ECE 595, Section 10
Numerical Simulations
Lecture 12: Applications of FFT



Outline

Recap from Friday
Real FFTs
Multidimensional FFTs
Applications:

— Correlation measurements

— Filter diagonalization method



Recap from Friday

e Recap from Wednesday
* Fourier Analysis

— Scalings and Symmetries
— Sampling Theorem

 Discrete Fourier Transforms
— Naive approach

— Danielson-Lanczos lemma

— Cooley-Tukey algorithm



Real FFTs

* For real functions, the general complex FFT
procedure is wasteful

* Solutions:
— Pack twice as many FFTs into each calculation

— Reduce length by half, sort out result
— Use sine and cosine transforms

* Application: signal processing of experimental
measurement data



Multidimensional FFTs

* Applications: image processing,
band structures

e Definition:
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M. Leistikow et al., Phys. Rev. Lett. 107,

e For FFT datain 2D or 3D, can 193903 (2011).

efficiently perform FT in each
dimension successively
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Correlation Measurements

e Application: ultrafast

optics, quantum optics | .. 0
* Correlation for discrete £ , |
data defined by: | L e
N E (L3 . i I.0)
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k=1 From A.M. Weiner, Ultrafast Optics
(2009).

e Autocorrelation: special
case where f = h



Correlation Measurements

Autocorrelation powerful signature of the
nature of one’s data set

_argest value for m=0

Dure noise: O-function correlated

Pure periodic signal: cross-correlation also has
same period

Most signals decay with characteristic
correlation time 7,



Time-domain data analysis

 Many PDE solvers
produce a time series
of data warranting
spectral analysis

* Examples: finite-
difference time domain,
drift-diffusion models
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Signal Processing

 Most obvious approach: least-squares fit to
FFT of time-series data

* Given a set of narrow Lorentzian peaks,
should fit well, right? Problem solved!
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Signal Processing

 But what if the decay is slow, and unfinished?

* The FFT of the time-series will look
significantly different from goal
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Signal Processing

An even greater challenge — what if you have
two time decays with relatively close
frequencies (this case is fairly common)?

Can’t even detect the number of modes!
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Signal Processing

Need to find an alternative strategy to
straightforward FFTs

Might want to add damping explicitly

Most obvious approach known as decimated
signal diagonalization

One particularly useful approach devised by
Mandelshtam is known as filter
diagonalization



Filter Diagonalization Method

[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

—i @, nAt
Given time series y,, write: Y, = y(nAt) = dee o
k

...find complex amplitudes a, & frequencies ®,
by a simple linear-algebra problem!

ldea: pretend y(t) is autocorrelation of a quantum system:

ﬁ‘ I,V> — lhg‘ W> time-At evolution-operator: l/} — e—iﬁAt/h

say: Y = <W(O)‘W(I/ZAZL)> <W(O)‘ﬁn W(O)>
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Filter-Diagonalization Method

[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

v, = (WO0)| W(nAr)) = (WO)|[U"|w(0)) U =e ™"

We want to diagonalize U: eigenvalues of U are e'®4!
..expand U in basis of |y(nAt)>:

U, , = {w(mAn)|U|lynAr)) = (w(0)[U"UU"

m,

W(O)> = ym+n+1

U, given by y ’s — just diagonalize known matrix!



Filter-Diagonalization Summary

[ Mandelshtam, J. Chem. Phys. 107, 6756 (1997) ]

U, given by y s — just diagonalize known matrix!

A few omitted steps:
—Generalized eigenvalue problem (basis not orthogonal)
—Filter y,’s (Fourier transform):
small bandwidth = smaller matrix (less singular)

e resolves many peaks at once

e # peaks not known a priori

e resolve overlapping peaks

e resolution >> Fourier uncertainty
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Next Class

* |son Friday, Feb. 8
 Will discuss FFTW

e Recommended reading: FFTW User
Guide: http://www.fftw.org/fftw3 doc/




