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Recap: Beam Propagation

e Starting from the Helmholtz equation:
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e One can assume a solution of the form:
Y = pe b

* Where ¢is slowly varying, which gives rise to:
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Beam Propagation

e To simplify problem, drop second derivatives in z
— NOW we can write as:
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e Can simplify by defining two operators:
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Nonlinear Schrodinger Equation

* Can derive expressions suitable for
understanding fibers with dispersion and Kerr
nonlinearity:

~ jBy 07
U= 2 6t2
W——a+ Igbl2
a—¢:<u+w>¢

0z



Nonlinear Schrodinger Equation

* |n the presence of nonlinearity, don’t actually
know the value of W(z+h)

* Can obtain the result iteratively
— Use W(z) to evaluate W(z+h)

— Work backwards to refine guess for ¢(z+h)

e After a few iterations, generally reach a self-
consistent solution



Beam Propagation

* For a small z-step of size h, we can formally
write a solution:
d(z +h) = " UM (2)
* |f we know that U and W operators commute,
we can rewrite as:
P(z+h) =e"e"p(2)
¢(Z 1+ h) — th/ZehWth/2¢(Z)



Beam Propagation

e Split-step method

— Propagate
— Propagate
— Propagate
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nalf a step with the Laplacian
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BPM Strategies

 Most important decision is handling
inhomogeneity well

* Possible strategies:
— FFT
— Uniform spatial grid
— Finite-element method



FFT BPM

* Well-suited for diffraction step, where we can
rephrase the operator as:

U = —L(k+G)f

2
e Can transform before and then back
afterwards, via FFT



Uniform Spatial Grid BPM

 Reformulate Laplacian in 2D with:
72 A Gi-n + Pi—1 — 4P + Piy1 + Piyn
¢ ~ hz
* Where h is the grid spacing




Finite Element BPM

* Finite element method consists of dividing a
spatial domain in 1D, 2D or 3D into a mesh

 Mesh generally has D+1 vertices

* Solution can take various forms, but usually a
tent function within each D+1-gon




Finite Element BPM

* |n general, can formulate FE problems as:
Lu=>b
— L is the stiffness matrix, representing overlap between
basis functions
— b is the integral of given PDE with respect to basis
— u is unknown

 Value of FEA comes from:

— Spatial flexibility: can define each element to vary in
size quite substantially

— Speed: properly chosen basis functions have compact
support, leading to a sparse matrix



Perfectly Matched Layers

* In order to prevent lateral reflections (e.g., from PEC
boundaries), can introduce perfectly matched layers
(PML)

* Several formulations (including split-field and uniaxial),
but here we’ll follow stretched coordinate PML

e Effected by the transformation:
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Next Class

* |s on Wednesday, Feb. 13

* Will continue with beam propagation
method

e Recommended reading: Obayya,
Sections 2.7-2.8



