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Outline

Recap from Friday

Bandstructure Problem Formulation
Bloch’s Theorem

Reciprocal Lattice Space

Numerical Solutions
— 1D crystal

— 2D triangular lattice
— 3D diamond lattice



Recap from Friday: FEM for Electronic
Transport

Physics-based device modeling
Electronic transport theory
FEM electronic transport model
Numerical results

Error Analysis



Bandstructure Problem

 Amounts to solving an eigenvalue equation for
a system with discrete translational symmetry

 Examples include:
— Electronic bandstructure:

[—— V2 + V()| W(x) = hoW(x)
— Photonic bandstructure:
Vx [e=1(V x H)] = (9)211
€ - C

— Phononic bandstructure:
Vx[C(Vxu)] =—pw?u



Bloch Theorem

* Asserts that solution in periodic potential is
always a product of two termes:

— a periodic function (with the same period)

— a plane wave
 Mathematically, we can write:
Y(r) = Ade™ " u(r)
where u(r + R) = u(r)



Bloch Theorem

e Use Bloch’s theorem to solve this
eigenproblem:

hZ

2m

VZ

V(T)-

let*Tu(r) | = E(k)e™ ™ u(r)

 What basis to use for periodic function?



Reciprocal Lattice Vectors

If working in Fourier space, define a set of
reciprocal lattice vectors G such that ¢!k = 1

Then we can construct a complex Fourier
series approximating any R-periodic function

with: f(r) = X¢ fee'®"
Each coefficient calculated using orthogonality
relations: fg = fv dr f(r)e'¢T

In 1D lattice of period a, 6 = (2mrm/a)X



Reciprocal Lattice Vectors

For 2D lattice, will have two directions for
our reciprocal lattice vectors, depending
on lattice

For square lattice: G; = (2m/a)X;

G, = (2n/a)y; G =mGy+pG,

For triangular lattice: G; = (2n/a)X;

Gy, = (n/a)(a? + \/537); G = mG, + pG,

Other types include rectangular, QC%@E,
rhombic, and oblique ()
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Reciprocal Lattice Vectors

* In 3D, there are 14 total Bravais lattices:

Simple Face-centered Body tered
ubic cubic b
Simple Body-centered Hexag 1
tetragonal tetragonal
L I
@ @ . .
Simpl Body-centered B tered Face-centered
orthorhombic orthorhombic rthorhomb orthorhombic
Q’ ﬁ vz @
Simple Base-centered Triclini
Rhombohedral Monoclinic m I
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Reciprocal Lattice Vectors

* |n 3D, can’t just construct reciprocal lattice vectors by
Inspection.

* If we define lattice directions {a;}, and lattice volume
V =a,"(a, X a3), then:

b, = 7(512 X az)
2T

b, = 7((13 X aq)
2T

bs = 7(“1 X ay)



Reciprocal Lattice Vectors

* Brillouin Zone is constructed by drawing
perpendicular bisectors between adjacent G’s
in reciprocal space

 BZis where k can vary

e Can also introduce further symmetries to
make irreducible BZ M_ g

(BB



Reciprocal Lattice Vectors

e Certain wavevectors have special designations:

— I
— X
— L:
— W:
— K:
— U:
— M:

k=0

k= (m/a)x
k=m/a)(X+y+2)
k= (n/a)(2X + 7)

k= 3n/2a)(X + V)
k=m/2a)(4X + 9V + 2)
k=(m/a)(X+ 2)

Center

Face center

BZ hex face center
Corner (fcc)

Edge joins hex faces
Joins hex/square face
Center of edge



Reciprocal Lattice Vectors

 |In the case of electronic bandstructures:

[_h_ZVZ

2m

e \WWe obtain the nice recursion relation:

VG'CG—G' —

+ V(x)] Y(x) = rw¥(x)

hZ

E(k) . (k + G)?

Cq



Reciprocal Lattice Vectors

* |n the case of photonic bandstructures:
2

v x [e~1(V x H)| = (%) H

e \We can obtain:
2

—(k+6) x [egd (k+6) X hg_¢| = (%) h,

* Implemented numerically in MIT Photonic
Bands (MPB): http://idj.mit.edu/mpb/




Photonic Bandstructures: 1D
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(Above) photonic bandstructures

obtained for increasing dielectric contrast

(Right) Electric fields associated with

bandgap seen in middle bandstructure
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E-field for mode at top of band 1

£=13

L-field for mode at bottom of band 2

Local energy density in E-field, top of band 1

Local energy density in E-field, bottom of band 2




Photonic Bandstructures: 2D
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Photonic Bandstructures: 2D

D_field at " (TN} band 1 band 2

D_fiald at X (TM) band 1 band 2

D_field at M (TN) band 1 band 2
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Next Class

* |s on Wednesday, Feb. 25
 Will discuss more about bandstructures

e Recommended reading: Joannopoulos,
Chapter 3 and Appendix D



