ECE 595, Section 10 Numerical Simulations Lecture 3: Computability

> Prof. Peter Bermel January 11, 2013

Outline

- Overview
- Definitions
- Computing Machines
- Church-Turing Thesis
- Polynomial Time
- Example

Overview from First Lecture

- Study of the complexity of algorithms
- Based on Turing machines
- Often, one compares algorithms for best scaling in large problems

Alan Turing (from University of Calgary Centenary event)

Definitions

- Algorithm set of rules for computing a function mapping input data to output
- Specific realizations of computers:
 - Turing machines
 - Lambda calculus
 - μ -recursive functions
 - Register machines
- Running time number of basic operations required
- Efficient computability

Turing Machine

- Performs the following elementary operations:
 - Read a bit of input and byte of data from 'work'
 - Write a bit to 'work'
 - Choose next state Q. Either:
 - Stop and output a 0 or 1
 - Choose a new rule to apply next

 $\delta\!:\!Q\times\Gamma^k\to Q\times\Gamma^{k-1}\times\{\mathsf{L},\mathsf{S},\mathsf{R}\}^k$

Turing Machine: Behavior in Each State

- q_{start}: write start symbol, change state to q_{copy}
- q_{copy}: copy non-blank symbol, otherwise go to
 q_{right}
- q_{right}: go back to start, then q_{test}
- q_{test}: if at start and 'work' is blank, write 1; else, write 0
- q_{halt}: finished

Time Constructible Functions

- A function T: N \rightarrow N is time constructible iff - T(n) \geq n
 - TM M computes $x \rightarrow T(x)$ in time T(n)
- Examples: n, n log n, 2ⁿ

Turing Machine: Key Properties

- If f is computable in T(n)....
 - with alphabet Γ , it is computable in 4 log Γ T(n) with TM
 - with k tapes, it's computable in $5kT(n)^2$ with TM
 - with bidirectional tape, computable in 4T(n) with TM

Universal Turing Machines

- A universal Turing machine can simulate every other TM
- Efficient process: takes
 CN log N time to simulate a process taking N steps

nput	
ape	> 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1
	(used in the same way as M)
Vork	Simulation of M's work tape.
apes	(used in the same way as M)
	Description of M
	Current state of M
)utput	> 0 1
	(used in the same way as M)

Other Computing Machines

- Register machines
 - Post-Turing machine: adds jump and erase functions
 - Many other variations, getting closer to assembly language
- Lambda calculus basis for Scheme and LISP
- µ-recursive functions partial functions mapping N→N
- Which one should we use, in which situations?

Church-Turing Thesis

- Every physically realizable computing machine can be simulated by a Turing machine, or any other type of machine
- This thesis has not been rigorously proven
- Not applicable for non-deterministic systems
- Quantum computers have caused some to reevaluate CT thesis

Uncomputability

- It may seem obvious everything is computable with enough time, but...
- There's always an uncomputable function UC
- Another example: the halting problem
 - Computes whether another function will finish

- Cannot be computed in general

• Also: standard maximum productivity function

Big-Oh Notation

Take two functions f,g mapping N→N, there exists a constant c such that f(n)≤c·g(n)

– Sometimes write f(n) = O(g(n))

- Examples
 - If $f(n)=100n^2+24n+2\log n$ and $g(n)=n^2$, then f=O(g)
 - If $f(n)=2^n$ and $g(n)=n^c$ for every c in N, then g=O(f)

Polynomial Complexity

- Meant to capture decision problems that are feasible
- Might think of efficient computations as being O(N) or O(N²)
- Often symbolized by **P**
- Formally, $P = \bigcup_{c \ge 1} \mathbf{DTIME}(n^c)$, where **DTIME**(T) is computable in cT(n) time
- Strong form of CT thesis says all simulations can be done with P overhead

Other Classes

- Turing machines with randomness class BPP
- Quantum computers class BQP

Examples

- CONNECTED the set of all connected graphs
- TRIANGLEFREE the set of all graphs without a triangle
- BIPARTITE the set of all bipartite (distinct) graphs
- TREE the set of all trees

Next Class

- Discussion of computational complexity
- Please read <u>Chapter 2 of "Computational</u> <u>Complexity: A Modern Approach" by Arora</u> <u>& Barak</u>