ECE 595, Section 10
 Numerical Simulations
 Lecture 16: Applications of the Beam Propagation Method

 Prof. Peter Bermel

 Prof. Peter Bermel
 February 15, 2013

Outline

- Recap from Wednesday
- BPM Mode Solver
- Vectorial BPM Applications:
- Waveguide
- Photonic Crystal Fiber

BPM Mode Solver

- Can extend BPM method to solve for modes, by propagating in the imaginary direction
- First, drop all derivatives in BPM equation:

$$
[K]\left\{h_{t, l}\right\}=-\gamma^{2}[M]\left\{h_{t, l}\right\}
$$

- Second, write down next step in z :

$$
\left\{h_{t, l}\right\}_{k+1}=\frac{-2 \gamma-0.5 \Delta z k_{o}^{2}\left(n_{e f f, \ell}^{2}-n_{o}^{2}\right)}{-2 \gamma+0.5 \Delta z k_{o}^{2}\left(n_{e f f, \ell}^{2}-n_{o}^{2}\right)}\left\{h_{t, l}\right\}_{k}
$$

- Third, substitute special value of Δz :

$$
\Delta z \approx j \frac{4 n_{o}}{\left(n_{o f, t e x}^{2}-n_{b}^{2}\right) k_{o}}
$$

BPM Mode Solver

- Since Δz initially unknown, assume largest index possible, and decrease it as needed
- Will eventually converge to correct answer and effective refractive index:

$$
n_{e f f, \ell, k}^{2}=\frac{\left\{h_{t}\right\}_{k}^{*}[K]_{k}\left\{h_{t}\right\}_{k}}{k_{o}^{2}\left\{h_{t}\right\}_{k}^{*}[M]_{k}\left\{h_{t}\right\}_{k}}
$$

- Can use Gram-Schmidt normalization procedure to find higher-order modes:

$$
\left\{h_{t}\right\}_{1, \text { new }}=\left\{h_{t}\right\}_{1}-\sum_{\ell=1}^{i-1} \frac{\left\{h_{t, l}\right\}^{*}[M]\left\{h_{t}\right\}_{1}}{\left\{h_{t, l}\right\}^{*}[M]\left\{h_{t, l}\right\}}\left\{h_{t, l}\right\}
$$

VBPM on a Waveguide: Problem Description

- Cross section defined above; $\lambda=1.3 \mu \mathrm{~m}$
- Propagation along z is semi-infinite
- Must grid space with first-order triangular elements in cross-sectional plane; choose PML to reduce reflections to 10^{-100}
- Will vary Δz for maximum effectiveness

VBPM on a Waveguide

- Fundamental mode is calculated accurately with 12,800 first-order triangular elements

VBPM on a Waveguide

- Propagation step size in Z, known as ΔZ, should equal transverse dimensions for best accuracy

VBPM on a Waveguide: Longitudinal Imaginary Propagation

- With optimal step size, can solve the fundamental mode of both polarizations in a pretty modest number of steps!

VBPM on a Waveguide: Accuracy

- Accuracy of calculation of waveguide coupling length as a function of mesh divisions N

VBPM on a Waveguide

- Accuracy of coupling length as a function of ΔZ saturates below one wavelength

VBPM on a Photonic Crystal Fiber

- Originally conceived of by P.J. Russell
- Confines light to core without total internal reflection!

VBPM on a PhC Fiber

- Effective index vs. PhC period

VBPM on a PhC Fiber

- H_{y} field distributions for the fundamental TE modes

VBPM on a PhC Fiber

- Confinement loss decreases sharply as period Λ increases

VBPM on a PhC Fiber

- Variation of the effective mode area with PhC period Λ

VBPM on a PhC Fiber

- Effective index increases modestly with increasing period Λ, indicating increased mode confinement

VBPM on a PhC Fiber

- Calculated dispersion relation (effective index versus wavelength) for a PhC Fiber

VBPM on a PhC Fiber

- Obtained dispersion $D=d^{2} k / d \omega^{2}$ from earlier data
- Note modest changes in parameters flip sign of D

Next Class

- Is on Monday, Feb. 18
- Next time, we shall finish the applications of BPM, and possibly cover other FEM applications
- Recommended reading: Obayya, Chapter 3

