ECE 595, Section 10 Numerical Simulations Lecture 32: Simulations of Coupled Mode Theory (CMT)

Prof. Peter Bermel April 1, 2013

Recap from Friday

- Overview of Coupled Mode Theory
- Derivation of Coupled Mode Equations
- Applications:
 - Single Waveguides
 - Add-Drop filters
 - Waveguide Bends
 - Channel Drop
 - T-Splitters
 - Nonlinear Kerr Waveguides

Outline

- Recap from Friday
- Numerical ODE solvers
 - Initial value problems
 - Boundary value problems
- nanoHUB Tool CMTcomb3:
 - Rationale
 - Governing ODEs
 - User interface
 - Output analysis

Numerical ODE Solvers

- Objective: to solve ODE (e.g., $\frac{dX}{dt} = f(X)$) with greatest accuracy and least computational cost
- Categories:
 - Initial value problems
 - Boundary value problems
- Algorithms:
 - Euler methods
 - Higher-order methods (e.g., Runge-Kutta)
 - Shooting methods
 - Finite element/difference methods

Numerical ODE IVP Solvers

 Euler Method: discretizes original ODE and solves in time steps of Δt:

$$\Delta \boldsymbol{X} = \Delta t \cdot \boldsymbol{f}(\boldsymbol{X})$$

- Advantages: fast, easy to implement
- Disadvantages: inaccurate for many ODEs with modest to large step sizes
- Problem is implicit linear evolution fails badly for ODEs with significant curvature

Numerical ODE IVP Solvers

- Higher-order methods: incorporate more than just first derivative into solution
- In principle, incorporating nth derivative should reduce errors to $1/\Delta t^{n+1}$
- Example: leapfrog method
 - Let:

$$\frac{d}{dt}\binom{x}{v} = \binom{v}{F(x)}$$

Alternate updating x and v:

$$x_{i+1} = x_i + v_i \Delta t + \frac{1}{2} F(x_i) \Delta t^2$$
$$v_{i+1} = v_i + \frac{1}{2} [F(x_i) + F(x_{i+1})] \Delta t$$

ECE 595, Prof. Bermel

Numerical ODE IVP Solvers

- Runge-Kutta methods: incorporate points with spacing less than Δt for each higher accuracy (e.g., ode45 in MATLAB)
- Generally define k_i to incrementally determine slopes within interval:

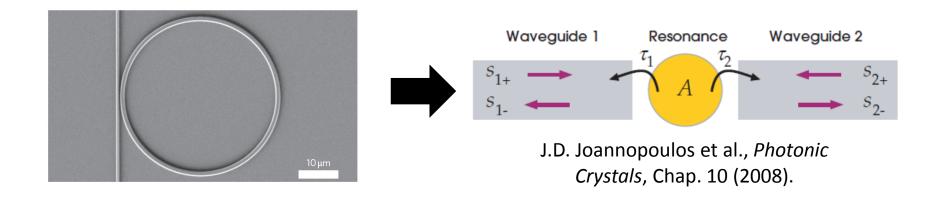
$$k_i = \Delta t \cdot f(t_n + a_i \Delta t, y_n + \sum_{j=1}^{j} b_{ij} k_j)$$

• This gives rise to solutions:

$$y_{n+1} = y_n + \Delta t \sum_{i=1}^{M} c_i k_i$$

• In general, order of solution will be equal to M; accuracy will go as $1/\Delta t^{M+1}$

Numerical ODE Solvers


• Stiff solvers: for ODEs with a rapid harmonic oscillation, use backward differentiation formulae:

$$\sum_{i=0}^{M} c_i y_{n+i} = \Delta t \cdot f(t_{n+M}, y_{n+M})$$

- Convergence can be orders of magnitude better
- Implemented with ode15s in MATLAB

