Feb. 1

• Will discuss numerical tools for Fast 
Fourier Transforms

• Recommended reading: Numerical 
Recipes, Chapter 12
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