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Recap from Friday

* 3D Lattice Types

* Full 3D Photonic Bandgap Structures
— Yablonovite
— Woodpile
— Inverse Opals
— Rod-Hole 3D PhCs



Outline

* Recap from Friday
e Electronic bandstructure overview

e Calculational methods:
— Nearly-free electron model
— Wigner-Seitz method
— Tight-binding
— Pseudopotentials



Electronic Bandstructure Overview

* Controlled by Schrodinger’s equation:
2

—%\72 + V() |P(x) = E¥(x)

* In absence of potential, E = h?k?/2m

* Electrons are fermions. At T=0, will fill all
lowest-energy states up to the Fermi energy

* Can prove that the Fermi energy
Er = h?(3n%n)?/3 /2m



Electronic Bandstructure Overview

* At T=0, all states below Er occupied, all states
below are unoccupied

e When T>0, will have a Fermi-Dirac function for
probability of occupying a state near the Fermi
surface 1

N S8 E—F;
ogf exp( kgT ) +1

H“*-H_______ E - E F
kg T




Electronic Bandstructure Overview

* |n general, absolute electrostatic potentials
opecome extremely large for electrons

* However, the inner core electrons screen the
nuclear charge

* Thus for many problems, the core can be
treated as a closed shell, created a much

weaker, delocalized potential




Nearly Free Electron Model

* |n this approach, one only considers potential to

oe a weak perturbation from empty lattice

* First, choose nearly-free basis functions:

Yr(r) =

VN

e ikr

* Then, directly solve Schrodinger’s equation with
the Fourier coefficients of the potential:
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Nearly Free Electron Model

* For most k-values,only keep the average
potential:
h%k?
E(k) = -V,
(k) == —+7,
* For nearly-degenerate values (e.g., BZB), only
include 2 components:
h%lk?
E(k) =
2m

* Best suited for metals, e.g., aluminum
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Wigner-Seitz method

* Next approximation after NFE
e Assume solutions are of the form:

1 .
Pr(r) = —= e (1)

VN

* Can then solve Schrodinger’s equation at k=0
using the Wigner-Seitz wavefunctions



Wigner-Seitz method

* Wigner-Seitz wavefunctions developed for
each individual atom and orbital

 Example: for 3s electrons in Na
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Tight-binding

* |n this approach, consider electrons to be
primarily localized around their atom of origin

* To treat hopping of electrons, employ linear
combinations of atomic orbitals (LCAO):

1 .
Y1) = TNZ e*Tip(r — 1))

 Widely used approach in chemistry



Tight-binding

e Can evaluate mean-field energy using LCAO:

E = (YrlH|Yg)
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* |gnoring all terms except for diagonal and
nearest-neighbors, one obtains (in 1D):

h%k?
E = oy -V, + 2V; cos(ka)




Tight-binding

 Becomes slightly more complicated in 2D or 3D
e For a bcc lattice:
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* For an fcc lattice:
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Pseudopotentials

As we observed previously, higher atomic
orbitals tend to vary strongly near the core

However, we can extract the energy from
applying the Hamiltonian at any position

Thus, we can replace the true screened
potential with a weaker, so-called
‘pseudopotential’

Solutions will be valid outside of
pseudopotential region in core



Pseudopotentials

* Several options for pseudopotential.

 Example: empty core model:
0 r <R

Vir) = {ez/r, r>R
 Empirical pseudopotential model (EPM). For
silicon:
- Vo = (—2/3)EF
— V5 = —0.2241 Ry
— V\/g = —0.052 Ry
— V7 = —0.0724 Ry



Pseudopotentials

S
* Pseudopotential in * Pseudopotential in
real space for Na atom reciprocal space
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Next Class

* |s on Wednesday, March 6

 Will continue on electronic
bandstructures

e Recommended reading: Kittel, Intro to
Solid State Physics, Chapter 10



