ECE 595, Section 10 Numerical Simulations Lecture 11: Fast Fourier Transforms

> Prof. Peter Bermel February 1, 2013

Outline

- Recap from Wednesday
- Fourier Analysis
 - Scalings and Symmetries
 - Sampling Theorem
- Discrete Fourier Transforms
 - Naïve approach
 - Danielson-Lanczos lemma
 - Cooley-Tukey algorithm
- Examples

Recap from Wednesday

- Schrodinger's equation
- Infinite & Finite Quantum Wells
- Kronig-Penney model
- Numerical solutions:
 - Real space
 - Fourier space

Fourier Analysis

- Fourier transformation is a linear operation that maps time-series data into the Fourier-domain: $\tilde{f}(\omega) = \int_{-\infty}^{\infty} dt f(t) e^{i\omega t}$
- Independent variable interpreted as frequency
- Inverse Fourier transform:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \,\tilde{f}(\omega) e^{-i\omega t}$$

Fourier Symmetries

Time-domain property of $f(t)$	Frequency-domain property of $\tilde{f}(\boldsymbol{\omega})$
$f(t) = \operatorname{Re}{f(t)}$	$ ilde{f}(-\omega) = ilde{f}^*(\omega)$
$f(t) = \operatorname{Im}{f(t)}$	$ ilde{f}(-oldsymbol{\omega}) = - ilde{f}^*(oldsymbol{\omega})$
f(t) = f(-t)	$\tilde{f}(-\omega) = \tilde{f}(\omega)$
f(t) = -f(-t)	$-\tilde{f}(-\omega) = \tilde{f}(\omega)$
$f(t) = f(-t) = \operatorname{Re}{f(t)}$	$\tilde{f}(-\omega) = \tilde{f}(\omega) = \operatorname{Re}\{\tilde{f}(\omega)\}$
$f(t) = -f(-t) = \operatorname{Re}\{f(t)\}$	$-\tilde{f}(-\omega) = \tilde{f}(\omega) = \operatorname{Im}\{\tilde{f}(\omega)\}$
$f(t) = f(-t) = \operatorname{Im} \{ f(t) \}$	$\tilde{f}(-\omega) = \tilde{f}(\omega) = \operatorname{Im}\{\tilde{f}(\omega)\}$
$f(t) = -f(-t) = \operatorname{Im}\{f(t)\}$	$-\tilde{f}(-\boldsymbol{\omega}) = \tilde{f}(\boldsymbol{\omega}) = \operatorname{Re}\{\tilde{f}(\boldsymbol{\omega})\}$

Fourier Scalings

Time Domain Expression	Frequency-Domain Expression
f(t)	$ ilde{m{f}}(m{\omega})$
$\alpha f(t) + \beta g(t)$	$lpha \widetilde{f}(\omega) + eta \widetilde{g}(\omega)$
f (at)	$\frac{1}{ a }\tilde{f}\left(\frac{\omega}{a}\right)$
$f(t-t_o)$	$\tilde{f}(\boldsymbol{\omega})e^{i\boldsymbol{\omega}t_{o}}$
$f(t - t_0)$ $f(t)e^{-i\omega t_0}$ $t^n f(t)$	$\tilde{f}(\boldsymbol{\omega}-\boldsymbol{\omega}_{o})$
$t^n f(t)$	$i^n rac{d^n ilde{f}(\omega)}{d\omega^n}$
$\frac{d^n f(t)}{dt^n}$	$(\boldsymbol{i}\boldsymbol{\omega})^{n}\widetilde{\boldsymbol{f}}(\boldsymbol{\omega})$

Sampling Theorem

- At finite sampling rates, need at least two data points
- For a sample time interval Δ , max measurable frequency is the Nyquist frequency f_c=1/2 Δ
- Sampling theorem says that f_c bandwidth-limited spectrum **completely determined** by data sampled at intervals of Δ

Discrete Fourier Transforms

- Accounts for finite time spacing of data points
- Gives rise to finite frequency spacing and maximum frequency (from sampling theorem)
- DFT defined by: $F(n) = \sum_{k=1}^{N} f(x_k) e^{-2\pi j (x_k n / x_N)}$
- For uniform time spacing Δ :

$$F(n) = \sum_{k=1}^{N} f_k e^{-2\pi j k n/N}$$

Discrete Fourier Transforms: Naïve Algorithm

• Rewrite DFT as:

$$F(n) = \sum_{k=1}^{N} f_k W^{nk}$$

- Where $W = e^{-2\pi j/N}$
- Just perform sum (*N* operations) for each frequency (*N* times)
- Overall time scales as N^2

