ECE 595, Section 10
 Numerical Simulations
 Lecture 26: Overview of Transfer Matrix Methods

Prof. Peter Bermel

March 18, 2013

Recap from Fri., Mar. 8

- Periodic Potential Lab
- Basic principles
- Input Interface
- Exemplary Outputs
- CNTbands
- Basic principles
- Input Interface
- Exemplary Outputs

Outline

- Ray-optics transfer matrix
- Wave-optics matrix methods:
- T-matrix
- R-matrix
- S-matrix

Ray Optics Transfer Matrices

- Consider light traveling through an optical element (blue):

- Can capture behavior with 2 rays: \perp going in (green); \perp going out (red)
- Represent input and output states as ordered pair: $\left(y_{k}, \theta_{k}\right)$

Ray Optics Transfer Matrices

- Would like to create linear relationship between input and output
- Consider propagation across a distance d :

$$
y_{2}=y_{1}+d \tan \theta_{1}
$$

- In paraxial approximation, assume angles are small, such that:

$$
\begin{gathered}
\sin \theta \approx \theta \\
\tan \theta \approx \theta \\
\cos \theta \approx 1-\theta^{2} / 2
\end{gathered}
$$

Ray Optics Transfer Matrices

- We can now relate input and output states:

$$
\begin{gathered}
y_{2}=y_{1}+d \theta_{1} \\
\theta_{1}=\theta_{2}
\end{gathered}
$$

- Expressed as a matrix:

$$
\binom{y_{2}}{\theta_{2}}=\left(\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right)\binom{y_{1}}{\theta_{1}}
$$

- In general, can write:

$$
\binom{y_{2}}{\theta_{2}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{y_{1}}{\theta_{1}}
$$

Ray Optics Transfer Matrices
 Example Optical System

- To propagate light through this system:

$$
\binom{y_{2}}{\theta_{2}}=\left(\begin{array}{cc}
1 & d_{7} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & d_{6} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{n_{4}}{n_{1}}
\end{array}\right)\left(\begin{array}{cc}
1 & d_{5} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{n_{1}-n_{4}}{} & \begin{array}{c}
0 \\
R n_{4}
\end{array} \\
n_{4}
\end{array}\right)\left(\begin{array}{cc}
1 & d_{4} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right) \cdots\binom{y_{1}}{\theta_{1}}
$$

http://www.photonics.byu.edu/ABCD_Matrix_tut.phtml

Wave Optics Transfer Matrices

- If we represent the electric field as two counter-propagating waves:

$$
E(x)=E_{+} e^{j \beta x}+E_{-} e^{-j \beta x}
$$

- We can use Faraday's law:

$$
-\frac{\partial B}{\partial t}=\nabla \times E
$$

- To show that:

$$
B(x)=\frac{n}{c}\left(E_{-} e^{-j \beta x}-E_{+} e^{j \beta x}\right)
$$

Wave Optics Transfer Matrices

- Can calculate each component from total field at $x=0$:

$$
\begin{aligned}
& E_{+}=\frac{1}{2}\left[E(0)-\frac{c}{n} B(0)\right] \\
& E_{-}=\frac{1}{2}\left[E(0)+\frac{c}{n} B(0)\right]
\end{aligned}
$$

- Then construct total field at $x=L$:

$$
\begin{aligned}
E(L)= & \frac{1}{2}\left[E(0)-\frac{c}{n} B(0)\right] e^{j \beta L} \\
& +\frac{1}{2}\left[E(0)+\frac{c}{n} B(0)\right] e^{-j \beta L}
\end{aligned}
$$

T-Matrices

- Can represent solutions as T-matrices:

$$
\left[\begin{array}{l}
E(L) \\
B(L)
\end{array}\right]=\left[\begin{array}{cc}
\cos \beta L & -\frac{c}{n} \sin \beta L \\
-\frac{n}{c} \sin \beta L & \cos \beta L
\end{array}\right]\left[\begin{array}{l}
E(0) \\
B(0)
\end{array}\right]
$$

- This approach is known as the transfer matrix
- For multiple layers, can take matrix products

Wave Optics Transfer Matrices

- Special case: quarter-wave stack, where $\beta L=\pi / 2$:

$$
\begin{gathered}
{\left[\begin{array}{l}
E(a) \\
B(a)
\end{array}\right]=\left[\begin{array}{cc}
0 & -\frac{c}{n_{2}} \\
-\frac{n_{2}}{c} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -\frac{c}{n_{1}} \\
-\frac{n_{1}}{c} & 0
\end{array}\right]\left[\begin{array}{l}
E(0) \\
B(0)
\end{array}\right]} \\
{\left[\begin{array}{l}
E(a) \\
B(a)
\end{array}\right]=\left[\begin{array}{cc}
\frac{n_{1}}{n_{2}} & 0 \\
0 & \frac{n_{2}}{n_{1}}
\end{array}\right]\left[\begin{array}{l}
E(0) \\
B(0)
\end{array}\right]}
\end{gathered}
$$

- Then transmission for M layers is $T=\left(\frac{n_{1}}{n_{2}}\right)^{2 M}$

T-Matrices

- Clearly, T-matrices see exponentially growing entries
- A major numerical challenge!
- Can reformulate the problem in a more numerically stable fashion:
- R-matrix method
- S-matrix method

S- and R-Matrices

Transfer matrix problem between modes propagating up and down

Transfer matrix problem between two polarizations

Two alternative formulations

S-Matrices

- For S-matrix, connect incoming to outgoing fields from
- Mathematically,

$$
\left[\begin{array}{c}
u^{(p+1)} \\
d^{(0)}
\end{array}\right]=\left[\begin{array}{cc}
T_{u u}^{(p)} & R_{u d}^{(p)} \\
R_{d u}^{(p)} & T_{d d}^{(p)}
\end{array}\right]\left[\begin{array}{c}
u^{(0)} \\
d^{(p+1)}
\end{array}\right]
$$

- For input from below:
- transmission given by $T_{u u}^{(p)}$
- reflection given by $R_{d u}^{(p)}$

R-Matrices

- For R-matrix, connect incoming to outgoing fields from
- Mathematically,

$$
\left[\begin{array}{c}
U^{(p+1)} \\
U^{(0)}
\end{array}\right]=\left[\begin{array}{ll}
R_{11}^{(p)} & R_{12}^{(p)} \\
R_{21}^{(p)} & R_{22}^{(p)}
\end{array}\right]\left[\begin{array}{c}
V^{(p+1)} \\
V^{(0)}
\end{array}\right]
$$

- U and V can represent E and H fields; then Rmatrix represents field impedance

Next Class

- Is on Wednesday, March 20
- Will continue explaining R- and S matrices
- Read L. Li, JOSA A 13, 1024-1035

