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Outline

• Recap from Friday

• Derivation of Beam Propagation Method

• Nonlinear Schrodinger equation

• Comparison of BPM Strategies

– FFT

– Uniform spatial grid

– Finite element

• Perfectly Matched Layers
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Recap from Friday

• Rationale for FFTW

• Planning DFTs

• Executing DFTs

– Basic interface

– Advanced interface

• BPM example
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Recap: Beam Propagation

• Starting from the Helmholtz equation:
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• One can assume a solution of the form:
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• Where φ is slowly varying, which gives rise to:
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Beam Propagation
• To simplify problem, drop second derivatives in z 

– now we can write as:
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• Can simplify by defining two operators:
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Nonlinear Schrodinger Equation

• Can derive expressions suitable for 

understanding fibers with dispersion and Kerr 

nonlinearity:
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Nonlinear Schrodinger Equation

• In the presence of nonlinearity, don’t actually 

know the value of W(z+h)

• Can obtain the result iteratively

– Use W(z) to evaluate W(z+h)

– Work backwards to refine guess for φ(z+h)

• After a few iterations, generally reach a self-

consistent solution
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Beam Propagation

• For a small z-step of size h, we can formally 

write a solution:
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• If we know that U and W operators commute, 

we can rewrite as:
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Beam Propagation

• Split-step method

– Propagate half a step with the Laplacian

– Propagate linear phase shift over the full distance

– Propagate half a step with the Laplacian
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BPM Strategies

• Most important decision is handling 

inhomogeneity well

• Possible strategies:

– FFT 

– Uniform spatial grid 

– Finite-element method
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FFT BPM

• Well-suited for diffraction step, where we can 

rephrase the operator as:
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• Can transform before and then back 

afterwards, via FFT
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Uniform Spatial Grid BPM

• Reformulate Laplacian in 2D with:
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• Where h is the grid spacing
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Finite Element BPM

• Finite element method consists of dividing a 

spatial domain in 1D, 2D or 3D into a mesh

• Mesh generally has D+1 vertices

• Solution can take various forms, but usually a 

tent function within each D+1-gon
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Finite Element BPM

• In general, can formulate FE problems as:

./ = 0
– L is the stiffness matrix, representing overlap between 

basis functions

– b is the integral of given PDE with respect to basis

– u is unknown

• Value of FEA comes from:
– Spatial flexibility: can define each element to vary in 

size quite substantially

– Speed: properly chosen basis functions have compact 
support, leading to a sparse matrix
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Perfectly Matched Layers

• In order to prevent lateral reflections (e.g., from PEC 
boundaries), can introduce perfectly matched layers 
(PML)

• Several formulations (including split-field and uniaxial), 
but here we’ll follow stretched coordinate PML

• Effected by the transformation:
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Next Class

• Is on Wednesday, Feb. 13

• Will continue with beam propagation 

method

• Recommended reading: Obayya, 

Sections 2.7-2.8
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