Discrete Fourier Transforms: Naïve Algorithm

- Obtain same number of points in DFT as original series
- Symmetry properties same as for continuous FT
- For inverse Fourier transform just use the inverse of W:

$$f_k = \frac{1}{N} \sum_{k=1}^{N} F(n) \left(\frac{1}{W}\right)^{nk}$$

Fast Fourier Transforms: Danielson-Lanczos Lemma

• Based on Danielson-Lanczos lemma:

$$F(n) = \sum_{\substack{k=1 \ N/2}}^{N} f_k W^{nk}$$

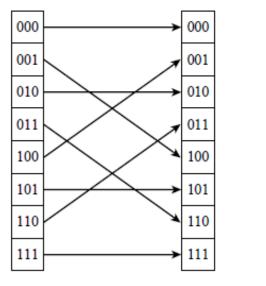
= $\sum_{\substack{k=1 \ k=1}}^{N/2} f_{2k} W^{n2k} + \sum_{\substack{k=1 \ k=1}}^{N/2} f_{2k+1} W^{n(2k+1)}$
= $F^e(n) + W^n F^o(n)$

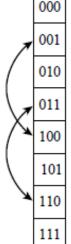
• Can be applied recursively

B T

Discrete Fourier Transforms: Cooley-Tukey Algorithm

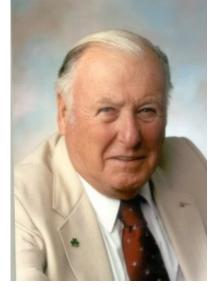
- If one applies D-L lemma recursively to a data set with N = 2^m, reduce to FT of single point!
- Key is to order everything to keep track of where everything should go – then work backwards





Discrete Fourier Transforms: Cooley-Tukey Algorithm

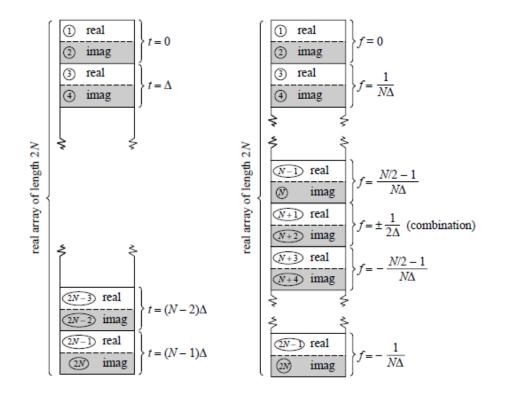
- Algorithm devised by Cooley and Tukey:
 - Sort data into bit reversed order
 - Perform FTs on lengths 1, 2, 4, 8, etc. with
 D-L lemma
- Operations for first step go as N
- Operations for second step go as N per cycle, with log₂ N cycles
- Overall time is N log₂ N considerably better than naïve approach



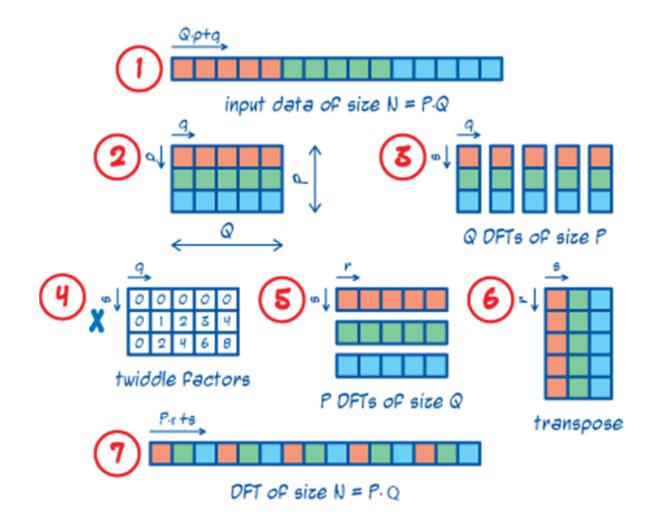
J.W. Cooley (IEEE Global History Network)

Fast Fourier Transform Data

- Input data is uniformly spaced
- Output consists of rising positive frequencies, followed by negative frequencies decreasing in magnitude



Cooley-Tukey Algorithm



Next Class

- Is on Wednesday, Feb. 6
- Will discuss numerical tools for Fast Fourier Transforms
- Recommended reading: Numerical Recipes, Chapters 12-13
- Please email me your HW #2 today (by 4:30 pm)