ECE 595, Section 10
 Numerical Simulations
 Lecture 29: Eigenmode Layered
 Computations (CAMFR)

Prof. Peter Bermel

March 25, 2013

Recap from Friday: S-Matrices

- S-matrix method in plane wave basis
- Calculate field eigenvectors in plane-wave basis
- Calculate interface s-matrices and layer s-matrices
- Compose S-matrices iteratively
- S4 simulation tool:
- User interface
- Lua commands
- Results for example problems: multilayer stack; 1D grating; 2D Tikhodeev example

CAMFR: Rationale

- Many problems consist of layers with varying widths
- Examples:
- LED stack
- Rod-hole photonic crystal
- Natural form of solutions is semianalytic, in terms of eigenmodes

P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

CAMFR: Basic Strategy

- Break up structure into layers
- Calculate eigenmodes in each layer (of four types)
- Apply Lorentz reciprocity to match BC's
- Propagate within layers using S-matrix method
- Apply inputs to calculate physical outputs

CAMFR: Eigenmode Decomposition

- This stage resembles BPM
- Begin with the Helmholtz equation:

$$
\left[\nabla_{t}^{2}+\epsilon \mu \omega^{2}\right] \psi=\beta^{2} \psi
$$

- Where ψ represents E-field or H-field, and β is the eigenvalue (wavevector along z)
- Write 3D solutions in this form for each layer:

$$
\binom{E(r)}{H(r)}=\sum_{k} A_{k} e^{-j \beta_{k} z}\binom{E\left(r_{t}\right)}{H\left(r_{t}\right)}
$$

CAMFR: Eigenmode Decomposition

Can express eigenvalues in terms of $\operatorname{Re} n_{e f f}$ and $\operatorname{Im} n_{e f f}$

Eigenmode Classification

Guided mode

$\operatorname{Im} \beta=0$; discrete
$\operatorname{Re} \beta=0$ or $\operatorname{Im} \beta=0$; continuous

Complex mode

$\operatorname{Im} \beta \neq 0 ; \operatorname{Re} \beta \neq 0$; discrete complex-conjugate pairs

P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

Lorentz Reciprocity

P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

- Evaluate Maxwell's equations across boundary using this surface

Lorentz Reciprocity

- Starting with Maxwell's equations:

$$
\begin{aligned}
\nabla \times \mathbf{E}_{1} & =-j \omega \mu \mathbf{H}_{1} & \nabla \times \mathbf{E}_{2} & =-j \omega \mu \mathbf{H}_{2} \\
\nabla \times \mathbf{H}_{1} & =\mathbf{J}_{1}+j \omega \varepsilon \mathbf{E}_{1} & \nabla \times \mathbf{H}_{2} & =\mathbf{J}_{2}+j \omega \varepsilon \mathbf{E}_{2}
\end{aligned}
$$

- Can form the expression:

$$
\nabla \cdot\left(\mathbf{E}_{1} \times \mathbf{H}_{2}-\mathbf{E}_{2} \times \mathbf{H}_{1}\right)=\mathbf{J}_{1} \cdot \mathbf{E}_{2}-\mathbf{J}_{2} \cdot \mathbf{E}_{1}
$$

- Integrating over V and using Gauss' theorem:

$$
\iint_{S}\left(\mathbf{E}_{1} \times \mathbf{H}_{2}-\mathbf{E}_{2} \times \mathbf{H}_{1}\right) \cdot d \mathbf{S}=\iiint_{V}\left(\mathbf{J}_{1} \cdot \mathbf{E}_{2}-\mathbf{J}_{2} \cdot \mathbf{E}_{1}\right) d V
$$

Lorentz Reciprocity

- Lorentz Reciprocity theorem becomes:

$$
\iint_{S} \frac{\partial}{\partial z}\left(\mathbf{E}_{1} \times \mathbf{H}_{2}-\mathbf{E}_{2} \times \mathbf{H}_{1}\right) \cdot \mathbf{u}_{\mathbf{z}} d S=\iint_{S}\left(\mathbf{J}_{1} \cdot \mathbf{E}_{2}-\mathbf{J}_{2} \cdot \mathbf{E}_{1}\right) d S
$$

- For z-invariant media:

