ECE 595, Section 10
 Numerical Simulations
 Lecture 20: Bandstructure Concepts

Prof. Peter Bermel

February 25, 2013

Outline

- Recap from Friday
- Bandstructure Problem Formulation
- Bloch's Theorem
- Reciprocal Lattice Space
- Numerical Solutions
- 1D crystal
- 2D triangular lattice
- 3D diamond lattice

Recap from Friday: FEM for Electronic Transport

- Physics-based device modeling
- Electronic transport theory
- FEM electronic transport model
- Numerical results
- Error Analysis

Bandstructure Problem

- Amounts to solving an eigenvalue equation for a system with discrete translational symmetry
- Examples include:
- Electronic bandstructure:

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x)\right] \Psi(x)=\hbar \omega \Psi(x)
$$

- Photonic bandstructure:

$$
\nabla \times\left[\epsilon^{-1}(\nabla \times H)\right]=\left(\frac{\omega}{c}\right)^{2} H
$$

- Phononic bandstructure:

$$
\nabla \times[C(\nabla \times u)]=-\rho \omega^{2} u
$$

Bloch Theorem

- Asserts that solution in periodic potential is always a product of two terms:
- a periodic function (with the same period)
- a plane wave
- Mathematically, we can write:

$$
\begin{gathered}
\Psi(\boldsymbol{r})=A e^{i \boldsymbol{k} \cdot \boldsymbol{r}} u(\boldsymbol{r}) \\
\text { where } u(\boldsymbol{r}+\boldsymbol{R})=u(\boldsymbol{r})
\end{gathered}
$$

Bloch Theorem

- Use Bloch's theorem to solve this eigenproblem:
$\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\boldsymbol{r})\right]\left[e^{i \boldsymbol{k} \cdot \boldsymbol{r}} u(\boldsymbol{r})\right]=E(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} u(\boldsymbol{r})$
- What basis to use for periodic function?

Reciprocal Lattice Vectors

- If working in Fourier space, define a set of reciprocal lattice vectors \boldsymbol{G} such that $e^{i \boldsymbol{G} \cdot \boldsymbol{R}}=1$
- Then we can construct a complex Fourier series approximating any \boldsymbol{R}-periodic function with: $f(\boldsymbol{r})=\sum_{\boldsymbol{G}} f_{\boldsymbol{G}} e^{i \boldsymbol{G} \cdot \boldsymbol{r}}$
- Each coefficient calculated using orthogonality relations: $f_{\boldsymbol{G}}=\int_{V} d \boldsymbol{r} f(\boldsymbol{r}) e^{-i \boldsymbol{G} \cdot \boldsymbol{r}}$
- In 1D lattice of period $a, \boldsymbol{G}=(2 \pi m / a) \hat{x}$

Reciprocal Lattice Vectors

- For 2D lattice, will have two directions for our reciprocal lattice vectors, depending on lattice
- For square lattice: $G_{1}=(2 \pi / a) \hat{x}$;

$$
G_{2}=(2 \pi / a) \hat{y} ; \quad \boldsymbol{G}=m G_{1}+p G_{2}
$$

- For triangular lattice: $G_{1}=(2 \pi / a) \hat{x}$;

$$
G_{2}=(\pi / a)(\hat{x}+\sqrt{3} \hat{y}) ; \boldsymbol{G}=m G_{1}+p G_{2}
$$

- Other types include rectangular, rhombic, and oblique

Reciprocal Lattice Vectors

- In 3D, there are 14 total Bravais lattices:

Reciprocal Lattice Vectors

- In 3D, can't just construct reciprocal lattice vectors by inspection.
- If we define lattice directions $\left\{a_{i}\right\}$, and lattice volume $V=a_{1} \cdot\left(a_{2} \times a_{3}\right)$, then:

$$
\begin{gathered}
b_{1}=\frac{2 \pi}{V}\left(a_{2} \times a_{3}\right) \\
b_{2}=\frac{2 \pi}{V}\left(a_{3} \times a_{1}\right) \\
b_{3}=\frac{2 \pi}{V}\left(a_{1} \times a_{2}\right) \\
\boldsymbol{G}=m b_{1}+p b_{2}+q b_{3}
\end{gathered}
$$

Reciprocal Lattice Vectors

- Brillouin Zone is constructed by drawing perpendicular bisectors between adjacent G's in reciprocal space
- BZ is where \mathbf{k} can vary
- Can also introduce further symmetries to make irreducible BZ

Reciprocal Lattice Vectors

- Certain wavevectors have special designations:
$-\Gamma: \quad k=0$
- X: $\quad k=(\pi / a) \hat{x}$
- L: $\quad k=(\pi / a)(\hat{x}+\hat{y}+\hat{z})$
$-\mathrm{W}: \quad k=(\pi / a)(2 \hat{x}+\hat{y})$
- K: $\quad k=(3 \pi / 2 a)(\hat{x}+\hat{y})$
$-\mathrm{U}: \quad k=(\pi / 2 a)(4 \hat{x}+\hat{y}+\hat{z})$
$-\mathrm{M}: \quad k=(\pi / a)(\hat{x}+\hat{z})$
Center
Face center
BZ hex face center
Corner (fcc)
Edge joins hex faces
Joins hex/square face
Center of edge

Reciprocal Lattice Vectors

- In the case of electronic bandstructures:

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(x)\right] \Psi(x)=\hbar \omega \Psi(x)
$$

- We obtain the nice recursion relation:

$$
V_{G^{\prime}} c_{G-G^{\prime}}=\left[E(k)-\frac{\hbar^{2}}{2 m}(k+G)^{2}\right] c_{G}
$$

Reciprocal Lattice Vectors

- In the case of photonic bandstructures:

$$
\nabla \times\left[\epsilon^{-1}(\nabla \times H)\right]=\left(\frac{\omega}{c}\right)^{2} H
$$

- We can obtain:
$-(\boldsymbol{k}+\boldsymbol{G}) \times\left[\epsilon_{\boldsymbol{G} \boldsymbol{G}^{\prime}}^{-1}\left(\boldsymbol{k}+\boldsymbol{G}^{\prime}\right) \times \boldsymbol{h}_{G-G^{\prime}}\right]=\left(\frac{\omega}{c}\right)^{2} \boldsymbol{h}_{G}$
- Implemented numerically in MIT Photonic Bands (MPB): http://jdj.mit.edu/mpb/

Photonic Bandstructures: 1D

E-field for mode at top of band 1

-0.5	-0.25	0	0.25
Wave vector	0.5		

E-field for mode at bottom of band 2

Local energy density in E-field, top of band 1

Local energy density in E-field, bottom of band 2
(Right) Electric fields associated with bandgap seen in middle bandstructure

Photonic Bandstructures: 2D

Photonic Bandstructures: 2D

Next Class

- Is on Wednesday, Feb. 25
- Will discuss more about bandstructures
- Recommended reading: Joannopoulos, Chapter 3 and Appendix D

