ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport

Prof. Peter Bermel February 22, 2013

Outline

- Recap from Wednesday
- Physics-based device modeling
- Electronic transport theory
- FEM electronic transport model
- Numerical results
- Error Analysis

Recap from Wednesday

- Thermal transfer overview
 - Convection
 - Conduction
 - Radiative transfer
- FEM Modeling Approach
- Numerical Results
- Error Evaluation

Physics-Based Device Modeling

D. Vasileska and S.M. Goodnick, *Computational Electronics*, published by Morgan & Claypool , 2006.

2/22/2013

Electronic Transport Theory

- Will assume electronic bandstructures known, and take a semiclassical approach
- Electrostatics modeled via Poissson's equation:

$$\nabla \cdot \mathcal{E} \nabla V = -\left(p - n + N_D^+ - N_A^-\right)$$

• Charge conservation is required:

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_{n} + U_{n}$$
$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J}_{p} + U_{p}$$

S. Selberherr: "Analysis and Simulation of Semiconductor Devices", Springer, 1984.

Electronic Transport Theory

- Both p-type and n-type currents given by a sum of two terms:
 - Drift term, derived from Ohm's law
 - Diffusion term, derived from Second Law of Thermodynamics

$$J_{n} = qn(x)\mu_{n}E(x) + qD_{n}\frac{dn}{dx}$$
$$J_{p} = qp(x)\mu_{p}E(x) - qD_{p}\frac{dn}{dx}$$

S. Selberherr: "Analysis and Simulation of Semiconductor Devices", Springer, 1984.

FEM Electronic Transport Model

- Much like in earlier work, will employ the following strategy:
 - Specify problem parameters, including bulk and boundary conditions
 - Construct finite-element mesh over spatial domain
 - Generate a linear algebra problem
 - Solve for key field variables: $\varphi_i(x,y,z,t)$

```
p (x,y,z,t)
```

```
n(x,y,z,t)
```

FEM Electronic Transport Model

- Regarding the grid set-up, there are several points that need to be made:
 - ✓ In critical device regions, where the charge density varies very rapidly, the mesh spacing has to be smaller than the extrinsic Debye length determined from the maximum doping concentration in that location of the device

$$L_{D} = \sqrt{\frac{\mathcal{E}k_{B}T}{N_{\max}e^{2}}}$$

- ✓ Cartesian grid is preferred for particle-based simulations
- It is always necessary to minimize the number of node points to achieve faster convergence
- A regular grid (with small mesh aspect ratios) is needed for faster convergence

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

Poisson Solver

• The 1D Poisson equation is of the form:

$$\frac{d^2\varphi}{dx^2} = -\frac{e}{\varepsilon} \left(p - n + N_D - N_A \right)$$
$$n = n_i \exp\left(\frac{E_F - E_i}{k_B T}\right) = n_i \exp(\varphi/V_T)$$
$$p = n_i \exp\left(\frac{E_i - E_F}{k_B T}\right) = n_i \exp(-\varphi/V_T)$$

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

2/22/2013

Poisson Solver

• Perturbing potential by δ yields:

$$\begin{aligned} \frac{d^2\varphi}{dx^2} &= -\frac{en_i}{\varepsilon} \left(e^{-\varphi/V_T} - e^{\varphi/V_T} + C/n_i \right) + \\ &+ \frac{en_i}{\varepsilon} \delta \left(e^{-\varphi/V_T} + e^{\varphi/V_T} \right) \\ \frac{d^2\varphi}{dx^2} - \frac{en_i}{\varepsilon} \left(e^{-\varphi/V_T} + e^{\varphi/V_T} \right) \varphi^{new} = -\frac{en_i}{\varepsilon} \left(e^{-\varphi/V_T} - e^{\varphi/V_T} + C/n_i \right) - \\ &- \frac{en_i}{\varepsilon} \left(e^{-\varphi/V_T} + e^{\varphi/V_T} \right) \varphi^{old} \\ \delta &= \varphi^{new} - \varphi^{old} \end{aligned}$$

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

2/22/2013

Poisson Solver

• Renormalized form

$$\frac{d^2\varphi}{dx^2} = -(p-n+C) + \delta(p+n)$$
$$\frac{d^2\varphi}{dx^2} - (p+n)\varphi^{new} = -(p-n+C) - (p+n)\varphi^{old}$$
$$\delta = \varphi^{new} - \varphi^{old}$$

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

2/22/2013

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

Current Discretization

• The discretization of the continuity equation in conservative form requires the knowledge of the current densities

 $J_n(x) = en(x)\mu_n E + eD_n \nabla n$ $J_p(x) = ep(x)\mu_p E - eD_p \nabla p$

on the mid-points of the mesh lines connecting neighboring grid nodes. Since solutions are available only on the grid nodes, interpolation schemes are needed to determine the solutions.