Numerical ODE BVP Solvers

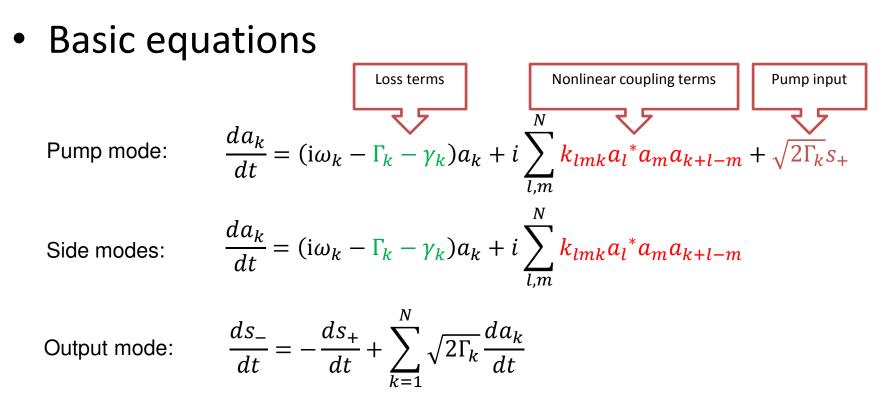
- Shooting method applies Euler method
- However, finite element and finite difference methods are ideal for boundary value problems
- Finite elements: discretize on finite element basis, and solve using Galerkin method
- Finite difference: discretize on grid, and solve using leapfrog method

Goal is to reduce physics of four-wave mixing in a microring resonator to a set of coupled mode equations, then solve them

Recap: Derivation of CMT Equations

• By linearity, coupling of waveguides into modes given by:

$$\frac{dA_i}{dt} = \dots + \sum_j \alpha_{ij} S_{j+j}$$


• For similar reasons, outgoing waveguide modes given by:

$$S_{i-} = \beta_i S_{i+} + \sum_j \gamma_{ij} A_j$$

• By conservation of energy, inputs must be stored or lost:

$$\sum_{i} \left[|S_{i+}|^2 - |S_{i-}|^2 - \frac{dU_i}{dt} \right] = 0$$

• Special cases can be used to obtain coefficients: $\{\alpha_{ij}, \beta_i, \gamma_{ij}\}$

R. Shugayev *et al.,* "Coupled Mode Theory for Microring Resonator Cavities," presented at *International Workshop for Novel Ideas in Optics* (June 2012, West Lafayette, IN).

Input parameters for user to modify:

- Number of modes
- Plot modes
- Pump frequency
- Input scale factor
- Loss rate Γ
- Nonlinear strength κ

Number of modes:	15 🛔	
plot modes:	1;6;10	
Pump frequency(vo_in):	0.3	
Input scale factor:	0.05	
gamma(uniform): 0.00	62831852	
Upload gamma file: 🔲 n	0	
Uploaded File:		
Example:	2	
r		
Small gamma(uniform): 0.0062831852		
Upload small gamma file: 🔲 no		
Uploaded File:		
Example:	X	
Карра		
Kappa(uniform): 0.9		
Upload kappa file: 🗌 ne	1	
Uploaded File:		
Example:	Y	

Generation Model with Coupled Mode Theory	🗙 Terminate 🔹 Keep for later
Modeling Nonlinear Comb Generation with Coupled Mode Theory Methods Master equation approach	Simulate About this tool Questions?
Number of modes: 15 plot modes: 1;6;10 Pump frequency(vo_in): 0.3 Input scale factor: 0.05 gamma	0.0001 -
gamma(uniform): 0.0062831852 Upload gamma file: no Uploaded File: Example:	° ·- torono to
Small gamma Small gamma(uniform): 0.0062831852 Upload small gamma file: Uploaded File: Example	-0.00010.000
Kappa Kappa(uniform): 0.9 Upload kappa file: no	2 results Clear One Clear All Simulation = #2 All plot modes = 1;6;10

- Coupled mode theory (CMT) is accurate in the weak-coupling regime, and much faster than full-wave time-domain simulations of comparable systems
- Our CMT comb simulation enables exploration of basic physics and rapid prototyping for specific applications, including metrology and RF signal modulation

Next Class

- Is on Wednesday, April 3
- Next time: we will discuss finitedifference time domain techniques
- Suggested reference: S. Obayya's book, Chapter 5, Sections 4-6