ECE 595, Section 10
 Numerical Simulations
 Lecture 14: Beam Propagation Method

Prof. Peter Bermel

February 11, 2013

Outline

- Recap from Friday
- Derivation of Beam Propagation Method
- Nonlinear Schrodinger equation
- Comparison of BPM Strategies
- FFT
- Uniform spatial grid
- Finite element
- Perfectly Matched Layers

Recap from Friday

- Rationale for FFTW
- Planning DFTs
- Executing DFTs
- Basic interface
- Advanced interface
- BPM example

Recap: Beam Propagation

- Starting from the Helmholtz equation:

$$
-\nabla^{2} \psi=\left(\frac{n \omega}{c}\right)^{2} \psi
$$

- One can assume a solution of the form:

$$
\psi=\phi e^{-j \beta z}
$$

- Where ϕ is slowly varying, which gives rise to:

$$
-\nabla^{2} \phi+2 j \beta \hat{z} \cdot \nabla \phi=k_{\perp}^{2} \phi
$$

Beam Propagation

- To simplify problem, drop second derivatives in z
- now we can write as:

$$
\frac{\partial \phi}{\partial z}=\frac{j}{2 \beta} \nabla_{\perp}^{2} \phi+\frac{j k_{\perp}^{2}}{2 \beta} \phi
$$

- Can simplify by defining two operators:

$$
\begin{gathered}
U=\frac{j}{2 \beta} \nabla_{\perp}^{2} \\
W=\frac{j k_{\perp}^{2}}{2 \beta} \\
\frac{\partial \phi}{\partial z}=(U+W) \phi
\end{gathered}
$$

Nonlinear Schrodinger Equation

- Can derive expressions suitable for understanding fibers with dispersion and Kerr nonlinearity:

$$
\begin{gathered}
U=-\frac{j \beta_{2}}{2} \frac{\partial^{2}}{\partial t^{2}} \\
W=-\alpha+\frac{j \kappa}{2}|\phi|^{2} \\
\frac{\partial \phi}{\partial z}=(U+W) \phi
\end{gathered}
$$

Nonlinear Schrodinger Equation

- In the presence of nonlinearity, don't actually know the value of $W(z+h)$
- Can obtain the result iteratively
- Use $W(z)$ to evaluate $W(z+h)$
- Work backwards to refine guess for $\phi(z+h)$
- After a few iterations, generally reach a selfconsistent solution

Beam Propagation

- For a small z-step of size h, we can formally write a solution:

$$
\phi(z+h)=e^{h(U+W)} \phi(z)
$$

- If we know that U and W operators commute, we can rewrite as:

$$
\begin{gathered}
\phi(z+h)=e^{h U} e^{h W} \phi(z) \\
\phi(z+h)=e^{h U / 2} e^{h W} e^{h U / 2} \phi(z)
\end{gathered}
$$

Beam Propagation

- Split-step method
- Propagate half a step with the Laplacian
- Propagate linear phase shift over the full distance
- Propagate half a step with the Laplacian

BPM Strategies

- Most important decision is handling inhomogeneity well
- Possible strategies:
- FFT
- Uniform spatial grid
- Finite-element method

FFT BPM

- Well-suited for diffraction step, where we can rephrase the operator as:

$$
U=-\frac{j}{2 \beta}(k+G)_{\perp}^{2}
$$

- Can transform before and then back afterwards, via FFT

Uniform Spatial Grid BPM

- Reformulate Laplacian in 2D with:

$$
\nabla^{2} \phi \approx \frac{\phi_{i-N}+\phi_{i-1}-4 \phi_{i}+\phi_{i+1}+\phi_{i+N}}{h^{2}}
$$

- Where h is the grid spacing

Finite Element BPM

- Finite element method consists of dividing a spatial domain in 1D, 2D or 3D into a mesh
- Mesh generally has D+1 vertices
- Solution can take various forms, but usually a tent function within each D+1-gon

Finite Element BPM

- In general, can formulate FE problems as:

$$
L u=b
$$

- L is the stiffness matrix, representing overlap between basis functions
$-b$ is the integral of given PDE with respect to basis
$-u$ is unknown
- Value of FEA comes from:
- Spatial flexibility: can define each element to vary in size quite substantially
- Speed: properly chosen basis functions have compact support, leading to a sparse matrix

Perfectly Matched Layers

- In order to prevent lateral reflections (e.g., from PEC boundaries), can introduce perfectly matched layers (PML)
- Several formulations (including split-field and uniaxial), but here we'll follow stretched coordinate PML
- Effected by the transformation:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1-j \beta & 0 \cdot \nabla \\
0 & 1-j \beta & 0 \\
0 & 0 & 1
\end{array}\right) \\
\beta=-\frac{3 \lambda \rho^{2}}{4 \pi n d^{3}} \ln R
\end{gathered}
$$

Next Class

- Is on Wednesday, Feb. 13
- Will continue with beam propagation method
- Recommended reading: Obayya, Sections 2.7-2.8