> transmitted
$\iint_{S}\left(\mathbf{E}_{m, t} \times \mathbf{H}_{n, t}\right) \cdot \mathbf{u}_{z} d S=0$
P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components,"
Ph.D. Thesis, University of Ghent (2001).

incident reflected field

Boundary Conditions

- Assuming:

$$
\mathbf{E}_{p, t}^{I}+\sum_{j} R_{j, p} \mathbf{E}_{j, t}^{I}=\sum_{j} T_{j, p} \mathbf{E}_{j, t}^{I I}
$$

- Defining overlap between modes to be:

$$
\left\langle\mathbf{E}_{m}, \mathbf{H}_{n}\right\rangle \equiv \iint_{s}\left(\mathbf{E}_{m} \times \mathbf{H}_{n}\right) \cdot \mathbf{u}_{z} d S
$$

- We obtain the transmission coefficient:

$$
\sum_{j}\left[\left\langle\mathbf{E}_{i}^{I}, \mathbf{H}_{j}^{I I}\right\rangle+\left\langle\mathbf{E}_{j}^{I I}, \mathbf{H}_{i}^{I}\right\rangle\right] T_{j, p}=2 \delta_{i p}\left\langle\mathbf{E}_{p}^{I}, \mathbf{H}_{p}^{I}\right\rangle
$$

- And reflection coefficient:

$$
R_{i, p}=\frac{1}{2\left\langle\mathbf{E}_{i}^{I}, \mathbf{H}_{i}^{I}\right\rangle} \sum_{j}\left[\left\langle\mathbf{E}_{j}^{I I}, \mathbf{H}_{i}^{I}\right\rangle-\left\langle\mathbf{E}_{i}^{I}, \mathbf{H}_{j}^{I I}\right\rangle\right] T_{j, p}
$$

S-Matrix Solution

- Now we can employ the standard S-matrix scheme from Li '96:

$$
\begin{aligned}
\mathbf{T}_{1, p+1} & =\mathbf{t}_{p, p+1} \cdot\left(\mathbf{I}-\mathbf{R}_{p, 1} \cdot \mathbf{r}_{p, p+1}\right)^{-1} \cdot \mathbf{T}_{1, p} \\
\mathbf{R}_{p+1,1} & =\mathbf{t}_{p, p+1} \cdot\left(\mathbf{I}-\mathbf{R}_{p, 1} \cdot \mathbf{r}_{p, p+1}\right)^{-1} \cdot \mathbf{R}_{p, 1} \cdot \mathbf{t}_{p+1, p}+\mathbf{r}_{p+1, p} \\
\mathbf{R}_{1, p+1} & =\mathbf{T}_{p, 1} \cdot\left(\mathbf{I}-\mathbf{r}_{p, p+1} \cdot \mathbf{R}_{p, 1}\right)^{-1} \cdot \mathbf{r}_{p, p+1} \cdot \mathbf{T}_{1, p}+\mathbf{R}_{1, p} \\
\mathbf{T}_{p+1,1} & =\mathbf{T}_{p, 1} \cdot\left(\mathbf{I}-\mathbf{r}_{p, p+1} \cdot \mathbf{R}_{p, 1}\right)^{-1} \cdot \mathbf{t}_{p+1, p}
\end{aligned}
$$

- We can compose the S-matrix starting from the identity matrix until we include all layers

Periodic Eigenproblems

- Periodic layered structures will:

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \cdot\left[\begin{array}{l}
F \\
B
\end{array}\right]=e^{-j k_{z} p} \cdot\left[\begin{array}{l}
F \\
B
\end{array}\right]
$$

- Since T-matrix is nearly singular, use SVD:

$$
\mathbf{A}=\mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^{H}
$$

- Where \boldsymbol{U} and \boldsymbol{V} are unitary; Σ diagonal. Then:

$$
\mathbf{A}^{-1}=\mathbf{V} \cdot \operatorname{diag}\left(\frac{1}{\sigma_{i}}\right) \cdot \mathbf{U}^{H}
$$

CAMFR: 2D Photonic Crystals

P. Bienstman, "Rigorous and efficient modeling of wavelength scale photonic components," Ph.D. Thesis, University of Ghent (2001).

CAMFR: 2D PhC Waveguide

Next Class

- Is on Wednesday, March 27
- Will discuss CAMFR interface:
http://camfr.sourceforge.net

