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Recap from Monday

• Derivation of Beam Propagation Method

• Nonlinear Schrodinger equation

• Comparison of BPM Strategies

– FFT

– Uniform spatial grid

– Finite element
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Recap from Monday

• Beam propagation amounts to solving:
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Perfectly Matched Layers

• In order to prevent lateral reflections (e.g., from PEC 
boundaries), can introduce perfectly matched layers 
(PML)

• Several formulations (including split-field and uniaxial), 
but here we’ll follow stretched coordinate PML

• Effected by the transformation:
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Perfectly Matched Layers

• Residual reflection 

scales as a power 

law with PML 

thickness

• Cubic absorption 

increase with 

position offers the 

best performance
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A.F. Oskooi et al., Comput. Phys. 

Commun. (2009)



Finite Elements

• Shapes: 1D, 2D, and 3D

• Shape functions:

1D: " # = $ + 
# + %#� +⋯
2D/3D: " # = ∑ $(#( + 
()( + %(�(*(+,
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Finite Elements

• Lagrange functions:

�- # = ./ − #
./ − .-

�/ # = # − .-
./ − .-

Basis functions 01(#)
combine the Lagrange 
functions with compact 
support
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M. Asadzadeh, Introduction to the Finite 

Element Method for Differential 

Equations (2010) 



Finite Element BPM

• In general, can formulate FE problems as:

4" = 5
– L is the stiffness matrix, representing overlap 

between basis functions

– b is the integral of given PDE with respect to basis

– u is unknown
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Finite Element BPM

• Can define error function as:

6 = 4" − 5
• In order to eliminate errors, set weighted residual 78 in 

test space v to zero:

978 	(4" − 5)
	

:
= 0

• Galerkin’s method is a specific example of this:

9;(4" − 5)
	

:
= 0

where u(x) are the polynomials we saw earlier
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Finite Element BPM

• Can refine accuracy of BPM for wide-angle beam 
propagation with second derivative in z:
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• Can then choose a Padé approximant based on initial 
value of ζ.  If ζ(0)=0, then:
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Finite Element BPM

• Applying Galerkin method to second-order 

BPM equations yields:
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Reducing FEM Errors

• Error depends on match between true 

solution and basis functions

• To reduce error, can try the following:

– H-adaptivity: decrease the mesh size

– P-adaptivity: increase the degree of the fitted 

polynomials

– HP-adaptivity: combine all of the above
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Reducing FEM Errors

• Strategy for reducing errors:

– Create an initial meshing

– Compute solution on that meshing

– Compute the error associated with it

– If above our tolerance, refine the mesh spacing 

and start again
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Next Class

• Is on Friday, Feb. 15

• Will continue with beam propagation 

method

• Recommended reading: Obayya, 

Sections 2.7-2.8
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