ECE 595, Section 10
 Numerical Simulations
 Lecture 15: Beam Propagation Method II

Prof. Peter Bermel

February 13, 2013

Outline

- Recap from Monday
- Perfectly Matched Layers
- Finite Elements
- Finite Element BPM
- Reducing FEM Errors

Recap from Monday

- Derivation of Beam Propagation Method
- Nonlinear Schrodinger equation
- Comparison of BPM Strategies
- FFT
- Uniform spatial grid
- Finite element

Recap from Monday

- Beam propagation amounts to solving:

$$
\frac{\partial \phi}{\partial z}=(U+W) \phi
$$

where:

$$
\begin{gathered}
U=\frac{j}{2 \beta} \nabla_{\perp}^{2} \\
W=\frac{j k_{\perp}^{2}}{2 \beta}
\end{gathered}
$$

Perfectly Matched Layers

- In order to prevent lateral reflections (e.g., from PEC boundaries), can introduce perfectly matched layers (PML)
- Several formulations (including split-field and uniaxial), but here we'll follow stretched coordinate PML
- Effected by the transformation:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1-j \beta & 0 & 0 \\
0 & 1-j \beta & 0 \\
0 & 0 & 1
\end{array}\right) \\
\beta=-\frac{3 \lambda \rho^{2}}{4 \pi n d^{3}} \ln R
\end{gathered}
$$

Perfectly Matched Layers

- Residual reflection scales as a power law with PML thickness
- Cubic absorption increase with position offers the best performance

A.F. Oskooi et al., Comput. Phys. Commun. (2009)

Finite Elements

- Shapes: 1D, 2D, and 3D

- Shape functions:

$$
\begin{gathered}
\text { 1D: } u(x)=\alpha+\beta x+\gamma x^{2}+\cdots \\
\text { 2D/3D: } u(x)=\sum_{k=0}^{d}\left[\alpha_{k} x^{k}+\beta_{k} y^{k}+\gamma_{k} z^{k}\right]
\end{gathered}
$$

Finite Elements

- Lagrange functions:

$$
\begin{aligned}
& \lambda_{o}(x)=\frac{\xi_{1}-x}{\xi_{1}-\xi_{o}} \\
& \lambda_{1}(x)=\frac{x-\xi_{o}}{\xi_{1}-\xi_{o}}
\end{aligned}
$$

Basis functions $\varphi_{j}(x)$ combine the Lagrange functions with compact support

M. Asadzadeh, Introduction to the Finite Element Method for Differential Equations (2010)

Finite Element BPM

- In general, can formulate FE problems as:

$$
L u=b
$$

$-L$ is the stiffness matrix, representing overlap between basis functions
$-b$ is the integral of given PDE with respect to basis
$-u$ is unknown

Finite Element BPM

- Can define error function as:

$$
E=L u-b
$$

- In order to eliminate errors, set weighted residual w_{i} in test space v to zero:

$$
\oint_{v} w_{i}(L u-b)=0
$$

- Galerkin's method is a specific example of this:

$$
\oint_{v} \psi(L u-b)=0
$$

where $u(x)$ are the polynomials we saw earlier

Finite Element BPM

- Can refine accuracy of BPM for wide-angle beam propagation with second derivative in z :

$$
\begin{gathered}
\frac{d \zeta}{d z}=-2 j \beta \zeta-\nabla_{\perp}^{2} \phi-k_{\perp}^{2} \phi \\
\frac{d \phi}{d z}=\zeta
\end{gathered}
$$

- Can then choose a Padé approximant based on initial value of ζ. If $\zeta(0)=0$, then:

$$
\zeta=j \beta\left[\sqrt{1+\frac{\nabla_{\perp}^{2}+k_{\perp}^{2}}{\beta^{2}}}-1\right] \phi
$$

Finite Element BPM

- Applying Galerkin method to second-order BPM equations yields:

$$
\begin{gathered}
h_{T}(x, y, z)=\sum_{j=1}^{N_{p x}} h_{x j}(z) \psi_{j}(x, y) \hat{u}_{x}+\sum_{j=N_{p x}+1}^{N_{p}} h_{y j}(z) \psi_{j}(x, y) \hat{u}_{y} \\
{[M] \frac{\partial^{2}\left\{h_{T}\right\}}{\partial z^{2}}-2 \gamma[M] \frac{\partial\left\{h_{T}\right\}}{\partial z}+\left([K]+\gamma^{2}[M]\right)\left\{h_{T}\right\}=\{0\}} \\
{[M]_{i j}=\int_{\Omega} \bar{k}_{a} \vec{\psi}_{j} \cdot \vec{\psi}_{i} d \Omega \quad[K]_{i j}=-\int_{\Omega}\left(\overline{\bar{k}}_{z z} \nabla_{T} \times \vec{\psi}_{j}\right) \cdot\left(\nabla_{T} \times \vec{\psi}_{i}\right) d \Omega+\int_{\Omega}\left(\nabla_{T} \times \vec{\psi}_{j}\right) \nabla_{T} \cdot\left(\bar{k}_{b}^{T} \vec{\psi}_{i}\right) d \Omega} \\
\quad-\oint_{\partial \Omega}\left(\nabla_{T} \cdot \vec{\psi}_{j}\right)\left(\overline{\vec{k}}_{b}^{T} \vec{\psi}_{i}\right) \cdot \hat{n} d \ell+\int_{\Omega} \bar{k}_{c} \vec{\psi}_{j} \cdot \vec{\psi}_{i} d \Omega
\end{gathered}
$$

Reducing FEM Errors

- Error depends on match between true solution and basis functions
- To reduce error, can try the following:
- H-adaptivity: decrease the mesh size
- P-adaptivity: increase the degree of the fitted polynomials
- HP-adaptivity: combine all of the above

Reducing FEM Errors

- Strategy for reducing errors:
- Create an initial meshing
- Compute solution on that meshing
- Compute the error associated with it
- If above our tolerance, refine the mesh spacing and start again

Next Class

- Is on Friday, Feb. 15
- Will continue with beam propagation method
- Recommended reading: Obayya, Sections 2.7-2.8

