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Recap from Monday

* Derivation of Beam Propagation Method
* Nonlinear Schrodinger equation

e Comparison of BPM Strategies
— FFT
— Uniform spatial grid

— Finite element



Recap from Monday

 Beam propagation amounts to solving:
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Perfectly Matched Layers

* In order to prevent lateral reflections (e.g., from PEC
boundaries), can introduce perfectly matched layers
(PML)

* Several formulations (including split-field and uniaxial),
but here we’ll follow stretched coordinate PML

e Effected by the transformation:
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Perfectly Matched Layers

* Residual reflection
scales as a power

law with PML
thickness
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* Cubic absorption 07}
increase with '
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A.F. Oskooi et al., Comput. Phys.
Commun. (2009)
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Finite Elements

e Shapes: 1D, 2D, and 3D

e Shape functions:
1D: u(x) = a + Bx +yx* + -
2D/3D: u(x) = Yi-olarx® + Bry® + yiz"]




Finite Elements

e Lagrange functions: 1
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fU nCthnS Wlth com paCt M. Asadzadeh, Introduction to the Finite

SUppo rt Element Method for Differential
Equations (2010)



Finite Element BPM

* |n general, can formulate FE problems as:
Lu=>b
— L is the stiffness matrix, representing overlap
between basis functions
— b is the integral of given PDE with respect to basis

— U is unknown



Finite Element BPM

 Can define error function as:
E=Lu-—0>b
* In order to eliminate errors, set weighted residual w; in
test space v to zero:

fwi (Lu—»b) =0
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* Galerkin’s method is a specific example of this:
%1/)(Lu —b)=0
1%

where u(x) are the polynomials we saw earlier



Finite Element BPM

e Canrefine accuracy of BPM for wide-angle beam
propagation with second derivative in z:

d

= = 2jp Vi —kIg
dp
-

e Canthen choose a Padé approximant based on initial
value of C. If {(0)=0, then:
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Finite Element BPM

* Applying Galerkin method to second-order
BPM equations yields:
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Reducing FEM Errors

* Error depends on match between true
solution and basis functions

* To reduce error, can try the following:
— H-adaptivity: decrease the mesh size

— P-adaptivity: increase the degree of the fitted
polynomials

— HP-adaptivity: combine all of the above



Reducing FEM Errors

e Strategy for reducing errors:
— Create an initial meshing
— Compute solution on that meshing
— Compute the error associated with it

— If above our tolerance, refine the mesh spacing
and start again



Next Class

* |son Friday, Feb. 15

* Will continue with beam propagation
method

e Recommended reading: Obayya,
Sections 2.7-2.8