- There are two schemes that one can use:
 - (a)Linearized scheme: *V*, *n*, *p*, μ and *D* vary linearly between neighboring mesh points
 - (b) Scharfetter-Gummel scheme: electron and hole densities follow exponential variation between mesh points

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

Naïve Linearization Scheme

• Within the linearized scheme, one has that

$$J_{i+1/2} = -en_{i+1/2}\mu_{i+1/2} \frac{V_{i+1} - V_i}{a_i} + eD_{i+1/2}\nabla n|_{i+1/2}$$
$$\frac{n_{i+1} + n_i}{2} \frac{n_{i+1} - n_i}{a_i}$$
$$J_{i+1/2} = n_{i+1} \left[-\frac{e\mu_{i+1/2}}{2} \frac{V_{i+1} - V_i}{a_i} + \frac{eD_{i+1/2}}{a_i} \right]$$
$$-n_i \left[\frac{e\mu_{i+1/2}}{2} \frac{V_{i+1} - V_i}{a_i} + \frac{eD_{i+1/2}}{a_i} \right]$$

 This scheme can lead to substantial errors in regions of high electric fields and highly doped devices.
D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

Scharfetter-Gummel Scheme

• One solves the electron current density equation

$$J_{i+1/2} = -en\mu_{i+1/2} \frac{V_{i+1} - V_i}{a_i} + eD_{i+1/2} \frac{\partial n}{\partial x}$$
$$= -en\mu_{i+1/2} \frac{V_{i+1} - V_i}{a_i} + eD_{i+1/2} \frac{\partial n}{\partial V} \frac{\partial V}{\partial x}$$

for n(V), subject to the boundary conditions

$$n(V_i) = n_i$$
 and $n(V_{i+1}) = n_{i+1}$

• The solution of this first-order differential equation leads to $n(V) = n_i [1 - g(V)] + n_{i+1}g(V), \quad g(V) = \frac{e^{(V - V_i)/Vt} - 1}{e^{(V_{i+1} - V_i)/Vt} - 1}$ $J_{i+1/2} = \frac{eD_{i+1/2}}{a_i} \left[n_{i+1}B\left(\frac{V_{i+1} - V_i}{Vt}\right) - n_i B\left(\frac{V_i - V_{i+1}}{Vt}\right) \right]$ $B(x) = \frac{x}{e^x - 1}$ is the Bernouli function

D. Vasileska, EEE533 Semiconductor Device and Process Simulation Lecture Notes, Arizona State

 Available on nanoHUB from Prof. Gray's team: <u>https://nanohub.org/tools/adeptnpt</u>

ADEPT 2.0		🗙 Terminate	🕩 Keep for later
Simulation Option + 2 Parameter + 3 Simulation	late		About this tool Questions?
Layer Absorption Global Simulation	0		
Example: Simple c-Si solar cell in light			
Number of Layer: 3			
Layer # 1 Layer # 2 Layer # 3			
Filter Layer:	no		
Layer Thickness (um):	0.3		
Doping Type:	n type		
Dopant Density (cm-3):	6e19		
Bandgap (eV):	1.03		
Electron Affinity (eV):	4.05		
Dielectric Constant:	11.7		
Conduction Band Effective Density Of States (cm-3):	2.82e19		
Valence Band Effective Density Of States (cm-3):	2.65e19		
Electron Mobility (cm2 V-1 s-1):	80.1		
Hole Mobility (cm2 V-1 s-1):	52.8		
SHR Electron Lifetime (s):	33.7e-6		
SHR Hole Lifetime (s):	33.7e-5		
Auger Electron Recombination Coefficient (cm6 s-1):	0.28e-30		
Auger Hole Recombination Coefficient (cm6 s-1):	0.099e-30		M
< Simulation Option			Simulate >
Storage (manage) 🔵 7% of	1GB	L7 -	0 5 780 x 600

• Can customize all the calculation details:

ADEPT 2.0	🗙 Terminate	🕪 Keep for later
① Simulation Option → ② Parameter → ③ Simulate		About this tool Questions?
Spectrum: AM1.5G		
Wavelength (nm) 5000		
Multiplication Factor For Illumination Intensity: 1		
Shadowing Factor (Ratio): 0		
Front Surface Reflectance (Ratio): 0		
Back Surface Reflectance (Ratio): 1		
File (External Reflectance for Front Surface): no		
Solar Cell		
Smallest Voltage Increment (V): 0.1e-1		
Largest Voltage Increment (V): 0.2e-1		
Threshold Voltage Of Largest Voltage Increment And Smallest Voltage Increment (V): 100		
Solve		
Maximum Number Of Newton Iterations: 100		
Minimum Convergence Error: 1e-6		
Spectral Response		
Intrinsic Quantum Efficiencu:		
		EX.
< Simulation Option		Simulate >
Storage (manage) T% of 1GB	L, L	ව ් 780 x 600

• Outputs include electrostatic (Poisson) solution:

2/22/2013

• Energy band diagram

2/22/2013

• Carrier concentrations:

2/22/2013

• And finally, realistic I-V curves:

2/22/2013

Next Class

- Is on Monday, Feb. 25
- Next time, we will cover electronic bandstructures