ECE 595, Section 10
Numerical Simulations
Lecture 2: Problems in Numerical
Computing



Outline

Overall Goals

Finding Special Values

Fourier Transforms
Eigenproblems

Ordinary Differential Equations
Partial Differential Equations



Recap: Goals for This Class

* Learn/review key mathematics

e Learn widely-used numerical
techniques

 Become a capable user of this
software

* Appreciate strengths and

_ RW Hamming (left),
weaknesses of competing developing error-

algorithms correcting codes (AT&T)

e Convey your research results to an
audience of colleagues
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Finding Special Values

* Finding zeros
— 1D versus multidimensional
— Speed versus certainty

* Finding minima and maxima (optimization)
— Convex vs. non-convex problems

— Global vs. local search

— Derivative vs. non-derivative search



Finding Zeros

Key concept: bracketing

Bisection — continuously
halve intervals

Brent’s method — adds
inverse quadratic
interpolation

Newton-Raphson method —
uses tangent

Laguerre’s method — assume
spacing of roots at a and b:

I

i =

C G++\/(n-1)(nH - G2

Brent's Method

slope =1 G-

Newton’s method for finding
an isolated real root




Finding Minima (or Maxima)

_______ parabola through (1}(2) (3)

* Golden Section Search e pasabola through (D (D) @)
e Brent’s Method

* Downhill Simplex
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* Conjugate gradient
methods

These and further images from “Numerical

* M U|t|p|e IEVE', Single Recipes,” by WH Press et al.
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Recap: Fourier Transforms

DFT defined by: | .
F(n) = Il.Vz ; f(x;)e 2™ xin/xn) Y 3
Naive approach treats each 7
frequency individually

Can combine operations together

for significant speed-up (e.g., 1 \
Cooley-Tukey algorithm) g‘lfg-bcafa'iizo(rlsﬁ

Specialized algorithms depending Network)

on data type
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Cooley-Tukey Algorithm

Qptq

input data of size N = P-Q
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Recap: Eigenproblems

Generalized eigenproblem: Ax = ABx

Solution method will depend on properties of
A and B

Techniques have greatly varying
computational complexity

Sometimes, full solution is unnecessary



Eigenproblems

* Direct method: solve det(A-A1)=0
« Similarity transformations: A> Z1AZ

— Atomic transformations: construct each Z explicitly
— Factorization methods: QR and QL methods



Atomic Transformations in
Eigenproblems

e Jacobi

r-. A P_lj-,' "':'I =5 — Elf".”ﬁ'|.3

e Householder

P'=l—:3‘ﬁ'-'ﬁ"r A'=P.A-P=| 0

0

* Keep iterating until off-diagonal elements are
small, or use factorization approach



Factorization in Eigenproblems

* Most common approach known as QR method
A=Q R A'=R-Q A'=0Q7.A.Q
 Can also do the same with Aa=q L

* Slow in general, but fast in certain cases:
— Tridiagonal matrices
— Hessenberg matrix



Ordinary Differential Equations

Euler method — naive rearrangement of ODE

Runge-Kutta methods — match multiple Euler
steps to a higher-order Taylor expansion

Richardson extrapolation — extrapolate
computed value to O step size

Predictor-corrector methods — store solution
to extrapolate next point, and then correct it



ODE Boundary Value Problems

o
3)
" desired
-4 boundary

-~ _ value

2)
required required o
boundary boundary
value x value

Shooting Method Boundary Value Method



Partial Differential Equations

Classes: parabolic, hyperbolic, and elliptic
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nitial value vs. boundary value problems
~inite difference

~inite element methods
Monte-Carlo

Spectral

Variational methods



Next Class

* |ntroduction to computational complexity

e Please read Chapter 1 of “Computational
Complexity: A Modern Approach” by Arora
& Barak
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